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Abstract 

Motivation. This paper reports the development of new method for mathematical characterization of the 
primary DNA sequences.  
Method. A condensed characterization of the primary sequence is based on 4*4 matrices the rows and 
columns of which are associated with the four nucleic bases A, G, C and T.  
Results. The condensed matrices for the primary sequences of DNA is serving as a source of invariants that 
allow quantitative comparisons of DNA from different sources.  
Conclusion. The sensitivity of the descriptor renders it suitable for using it as a parameter to index toxicity 
levels of various agents that induce changes in DNAs. The study was outlined on normal DNA. 
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1 INTRODUCTION 

 
DNA is usually presumed to be the critical macromolecular target for carcinogenesis and 
mutagenesis [1]. To predict sequence changes induced by different agents, it imperative to have 
quantitative measures to compare and contrast the different DNA sequences [2]. Earlier studies 
have shown different schemes to characterize DNA sequences so that members of different gene 
families and sequences can be described by unique numbers that have the potential to codify the 
DNA sequence into a set of numbers for quantitative comparisons between different species. This 
method is very useful in numerical characterization of DNA sequence, and is capable of handling 
large sequences with reasonable degree of accuracy, providing quantitative estimates to base 
alterations, deletions and additions for ready comparison and tabulation [3-6].    
 
The method is based firstly on a DNA representative with a suitable mathematical object. Secondly, 
the selected mathematical object is described by various matrices that record distances among DNA 
sequences. Thirdly, one constracts various matrix invariants to serve as DNA descriptors. 
Comparison between sequences becomes thus comparison between matrices. 
 

2 REDUCED DNA MATRICES 
 

A direct base-by-base transformation of a primary DNA sequence to a matrix will result in a matrix 
having many rows and columns. For example the first exon of the primary DNA (shown in table 1), 
which has 50 nucleic bases leads to a symmetric 50*50 matrix with 1585 matrix entries. In case of 
human genes, the first exon is of longer length and would generate a symmetric matrix with over 
one million entries. Consider the beginning of the first exon of table 1: 
 

T G G A A T T G T G 
A G C G G A T A A C 
A A T T T C A C A C 
A G G A A A C A G C 
T A T G A C C A T G 

 
The first exon of table 1 has 50 bases totaling 11T+ 12G+ 18A+ 9C. Thus the 50*50 DNA matrix 
will lead to diagonal submatrices of the following size: 11*11, 12*12, 18*18 and 9*9 corresponding 
to TT, GG, AA and CC respectively. All the off diagonal submatrices will be in this case 
rectangular, TG of size 11*12, TA of  11*18 and TC of 11*9. In our study, the four nucleic bases 
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A, G, C and T are considered as labels for a 4*4 symmetric matrix (with xy=yx). One can 
summarize pertinent information in a very condensed 4*4 matrix of the following form 
 

 A G C T     
A AA AG AC AT 18*18 18*12 18*9 18*11 
G GA GG GC GT 12*18 12*12 12*9 12*11 
C CA CG CC CT 9*18 9*12 9*9 9*11 
T TA TG TC TT 11*18 11*12 11*9 11*11 

 
The elements of the matrix in this case are ten elements. AA, AG, AC, AT, GG, GC, GT, CC, CT 
and TT. Each element of this matrix relates to a pair of submatrices of the original matrix associated 
with the DNA sequence (a 50*50 matrix in our case of Table 1 is considered). Constructed matrices 
are varied in this way depending on what property of original (n*n) matrix of the considered DNA 
sequence. In this work we consider the average distance between pairs of bases in construction of 
condensed AGCT (4*4) matrices. As shown in the condensed matrix , it is only along the diagonal 
that we have quadratic submatrices with zero diagonal entry, the size of which is given similarly by 
the total number of the corresponding bases. In this contribution we will consider the primary 
sequence of DNA as an input and will seek quantitative characterization for them.  
 
In table 2 we show matrix elements needed for symmetric square matrices construction . It shows 
the “distance” of each label from the neighboring labels of the same and different kind for the above 
sequence. We will refer to such labels by serial numbers. Consider the beginning of the first exon of 
table 1: 
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
T G G A A T T G T G A G C G G …… 
 
The 50*50 S/S matrix diagonal elements i=j are zero and could be made symmetrical by assuming 
(S/S)ij=(S/S)ji. Here we consider quotient of serial “distance” between selected labels of one kind 
only and the sequence distance when all labels are counted in the primary sequence of DNA. The 
first entry in the sequence, T, will contribute to TT, TG, TC and TA submatrices of the 4*4 AGCT 
matrix. Elements of the TT submatrix are: 1/5, 2/6, ….Elements of TA are: 1/3, 2/4, 3/10,….and 
soon because the distance between T and the first neighbor T (in position 6) is 5, the distance 
between T and the second neighbor T (in position 7) is 6. Similarly, the TG submatrix elements are 
also obtained by subtracting the corresponding sequential numbers of the first G, second G, the 
third G, and soon from the sequential number of the first T. 
 
TABLE 2. Part of the 50*50 matrix having as elements the serial distance for the first 15 nucleic 
bases of the first exon of table 1 

 T1 G1 G2 A1 A2 T2 T3 G3 T4 G4 A3 G5 C1 G6 G7 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
T1 0 1 2 1 2 2 3 3 4 4 3 5 1 6 7 
G1  0 1 1 2 1 2 2 3 3 3 4 1 5 6 
G2   0 1 2 1 2 1 3 2 3 3 1 4 5 
A1    0 1 1 2 1 3 2 2 3 1 4 5 
A2     0 1 2 1 3 2 1 3 1 4 5 
T2      0 1 1 2 2 1 3 1 4 5 
T3       0 1 1 2 1 3 1 4 5 
G3        0 1 1 1 2 1 3 4 
T4         0 1 1 2 1 3 4 
G4          0 1 1 1 2 3 
A3           0 1 1 2 3 
G5            0 1 1 2 
C1             0 1 2 
G6              0 1 
G7               0 
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In table 3 the distances between different T nucleic bases are grouped in TT submatrix, the 
distances between T and G nucleic bases are grouped in TG submatrix and soon. 
 
TABLE 3. Part of the rearranged 50*50 matrix having as elements the serial distance for the first 15 
nucleic bases so that nucleic bases of the same kind are grouped together 

 T1 T2 T3 T4 G1 G2 G3 G4 G5 G6 G7 A1 A2 A3 C1 
 1 6 7 9 2 3 8 10 12 14 15 4 5 11 13 
T1 0 1 2 3 1 2 3 4 5 6 7 1 2 3 1 
T2  0 1 2 2 1 1 2 3 4 5 2 1 1 1 
T3   0 1 2 1 1 2 3 4 5 2 1 1 1 
T4    0 3 2 1 1 2 3 4 2 1 1 1 
G1     0 1 2 3 4 5 6 1 2 3 1 
G2      0 1 2 3 4 5 1 2 3 1 
G3       0 1 2 3 4 2 1 1 1 
G4        0 1 2 3 1 2 1 1 
G5         0 1 2 3 2 1 1 
G6          0 1 3 2 1 1 
G7           0 3 2 1 1 
A1            0 1 2 1 
A2             0 1 1 
A3              0 1 
C1               0 

 
In tables 4 and 5 we represent parts of TT and GT submatrices. 
 
TABLE 4. S/S matrix for the submatrix TT of exon of table 1 
 1 6 7 9 17 23 24 25 41 43 49 
1 0 1/5 2/6 3/8 4/16 5/22 6/23 7/24 8/40 9/42 10/48 
6  0 1/1 2/3 3/11 4/17 5/18 6/19 7/35 8/37 9/43 
7   0 1/2 2/16 3/16 4/17 5/18 6/34 7/36 8/42 
9    0 1/8 2/14 3/15 4/16 5/32 6/34 7/40 
17     0 1/6 2/7 3/8 4/24 5/26 6/32 
23      0 1/1 2/2 3/18 4/20 5/26 
24       0 1/1 2/17 3/19 4/25 
25        0 1/16 2/18 3/24 
41         0 1/2 2/8 
43          0 1/8 
49           0 
 
In Table 5 we illustrate the AG rectangular submatrix. It has 18 columns and 12 rows corresponding 
to the number of A and G respectively.  
 
TABLE 5.  Truncated part of the S/S matrix for the submatrix AG of exon of table 1 
 4  5 11 16 18 19 21 22 27 29 31 34 35 
2 2/2 2/3 4/9 7/14 7/16 7/17 7/19 7/20 7/25 7/27 7/29 9/32 9/33 
3 1/1 1/2 3/8 6/13 6/15 6/16 6/18 6/19 6/24 6/26 6/28 8/31 8/32 
8 1/4 1/3 2/3 7/8 7/10 7/11 7/13 7/14 7/19 7/21 7/23 9/26 9/27 
10 2/6 2/5 1/1 4/6 4/8 4/9 4/11 4/12 4/17 4/19 4/21 6/24 6/25 
12 3/8 3/7 1/1 3/4 2/6 2/7 2/9 2/10 2/15 2/17 2/19 4/22 4/23 
14 4/10 4/9 2/3 2/2 2/4 2/5 2/7 2/8 2/13 2/15 2/17 4/20 4/21 
15 5/11 5/10 3/4 1/1 1/3 1/4 1/6 1/7 1/12 1/14 1/16 3/19 3/20 
32 6/28 6/27 4/21 1/16 1/14 1/13 1/11 1/10 1/7 1/3 1/1 2/2 2/3 
33 7/29 7/28 5/22 2/17 2/15 2/14 2/12 2/11 2/8 2/4 2/2 1/1 1/2 
39 8/35 8/34 6/28 3/23 3/21 3/20 3/18 3/17 3/12 3/10 3/8 1/5 1/4 
44 9/40 9/39 7/33 4/28 4/26 4/25 4/23 4/22 4/17 4/15 4/13 2/10 2/9 
50 10/46 10/45 8/39 5/34 5/32 5/31 5/29 5/28 5/23 5/21 5/19 3/16 3/15 
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3 INVARIANTS OF REDUCED MATRICES 

 
Mathematical characterization of molecules has led to hundreds of molecular descriptors, and their 
number continues to grow [7-10]. These descriptors, often referred to as topological indices (TI), 
play an important role in structure-property and structure-activity studies [11-14 ]. Their advantage 
is that they are easily available and can be quickly computed from existing or virtual structures. As 
already mentioned. Our task is to replace the 50*50 matrix by a 4*4 matrix,  the elements of which 
will be extracted from the larger matrix. A pair of labels is associated with each entry in this table. 
As shown in the condensed matrix. We have AA, AG, AC and AT in the first row. We will assign 
to each element of the 4*4 matrix numerical value derived from the corresponding submatrix of the 
50*50 matrix. Various submatrix invariants can be selected. As an invariant of choice we consider 
the Wiener number, W, which is given as the sum of the matrix elements of the distance matrix 
above the main diagonal [15-17]. 
 
To illustrate the approach. In Table 4 we represent the AG rectangular submatrix that records the 
distance between (A) and Guanine (G). It has 18 columns and 12 rows corresponding to the number 
of A and G, respectively. The sum of all 18*12 entries is 68.3307, which gives the average value of 
the matrix element of AG submatrix 68.3307/216=0.3163. Similarly, in Table 5. Because base T 
occurs 11 times in the first DNA exon, we obtained a symmetric 11*11 the distance matrix TT. 
From this 11*11 the average matrix element of all the entries in the matrix is divided by 11*11 to 
give 0.2579. In this way the initial 50*50 matrix with over 1500 entries is reduced to symmetrical 
(4*4) matrix with, at most, ten different entries. Table 6 gives the elements of the 4*4 matrix for the 
first exon of table 1. One expects different matrices for different sequences that facilitate 
comparison that is hidden in lengthy sequence of the primary DNA. 
 
TABLE 6.The reduced 4*4 matrix for the first exon of table 1 
 A G C T 
A 0.4166 0.3163 0.5152 0.4592 
G  0.3564 0.2871 0.3319 
C   0.3461 0.2870 
T    0.2579 
 
Because the condensed matrix of DNA is associated with some loss of information. One cannot 
recreat a structure from a list of invariants. These “undesirable” features of mathematical 
characterization of a structure by invariants are, in part, compensated for by the fact that one can 
always supplement a list of invariants by adding additional invariants. Randic [18, 19] has proposed 
the construction of additional (4*4) AGCT condensed matrix. In this matrix, alternative matrix 
invariants is used to build contraction of submatrices of the large matrix to a single entry for the 
corresponding reduced matrix. In table 7 the matrix elements for the limiting matrix of the first 
exon of table 1 is shown. It is obtained by counting entries 1 in each submatrix separately and 
dividing it by pq, where p and q are the number of rows and columns for each submatrix.  
 
TABLE 7. The limiting binary matrix for the reduced (4*4) matrix for the exon 1 of table 1 
 A G C T 
A 7/324 8/216 13/162 10/198 
G  12/144 4/108 7/132 
C   5/81 2/99 
T    6/121 
 

4 CONCLUSION 
 
In this work we succeeded in replacing the primary sequence of DNA by condensed matrices. Such 
matrices allow one to make qualitative and quantitative comparisons between different sequences of 
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DNA, whether between within the same or between different species. The method used in this paper 
can be used as a marker for the toxicity of DNA-damaging agents. Comparison of two DNA 
sequences is now transformed into a comparison of the corresponding sequences of mathematical 
descriptors of DNA which is a straightforward mathematical exercise. The loss of information that 
accompanies such condensation can be recovered by considering additional (4*4) condensed 
matrices either derived by using different matrix invariants or by algebraic manipulation of existing 
matrix elements. Given a gene for comparison, we could create tables and graphs and index each 
gene compared to a standard through in the appropriate tables. This will have benefit in tabulating 
and classifying gene libraries.     
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