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Abstract 

 
The TOPological Sub-Structural MOlecular DEsign (TOPS-MODE) approach has been applied to the 

study of the permeability coefficient of various compounds through human skin. A model able to describe 

more than 93% of the variance in the experimental permeability of 37 organic compounds was developed 

with the use of the mentioned approach. In contrast, none of nine different approaches, including the use of 

constitutional, topological, BCUT, 2D autocorrelations, geometrical, RDF, 3D Morse, GETAWAY and 

WHIM descriptors was able to explain more than 90% of the variance in the mentioned property with the 

same number of descriptors. In addition the TOPS MODE allows a simple interpretation of the model in 

comparison with others methodologies.  
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1 INTRODUCTION 

 

The barrier function of human skin is important both to the transdermal administration of 

drugs and to the uptake of toxic chemicals following dermal exposure. As a result, 

several models to predict molecular transport through human skin have been developed 

[1-3].   

Various synthetic membranes have been employed in drug release studies. The most 

commonly used artificial membranes are polydimethylsiloxane (PDMS) and cellulose 

acetate [4- 10].  

PDMS (for example, Silastic) is an isotropic polymer widely employed as an alternative 

model barrier for in vitro percutaneous penetration. It behaves according to Fick’s first 

law of diffusion and possesses lipid-like properties, making it a good model for the 

stratum corneum [11]. 

Cellulose acetate membranes have similarly found use in such experiments and also in 

the characterization of iontophoretic delivery [12-16]. However, these membranes have 

often been shown to overestimate significantly the flux across skin and their use is 

significantly limited. Further, Cronin et al. [17], in a mechanistic study of penetration 

across a PDMS membrane, indicated that penetration is related primarily to the ability of 

the penetrants to form hydrogen bonds and not to their lipophilicity, as suggested by 

similar studies on skin ex vivo. 

Early quantitative structure-activity relationship (QSAR) studies to predict skin 

permeation of chemicals revealed that hydrophobicity was correlated linearly with 

increasing permeability [18, 19]. Patel et al. [20] demonstrated in an excellent paper as 
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the hydrophobicity, molecular size and the hydrogen bonding capability of a molecule 

affect its ability to permeate skin. 

In the context of in silico methods for modeling physicochemical and biological 

properties of chemicals the topological sub-structural molecular design (TOPS-MODE) 

approach has been introduced [21-25]. 

The successful applications of this theoretical approach to the modeling of physical and 

physical-chemical properties [26, 27] have inspired us to perform a more exhaustive 

study in order to test and/or validate the TOPS MODE applicability in this area.  

Therefore, the aim of this study was to investigate the role that TOPS-MODE and other 

molecular descriptors calculated from the molecular structure plays on the explanation of 

such property using a data set of 37 organic compounds. 

 

2 MATERIALS AND METHODS 

2.1 The Tops-Mode Approach 

 

TOPS-MODE is based on the computation of the spectral moments of the bond matrix, 

the mathematical basis of which has been described previously [21 - 24]. The TOPS-

MODE approach has been recently reviewed in the literature [28], and both the 

methodology and its software implementation have been described [29]. 

According to the authors, the application of the TOPS-MODE approach to the study of 

quantitative structure – permeability relationships (QSPR) can be summarized in the 

following steps: 
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1. To draw the hydrogen-depleted molecular graphs for each molecule of the data 

set, 

2. To use appropriate bond weights in order to differentiate the molecular bonds, 

e.g., bond distance, bond dipoles, bond polarizabilities, etc., 

3. To compute the spectral moments of the bond matrix with the appropriate 

weights for each molecule in the data set, generating a table in which rows 

correspond to the compounds and columns correspond to the spectral moments 

of the bond matrix. Spectral moments are defined as the trace of the different 

powers of the bond matrix [30],  

4. To find QSPR by using a suitable linear or non-linear multivariate statistical 

technique, such as multi-linear regression analysis (MRA), etc. to obtain an 

equation of the form: 

      P = a0µ0 + a1µ1 + a2µ2 + a3µ3  ………… akµk + b                                             (Eq. 1)     

                where P is the property measurement, µk is the kth spectral moment, and            

ak’s are the coefficients obtained by the MRA, 

5. To test the predictive capability of the QSPR model by using cross-validation 

techniques. 

 

2.2 Data Sets and Computational Strategies. 

 

A data set of 37 compounds for which the permeability coefficients were reported in the 

literature was selected [31]. The parameter studied is log(p) where p is the permeability 
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coefficient through human epidermis. The names of the compounds, as well as the 

calculated and experimental values of log(p) are shown in Table 1. 

 

Table 1 comes about here 

 

TOPS-MODE [29] and DRAGON [32] computer softwares were employed to calculate 

the molecular descriptors. In the case of TOPS-MODE software, the polar surface, the 

dipole moment, the Gasteiger-Marsili charges and hidrophobicity were used to weigh the 

bond adjacency matrix. The selection of only these four types of descriptors from the 

whole pool of ten types included in TOPS-MODE methodology was carried out for the 

sake of simplicity and on the belief that steric and polarity parameters influence the 

permeability of compounds through skin layers. The total number of descriptors used for 

obtaining this model was 64 spectral moments. On the other hand, we carry out geometry 

optimization calculations for each compound used in this study using the quantum 

chemical semiempirical method AM1 [33] included in MOPAC 6.0 [34]. Nine other 

models were developed using the computer software Dragon [32], and calculating the 

Constitutional, Topological, BCUT, 2D autocorrelations, Geometrical, RDF, 3D-

MORSE, GETAWAY and WHIM descriptors [35]. The statistical processing to obtain 

the QSAR models was carried out by using the forward stepwise regression methods.  

The statistical significance of the models was determined by examining the regression 

coefficient, the standard deviation, the number of variables, the cross validation leave-

one-out statistics and the proportion between the cases and variables in the equation. 
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3 RESULTS AND DISCUSSION  

3.1 Quantitative Structure Permeation Relations  

The best QSPR model obtained with the TOPS-MODE descriptors is given below 

together with the statistical parameters of the regression. 

 

(Eq. 2) 

 

N = 37    S = 0.24    R2 = 0.938     F = 121.06     p = 0.000     q2 = 0.907     Scv = 0.351    

where N is the number of compounds included in the model, R2 is the correlation 

coefficient, S the standard deviation of the regression, F the Fisher ratio, q2 the 

correlation coefficient of the cross – validation, p is the significance of the variables in 

the model and Scv is the standard deviation of the cross – validation. 

The variables included in the model are designated as follows: the sub-index represents 

the order of the spectral moment and the super-index the type of bond weight used, i.e., D 

for dipole moment, PS for polar surface and H for hifrophobicity. 

From the statistical point of view this model is a robust one as can be seen from the 

statistical parameters of the cross-validation. 

As we previously mentioned, one of the objectives of the current work was to compare 

the reliability of the TOPS-MODE approach to describe the property under study as 

compared to other different descriptors and methods. Consequently, 9 other models were 

developed using the same data set and the same number of variables that was included in 

the TOPS-MODE QSPR model. The results obtained with the use of constitutional, 

PSHGMDp 1115
7
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topological, BCUT, 2D autocorrelations, geometrical, RDF, 3D Morse, GETAWAY and 

WHIM descriptors are given in Table 2. 

Table 2 comes about here. 

 

3.2 Comparison with other Approaches 

 

As can be seen there are remarkable differences concerning the explanation of the 

experimental variance given by these models compared to the TOPS-MODE one. While 

the TOPS-MODE QSPR model explains more than 93% of permeability the rest of the 

models are unable to explain beyond 90% of such variance.  

The TOPS-MODE model is superior to the other nine models not only in the statistical 

parameters of the regression but also, and more importantly, in its stability upon 

inclusion/exclusion of compounds as measured by the correlation coefficient and 

standard deviation of the cross-validation. Because of the structural variability of the 

compounds in the data set these statistics of the leave-one-out cross validation might be 

considered as a good measurement of the predictive ability of the models. As can be seen 

in Table 2, the value of the determination coefficient of leave-one-out cross-validation for 

the model obtained with the spectral moments (q2 = 0.907) was the highest of all.  

 

3.3 Interpretation of the Model 

One of the most important advantages that TOPS-MODE brings to the study of QSPR 

and QSAR is concerned with the structural interpretability of the models. This 
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interpretability comes from the fact that the spectral moments can be expressed as linear 

combinations of structural fragments.  

According to the equation 2, the permeation coefficient decreases as the polar surface 

increases in the molecule and an increase of the hidrophobicity increase the permeability. 

The polarity of the atoms produces a higher interaction of the permeant with the polymer 

and therefore an increase of the hydrophobicity leads to a higher flux across the human 

skin. This behavior was reported by Moss et al. in an excellent review [37] where the 

main role of hidrophobicity in accounting for this property was explained.    

 However, the contributions of the heteroatom are also dependent on its volume [37]. The 

atomic volume of sulfur is larger than that of nitrogen, but the polarity of the latter atom 

is higher than that of the former and thence the result of this effect is a delay in the 

permeation process [38].   

Finally, this decrease of the permeability when increase the polarity of the molecule also 

should be due to the oxygen and nitrogen present the possibility to form a hydrogen bond 

with the polar compounds in the human skin. Potts and Guy [31] and Patel et al. [20] 

pointed out that the hydrogen bonding capability of a molecule affects its ability to 

permeate the skin. Similar results were obtained by Lipinski et al. [39] where the 

hydrogen bond acceptors sites could potentially hamper skin permeation. 

This study demonstrated that the passage of chemicals throughout a human skin in this 

set of compounds is controlled by the hydrophobicity and the polarity.  In addition we 

demonstrated that the TOPS MODE is a excellent tools for the prediction of the 

permeability is this type of matrix.    
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4 CONCLUDING REMARKS 

     We have shown that the TOPS-MODE approach is able to describe the permeability 

of different compounds through human skin. In fact, we have developed a model for 

predicting the permeability coefficient of a data set of 37 permeants, which is both 

statistically and chemically sound. This model explains more than 93 % of the variance in 

the experimental permeability coefficients and shows good predictive ability in cross-

validation. These features are significantly better than those obtained for other nine 

different methodologies used to predict this property. Therefore, the spectral moments 

show a better performance than other kind of descriptors, which suggests that they can be 

used in new QSPR applications. 

Finally, the present results were compared to others obtained in previous works and 

evidence was obtained on the similarity of the properties that explain the phenomenon.  
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Table 1. Observed, predicted, and residual values of permeability coefficients (cm/s) 

through human epidermis for the 37 compounds used to derive the QSPR [31]. 

 

Number Compounds Observed Predicted Deleted Residuals 
1 Water -6.130 -5.871 -0.356 
2 Methanol -6.680 -7.165 0.603 
3 methanoic acid -7.080 -7.402 0.405 
4 Ethanol -6.660 -6.635 -0.029 
5 ethanoic acid -7.010 -6.946 -0.073 
6 n-propanol -6.410 -6.362 -0.052 
7 n-propanoic acid -7.010 -6.633 -0.442 
8 butane-2-one -5.900 -5.590 -0.402 
9 Benzene -4.510 -4.336 -0.200 
10 diethyl ether -5.350 -5.003 -0.381 
11 n-butanol -6.160 -6.090 -0.075 
12 n-butanoic acid -6.360 -6.340 -0.024 
13 Phenol -5.640 -5.518 -0.128 
14 Toluene -3.560 -4.118 0.651 
15 Styrene -3.750 -3.860 0.130 
16 n-pentanol -5.780 -5.817 0.040 
17 phenylmethanol -5.780 -5.776 -0.005 
18 n-pentanoic acid -6.010 -6.064 0.063 
19 2-chlorophenol -5.040 -4.719 -0.338 
20 4-chlorophenol -5.000 -4.954 -0.049 
21 m-cresol -5.380 -5.245 -0.141 
22 o-cresol -5.360 -5.068 -0.304 
23 p-cresol -5.290 -5.271 -0.020 
24 4-bromophenol -5.000 -4.823 -0.190 
25 4-nitrophenol -5.810 -5.728 -0.098 
26 3-nitrophenol -5.810 -5.624 -0.228 
27 2-nitrophenol -4.560 -4.796 0.580 
28 Ethylbenzene -3.480 -3.886 0.481 
29 n-hexanol -5.450 -5.545 0.101 
30 n-hexanoic acid -5.440 -5.791 0.413 
31 b-naphthol -3.700 -3.714 0.017 
32 n-heptanol -5.050 -5.273 0.239 
33 n-heptanoic acid -5.280 -5.518 0.286 
34 n-octanol -4.840 -5.000 0.176 
35 n-octanoic acid -5.210 -5.246 0.045 
36 n-nonanol -4.770 -4.728 -0.048 
37 n-decanol -4.660 -4.456 -0.242 
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Table 2. Statistical parameters of the lineal regressions models obtained for the ten kinds 

of descriptors. 

  

Descriptors Variablesa S R2 F p q2 
Spectral moments µ15D,  µ15GM,  µ1H, µ1PS 0.240 0.938 121.06 0.000 0.907 

Constitutional  nC, nN, nO, nX 0.378 0.843 43.22 0.000 0.741 
Topological SPI, Jhete, PW4, SEigv 0.370 0.851 45.75 0.000 0.801 

BCUT BELe3, BELe4, BELp6, BELp5 0.381 0.841 42.415 0.000 0.791 
2D autocorrelations ATS1e, ATS4e, ATS4p, GATS1p  0.440 0.789 29.908 0.000 0.701 

Geometrical MAXDP, G2, SPAM, G(N..O) 0.340 0.873 55.291 0.000 0.824 
RDF RDF010u, RDF020e, RDF010p, RDF020p 0.415 0.812 34.577 0.000 0.742 

3D-MORSE Mor28v, Mor26u, Mor32m, Mor31u 0.293 0.906 77.628 0.000 0.861 
GETAWAY H2u, H1e, R1e, R1p 0.349 0.867 52.147 0.000 0.817 

WHIM G2p, Ts, Au, Ap 0.527 0.702 18.873 0.000 0.632 
a The definition of the terms appears largely explained in reference 35. 
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Figure 1. The linear relation between observed and predicted permeability for the 

compounds of the training set. 
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