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Abstract 

 
The TOPological Sub-Structural MOlecular DEsign (TOPS-MODE) approach has been applied to the study 

of the retention times in liquid chromatographic of various polyhalogenated biphenyls. A model able to describe 

more than 96% of the variance in the experimental retention times of 56 organic compounds was developed 

with the use of the mentioned approach. In contrast, four different approaches, including the use of 

Constitutional, Charges indices, Randic Molecular profiles and RDF descriptors was able to explain more than 

91% of the variance in the mentioned property with the same number of descriptors. In addition, the TOPS 

MODE model was compared with the model obtained with Hasan and Jurs where the superior of the first was 

clearly demonstrated.  
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1 INTRODUCTION 
 

Halogenated biphenyls are a group of chemical compounds formed by substituting hydrogen 

in biphenyl with one of the halogens. In theory, there are 209 possible congeners for each 

series of halogenated biphenyl. However, the compounds, which have received the most 

attention from environmental chemist and toxicologist, are the chlorinated biphenyls (PCBs). 

Their chemical inertness and other desirable physical properties have made the PCBs a 

versatile chemical product with many industrial applications [1]. Nevertheless due to 

indiscriminate use and improper disposal, PCBs have become one of the most widely spread 

environmental contaminants. Because of their persistence, they are still considered a major 

threat to the environment, despite the fact that their production has long been banned. 

On the other hand, the other halogenated biphenyls such as polybrominated biphenyls 

(PBBs) are not as persistent as PCBs. Thus, their toxicology and environmental impact have 

not been as extensively studied as with PCBs.  

One of the most commonly used methods of analysis for polyhalogenated biphenyls in 

environmental samples is Liquid Chromatography. This method is still considered especially 

for sample cleanup or fractionation prior to GC analysis. Erickson [2] has given a discussion 

on analytical method for analisys of PBCs.  

On the other hand, the prediction of physicochemical and biological properties of organic 

molecules is one of the main objectives of the methods based on quantitative structure-

property relationships (QSPRs) [1]. Among the most important parameters that have been 

extensively studied by using these approaches are the chromatographic ones [2].     

In the context of in silico methods for modeling physicochemical and biological properties of 

chemicals, the topological sub-structural molecular design (TOPS-MODE) approach has 

been introduced. The TOPS-MODE has been applied to the description of physicochemical 

and biological properties of organic compounds [3-8]. 

The successful application of this theoretical approach to the modeling of Chromatography 

properties [5] has inspired us to perform a study in order to test and/or validate TOPS MODE 

applicability.  

We will show here how TOPS MODE is able to produce good QSAR models that permit 

easy structural interpretation and their comparison with other methodologies. 
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2 MATERIALS AND METHODS 

2.1 The Tops-Mode Approach 

TOPS-MODE is based on the computation of the spectral moments of the bond matrix, the 

mathematical basis of which has been described previously [9–12]. The TOPS-MODE 

approach has been recently reviewed in the literature [13], and both the methodology and its 

software implementation have been described [14]. 

According to the authors, the application of the TOPS-MODE approach to the study of 

quantitative structure – property relationships (QSPR) can be summarized in the following 

steps: 

1. To draw the hydrogen-depleted molecular graphs for each molecule of the data set, 

2. To use appropriate bond weights in order to differentiate the molecular bonds, e.g., 

bond distance, bond dipoles, bond polarizabilities, etc., 

3. To compute the spectral moments of the bond matrix with the appropriate weights 

for each molecule in the data set, generating a table in which rows correspond to 

the compounds and columns correspond to the spectral moments of the bond 

matrix. Spectral moments are defined as the trace of the different powers of the 

bond matrix [15],  

4. To find QSPR by using a suitable linear or non-linear multivariate statistical 

technique, such as multi-linear regression analysis (MRA), etc. to obtain an 

equation of the form: 

      P = a0µ0 + a1µ1 + a2µ2 + a3µ3  ………… akµk + b                                             (Eq. 1)     

                where P is the property measurement, µk is the kth spectral moment, and            ak’s 

are the coefficients obtained by the MRA, 
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5. To test the predictive capability of the QSPR model by using cross-validation 

techniques. 

2.2 Data Sets and Computational Strategies. 

 

A data set of 56 polyhalogenated biphenyls including 13 fluorinated, 22 chlorinated, 18 

brominated, and three iodinated biphenyls for which the Chromatographic retention data 

were reported in the literature was selected [16]. The parameter studied is the retention time 

in Liquid Chromatography (RT) where retention for all 56 compounds in the data set were 

obtained on an ODS (C18) column using 100% methanol as the mobile phase. The names of 

the compounds, as well as the calculated and experimental values of RT are shown in Table 

1. 

 

Table 1 comes about here 

 

TOPS-MODE [14] and DRAGON [17] computer softwares were employed to calculate the 

molecular descriptors. In the case of TOPS-MODE software, the standard distance, the Van 

Der Waals radii and hidrophobicity were used to weigh the bond adjacency matrix. The 

selection of only these three types of descriptors from the whole pool of ten types included in 

TOPS-MODE methodology was carried out for the sake of simplicity and on the belief that 

steric and polarity; parameters influence the retention times of compounds. The total number 

of descriptors used for obtaining this model was 48 spectral moments. On the other hand, we 

carry out geometry optimization calculations for each compound used in this study using the 

quantum chemical semiempirical method AM1 [18] included in MOPAC 6.0 [19]. Four other 

models were developed using the computer software Dragon [17], and calculating the 
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Constitutional, Charges Indices, Randic Molecular Profiles and RDF descriptors [20]. The 

statistical processing to obtain the QSAR models was carried out by using the forward 

stepwise regression methods.  

The statistical significance of the models was determined by examining the regression 

coefficient, the standard deviation, the number of variables, the cross validation leave-one-

out statistics and the proportion between the cases and variables in the equation. 

3 RESULTS AND DISCUSSION  

3.1 Quantitative Structure Property Relations  

The best QSPR model obtained with the TOPS-MODE descriptors is given below together 

with the statistical parameters of the regression. 

                   (Eq. 2) 

 

N = 56    S = 56.513    R2 = 0.965     F = 272.09     p = 0.000     q2 = 0.955     Scv = 59.35    

where N is the number of compounds included in the model, R2 is the correlation coefficient, 

S the standard deviation of the regression, F the Fisher ratio, q2 the correlation coefficient of 

the cross – validation, p is the significance of the variables in the model and Scv is the 

standard deviation of the cross – validation. 

The variables included in the model are designated as follows: the sub-index represents the 

order of the spectral moment and the super-index the type of bond weight used, i.e., SD for 

Standard distance, VDW for Van Der Waals radii and H for hidrophobicity. From the 

statistical point of view, this model is a robust one as can be seen from the statistical 

parameters of the cross-validation. 
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As we previously mentioned, one of the objectives of the current work was to compare the 

reliability of the TOPS-MODE approach to describe the property under study as compared to 

other different descriptors and methods. Consequently, four other models were developed 

using the same data set and the same number of variables that was included in the TOPS-

MODE QSPR model. The results obtained with the use of Constitutional, Charges Indices, 

Randič Molecular Profiles, RDF descriptors are given in Table 2. 

Table 2 comes about here. 

 

3.2 Comparison with other Approaches 
 

As can be seen there are remarkable differences concerning the explanation of the 

experimental variance given by these models compared to the TOPS-MODE one. While the 

TOPS-MODE QSPR model explains more than 96% of Retention times the rest of the 

models are unable to explain beyond 91% of such variance.  

The TOPS-MODE model is superior to the other four models not only in the statistical 

parameters of the regression but also, and more importantly, in its stability upon 

inclusion/exclusion of compounds as measured by the correlation coefficient and standard 

deviation of the cross-validation. Because of the structural variability of the compounds in 

the data set these statistics of the leave-one-out cross validation might be considered as a 

good measurement of the predictive ability of the models. As can be seen in Table 2, the 

value of the determination coefficient of leave-one-out cross-validation for the model 

obtained with the spectral moments (q2 = 0.955) was the highest of all.  

On the other hand, we established a comparison with the work of Hasan and Jurs [16] in 

order to demonstrate the potentiality of the TOPS MODE approach in this topic. 
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In the interesting paper, Hasan and Jurs used a combination of five molecular descriptors for 

modeling this chromatographic property but some of these descriptors are based on 

experimental properties. Therefore, prediction of the retention times of the three iodinated 

biphenyl derivates present in the model is impossible because parameters for the calculation 

of partial charges for iodine were not available, problem that not present the TOPS-MODE 

approach. In addition, the variable used (fraction of positively charge, fraction of negatively 

charge and relative positive charge) in the model should present a high intercorelation due to 

that this properties encode the same information in the molecule and the authors not shown a 

absolute presumption of orthogonalization of this according to the Randic methods for 

example. Therefore, this bring serious problem when the model is interpreted because the 

sign of the coefficient in general change and even some variable should be not significant in 

the new model [21].  

Finally, the authors obtained an excellent R2 = 0.968 vs 0.965 obtained by our model. This 

correlation coefficient not presents great differences. Nevertheless, we used 56 compounds, 

when we eliminated three compounds of our model (51, 52, 53) the R2 = 0.981 whereas 

overcome at the model reported by Hasan and Jurs.  

This compounds present a big symmetric. This interesting behavior was reported by Hasan 

and Jurs but in the compounds 34 and 53. This anomaly is probably caused by interactions at 

the molecule in a specific site with the methanol solvent. 

Therefore, we in this work have demonstrated the potential of the TOPS MODE in the 

modeling of physico - chemical properties in special the Chromatographic properties.        

 

4 CONCLUDING REMARKS 
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     We have shown that the TOPS-MODE approach is able to describe the retention times of 

different compounds in liquid chromatographic. In fact, we have developed a model for 

predicting the retention time coefficient of a data set of 56 polyhalogenated biphenyls, which 

is both statistically and chemically sound. This model explains more than 96 % of the 

variance in the experimental retention times coefficients and shows good predictive ability in 

cross-validation. These features are significantly better than those obtained for other four 

different methodologies used to predict this property. Therefore, the spectral moments show 

a better performance than other kind of descriptors, which suggests that they can be used in 

new QSPR applications. 

Finally, the present results were compared to others obtained in previous works and evidence 

was obtained on the similarity of the properties that explain the phenomenon.  
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Table 1. Names of compounds; observed, predicted, and residual values of retention times in 

liquid chromatographic for the 56-polyhalogenated biphenyls used to derive the QSPR [2]. 

Number Compounds Observed Predicted Deleted Residuals 

1 2-fluorobiphenyl 367.000 351.368 16.933 
2 3-fluorobiphenyl 382.000 362.384 20.942 
3 4-fluorobiphenyl 370.000 322.916 51.162 
4 2,3-difluorobiphenyl 355.000 321.403 35.494 
5 2,4-difluorobiphenyl 304.000 287.604 17.482 
6 2,5-difluorobiphenyl 295.000 300.234 -5.542 
7 2,6-difluorobiphenyl 223.000 279.812 -62.275 
8 3,4-difluorobiphenyl 347.000 329.024 20.158 
9 3,5-difluorobiphenyl 382.000 342.036 44.475 

10 4,4’-difluorobiphenyl 227.000 210.541 23.113 
11 2,2’,4-trifluorobiphenyl 228.000 205.077 26.476 
12 2,3,5,6-tetrafluorobiphenyl 212.000 302.903 -102.591 
13 decafluorobiphenyl 278.000 263.946 45.671 
14 2-chlorobiphenyl 442.000 435.706 6.849 
15 3-chlorobiphenyl 578.000 562.573 16.592 
16 4-chlorobiphenyl 521.000 531.620 -11.247 
17 2,3-dichlorobiphenyl 540.000 561.229 -22.444 
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18 2,4-dichlorobiphenyl 605.000 578.861 26.803 
19 2,5-dichlorobiphenyl 559.000 589.550 -31.376 
20 2,6-dichlorobiphenyl 415.000 450.893 -39.198 
21 3,4-dichlorobiphenyl 706.000 690.780 16.183 
22 4,4’-dichlorobiphenyl 583.000 627.949 -47.302 
23 2,3,4-trichlorobiphenyl 732.000 709.760 23.585 
24 2,4,5-trichlorobiphenyl 817.000 761.610 57.092 
25 2,4,6-trichlorobiphenyl 700.000 641.570 60.244 
26 3,4,5-trichlorobiphenyl 891.000 874.440 18.419 
27 2,3,4,5-tetrachlorobiphenyl 978.000 913.903 70.875 
28 2,3,4,6-tetrachlorobiphenyl 832.000 793.271 41.043 
29 2,3,5,6-tetrachlorobiphenyl 794.000 794.085 -0.090 
30 2,2’,4,4’-tetrachlorobiphenyl 682.000 724.701 -46.499 
31 3,3’,4,4’-tetrachlorobiphenyl 871.000 946.263 -88.650 
32 2,3,3’,4,5-pentachlorobiphenyl 982.000 1041.261 -65.095 
33 2,2’,4,4’,5,5’-hexachlorobiphenyl 977.000 1090.368 -132.664 
34 2,2’,4,4’,6,6’-hexachlorobiphenyl 916.000 856.249 74.259 
35 decachlorobiphenyl 1520.000 1499.669 41.430 
36 2-bromobiphenyl 480.000 478.813 1.277 
37 3-bromobiphenyl 633.000 657.506 -26.646 
38 4-bromobiphenyl 606.000 629.571 -24.955 
39 2,3-dibromobiphenyl 624.000 643.754 -20.831 
40 2,4-dibromobiphenyl 728.000 715.529 13.043 
41 2,5-dibromobiphenyl 669.000 729.175 -63.797 
42 2,6-dibromobiphenyl 494.000 534.375 -46.171 
43 3,4-dibromobiphenyl 761.000 827.257 -68.984 
44 3,5-dibromobiphenyl 882.000 926.129 -52.640 
45 4,4’-dibromobiphenyl 703.000 823.851 -131.548 
46 2,4,5-tribromobiphenyl 923.000 938.579 -16.438 
47 2,4,6-tribromobiphenyl 832.000 814.409 19.985 
48 3,4,5-tribromobiphenyl 1000.000 1047.164 -50.538 
49 2,3,4,5-tetrabromobiphenyl 1050.000 1073.716 -26.137 
50 2,3,4,6-tetrabromobiphenyl 939.000 953.058 -16.217 
51 3,3’,4,4’-tetrabromobiphenyl 996.000 879.713 132.736 
52 3,3’,5,5’-tetrabromobiphenyl 1030.000 879.713 171.545 
53 3,3’,4,4’,5,5’-hexabromobiphenyl 1370.000 1219.216 187.133 
54 2-iodobiphenyl 483.000 432.448 61.730 
55 3-iodobiphenyl 663.000 691.102 -30.036 
56 4-iodobiphenyl 640.000 666.362 -28.019 
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Table 2. Statistical parameters of the lineal regressions models obtained for the ten kinds of 

descriptors. 

a The definition of the terms appears largely explained in reference 20. 
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Figure 1. The linear relation between observed and predicted retention times for the 

compounds of the training set. 

Descriptors Variablesa S R2 F q2 
Spectral moments µ2H,  µ11H,  µ11VDW, µ15VDW  

µ11D 
56.51 0.965 272.09 0.955 

Constitutional  Sp, Me, Mp, Ms, nI 106.50 0.861 69.432  
Charges Indices GGI5, GGI8, JGI1, JGI7, JGI8 221.63 0.455 8.343  

Randic Molecular Profiles SP03, DP02, SP07, DP01, SP08 131.65 0.789 45.295  
RDF RDF095m, RDF040v, RDF040p, 

RDF085p, RDF100p,  
88.417 0.913 105.24  
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