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Abstract 

 
The TOPological Sub-Structural MOlecular DEsign (TOPS-MODE) approach has been applied to the 

study of the soil sorption coefficient of various phenylureas herbicides. A model able to describe more than 

93% of the variance in the experimental soil sorption coefficient of 44 phenylureas herbicides was 

developed with the use of the mentioned approach. In contrast, none of eleven different approaches, 

including the use of Constitutional, Molecular walk counts, BCUT, Charges indices, 2D autocorrelations, 

Randic molecular profiles, Geometrical, RDF, 3D Morse, GETAWAY and WHIM descriptors was able to 

explain more than 91% of the variance in the mentioned property with the same number of descriptors. In 

addition the TOPS MODE allows a simple interpretation of the model in comparison with others 

methodologies. In addition, the TOPS-MODE approach permitted to find the contribution of different 

fragments to the soil sorption coefficients giving to the model a straightforward structural interpretability. 
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1 INTRODUCTION 

The sorption of commercial chemicals by soil and sediment plays a very important role 

in their transport and mobility in the environment [1]. Furthermore, the sorption may 

significantly influence the chemical and biological transformation or degradation of 

chemicals in the aquatic environment. Thus, the measurement or accurately estimation of 

soil sorption coefficients for hazardous chemicals has a critical importance for evaluating 

their fate and potential exposure to chemicals in the environment and, consequently, for 

the whole process of environmental risk assessment.  

    Since the experimental determination of soil sorption coefficients is difficult and 

expensive, some theoretical methods for soil sorption coefficients determinations have 

been carried out, where, different regression equations between structured and parameters 

such as: water solubility, octanol-water partition coefficient or bioconcentration factor, 

have been used. 

Despite of extensive experimental work carried out at numerous laboratories for more 

than 40 years, the measurement of soil sorption coefficients are available for less than 

500 chemicals and reliable data of sorption coefficients are, in many cases, unavailable. 

Thus, a considerable number of studies have been performed to develop quantitative 

models for estimating the soil sorption coefficients of organic chemicals [2-6]. Their 

analysis have shown that the majority of QSAR models [7-14], for estimating the soil 

sorption coefficients (log Koc), use the n-octanol/water partition coefficient (log Kow) as 

molecular descriptors. Unfortunately, these models are based on a small number of 

chemicals and no external validations have been performed. 



 3

In the context of in silico methods for modeling physicochemical and biological 

properties of chemicals the topological sub-structural molecular design (TOPS-MODE) 

approach has been introduced [15-21]. 

The successful application of this theoretical approach to the modeling of toxicological 

and ecotoxicological properties [22, 23] have inspired us to perform a more exhaustive 

study in order to test and/or validate the TOPS MODE applicability in assessing 

discoveries and chemical environmental impact. The selection of a data set of 

phenylureas pollutants compounds is not casual; this property was previously studied 

using the WHIM descriptors by Gramatica et al. [24]. Thence, it may result very 

interesting to test the potentialities of TOPS-MODE approach with this data set. 

Therefore, the aim of this study was to investigate the role that TOPS-MODE and other 

molecular descriptors calculated from the molecular structure plays on the explanation of 

such property using a data set of 44 phenylureas herbicides. 

 

2 MATERIALS AND METHODS 

2.1 The Tops-Mode Approach 

 

TOPS-MODE is based on the computation of the spectral moments of the bond matrix, 

the mathematical basis of which has been described previously [15 - 19]. The TOPS-

MODE approach has been recently reviewed in the literature [25], and both the 

methodology and its software implementation have been described [26]. 

According to the authors, the application of the TOPS-MODE approach to the study of 

quantitative structure – property relationships (QSPR) can be summarized in the 

following steps: 
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1. To draw the hydrogen-depleted molecular graphs for each molecule of the data 

set, 

2. To use appropriate bond weights in order to differentiate the molecular bonds, 

e.g., bond distance, bond dipoles, bond polarizabilities, etc., 

3. To compute the spectral moments of the bond matrix with the appropriate 

weights for each molecule in the data set, generating a table in which rows 

correspond to the compounds and columns correspond to the spectral moments 

of the bond matrix. Spectral moments are defined as the trace of the different 

powers of the bond matrix [27],  

4. To find QSPR by using a suitable linear or non-linear multivariate statistical 

technique, such as multi-linear regression analysis (MRA), etc. to obtain an 

equation of the form: 

      P = a0µ0 + a1µ1 + a2µ2 + a3µ3  ………… akµk + b                                             (Eq. 1)     

                where P is the property measurement, µk is the kth spectral moment, and            

ak’s are the coefficients obtained by the MRA, 

5. To test the predictive capability of the QSPR model by using cross-validation 

techniques. 

6. To compute the contributions of different groups of interest in order to 

determine their quantitative contribution to the soil sorption coefficient of the 

molecules under study. 

The computation of fragment contributions to the soil sorption coefficient being studied 

is probably the most important advance of the TOPS-MODE approach when compared to 

other traditional QSAR and QSPR methods. The procedure consists of calculating the 
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spectral moment for all the fragments contained in a given substructure, and by 

subtraction of these spectral moments to obtain the contribution of the substructure. The 

general algorithm for this computational approach is as follows: 

First, we select the substructure whose contribution to the moments we would like to 

determine. Then, we generate all the fragments, which are contained in the corresponding 

substructure, and calculate the spectral moments for both, the substructure and all their 

fragments. The contribution of the substructure to the spectral moments is finally 

obtained as the difference between the spectral moments of the substructure and all those 

from their fragments. Once, the contributions of the different structural fragments are 

obtained, we only need to substitute these contributions into the quantitative model 

developed to describe the property studied.     

 

 

2.2 Data Sets and Computational Strategies. 

 

A data set of 44 compounds for which the soil sorption coefficients were reported in the 

literature was selected [24]. The parameter studied is log Koc. This is the most common 

and today generally accepted quantitative measure of the sorption of organic pollutants 

by soil or sediment from aqueous solutions. This chemical-specific parameter provides a 

relative measure of mobility in aqueous/soil system. In general, compounds with higher 

log Koc values will be less mobile than those with lower values. The names of the 

compounds, as well as the calculated and experimental values of log Koc are shown in 

Table 1. 
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Table 1 comes about here 

 

TOPS-MODE [26] and DRAGON [28] computer softwares were employed to calculate 

the molecular descriptors. In the case of TOPS-MODE software, the polarizability, the 

Gasteiger-Marsili charges and hidrophobicity were used to weigh the bond adjacency 

matrix. The selection of only these three types of descriptors from the whole pool of ten 

types included in TOPS-MODE methodology was carried out for the sake of simplicity 

and on the belief that hydrophobic and polarity parameters influence the soil sorption 

coefficient of phenylureas herbicides. The total number of descriptors used for obtaining 

this model was 48 spectral moments. On the other hand, we carry out geometry 

optimization calculations for each compound used in this study using the quantum 

chemical semiempirical method AM1 [29] included in MOPAC 6.0 [30]. Eleven other 

models were developed using the computer software Dragon [28], and calculating the 

Constitutional, Molecular walks counts, BCUT, Charges indices, 2D autocorrelations, 

Randic molecular profiles, Geometrical, RDF, 3D-MORSE, GETAWAY and WHIM 

descriptors [31]. The statistical processing to obtain the QSAR models was carried out by 

using the forward stepwise regression methods.  

The statistical significance of the models was determined by examining the regression 

coefficient, the standard deviation, the number of variables, the cross validation leave-

one-out statistics and the proportion between the cases and variables in the equation. 
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3 RESULTS AND DISCUSSION  

3.1 Quantitative Structure Property Relations  

The best QSPR model obtained with the TOPS-MODE descriptors is given below 

together with the statistical parameters of the regression. 

 

(Eq. 2) 

 

N = 44    S = 0.119    R2 = 0.938     F = 115.18     p = 0.000     q2 = 0.917     Scv = 0.211    

where N is the number of compounds included in the model, R2 is the correlation 

coefficient, S the standard deviation of the regression, F the Fisher ratio, q2 the 

correlation coefficient of the cross – validation, p is the significance of the variables in 

the model and Scv is the standard deviation of the cross – validation. 

The variables included in the model are designated as follows: the sub-index represents 

the order of the spectral moment and the super-index the type of bond weight used, i.e., 

GM for Gasteiger Marsili Charges, P for polarizability and H for hydrophobicity. 

From the statistical point of view this model is a robust one as can be seen from the 

statistical parameters of the cross-validation. 

As we previously mentioned, one of the objectives of the current work was to compare 

the reliability of the TOPS-MODE approach to describe the property under study as 

compared to other different descriptors and methods. Consequently, 11 other models 

were developed using the same data set and the same number of variables that was 

included in the TOPS-MODE QSPR model. The results obtained with the use of 

Constitutional, Molecular walks counts, BCUT, Charges indices, 2D autocorrelations, 
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Randic molecular profiles, Geometrical, RDF, 3D-MORSE, GETAWAY and WHIM 

descriptors are given in Table 2. 

Table 2 comes about here. 

 

3.2 Comparison with other Approaches 

 

As can be seen there are remarkable differences concerning the explanation of the 

experimental variance given by these models compared to the TOPS-MODE one. While 

the TOPS-MODE QSPR model explains more than 93% of permeability the rest of the 

models are unable to explain beyond 91% of such variance.  

The TOPS-MODE model is higher than the other eleven models not only in the statistical 

parameters of the regression but also, and more importantly, in its stability upon 

inclusion/exclusion of compounds as measured by the correlation coefficient and 

standard deviation of the cross-validation. Because of the structural variability of the 

compounds in the data set, the statistics of the leave-one-out cross validation might be 

considered as a good measurement of the predictive ability of the models. As can be seen 

in Table 2, the value of the determination coefficient of leave-one-out cross-validation for 

the model obtained with the spectral moments (q2 = 0.917) was the highest of all.  

 

3.3 Interpretation of the Model 

One of the most important advantages that TOPS-MODE brings to the study of QSPR 

and QSAR is concerned with the structural interpretability of the models. This 

interpretability comes from the fact that the spectral moments can be expressed as linear 
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combinations of structural fragments. In such a way, we can determine the fragments 

with a positive or negative contribution to the property under study, which can be 

interpreted in terms of the physicochemical or biological processes influencing its. In 

Table 3 and Figure 2 we show the fragments and their contributions to the soil sorption 

coefficient as calculated from Equation 2. 

Table 3 comes about here 

Figure 2 comes about here 

Here we have studied only some small fragments that are present in the structures of the 

compounds in the data set. However, extension of this study to other fragments in such 

molecules or even to fragments in molecules not contained in this data set should be 

straightforward, as shown for other particular cases elsewhere [22, 23, 32]. 

According to the contributions of fragments F35 to F38 (see Figure 2), the soil sorption 

coefficient increase as the number of carbons in the aliphatic ring is increased. This 

phenomenon can be explained to when the number of carbon atoms increase in the ring, 

the hydrophobicity of the fragment increase too. This behavior, that not is unique of the 

phenylureas herbicides, has been observed for other authors [3, 5, 33]. This study 

evidence that an increase of the partition coefficient (octanol/water, log Kow) produce 

high value of the soil sorption, proportionally.  

Nevertheless, we have appreciated others findings that we are comment following. For 

example, when we compared the contribution of the fragment F19 and F37  the last 

fragment has the same number of carbon atom in their structure than the phenyl ring 

(F19), but this are contribution almost two-fold higher than their aliphatic homologous. 

Obviously, according to the above explanation the phenyl ring not presents the same 

hydrophobicity that the cycle hexyls ring. Apparently, the phenyl ring can interact with 
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the sites of the colloid charge positively and the organic matter of the soil which 

facilitates this high contribution. Other factor that supports this theory is the increase of 

polarization atoms in the structure which contribute to increase their sorption for the soil, 

according to the equation 2. Also this is evidence when we compare fragments F1 to F3 

and F23 to F25 where an increasing of the size of the halogen atom in the fragment, and 

therefore of their polarizability procedure high values of the sorption coefficient. This 

theory support that the negative fraction of the colloid forms of the soil has an important 

influence in this type of process for this herbicide family.   

Finally, when the number of halogen is increased in a fragment of this family (F23, F30, 

F31) a remarkable increase of the soil sorption coefficient is observed. This is the special 

interest for some time due to the pollution of the environment. We recently demonstrated 

how, in general sense an increasing of the halogen atoms in a chemical structure increase 

the herbicide property [32]. Therefore, this involve that possess a big soil sorption 

coefficient and for that reason present a higher trouble for their elimination and 

biodegradation of the soils, property not desirable for new herbicides. 

For this reason combine models are necessary in the future for resolve this type of 

problems. 

 

 

4 CONCLUDING REMARKS 

     We have shown that the TOPS-MODE approach is able to describe the soil sorption 

coefficient of phenylureas herbicides. In fact, we have developed a model for predicting 

the soil sorption coefficient of a data set of 44 phenylureas herbicides, which is both 
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statistically and chemically sound. This model explains more than 93 % of the variance in 

the experimental permeability coefficients and shows good predictive ability in cross-

validation. These features are significantly better than those obtained for other eleven 

different methodologies used to predict this property. Therefore, the spectral moments 

show a better performance than other kind of descriptors, which suggests that they can be 

used in new QSPR applications. 

On the other hand, the main advantage of using a TOPS-MODE approach in 

QSPR/QSAR has been confirmed again in this work. This approach is able to derive 

group contributions and simultaneously provides the means of interpreting them thus 

contributing to our understanding of the physicochemical or biological processes 

involved. 

Finally, the present results were compared to others obtained in previous works and 

evidence was obtained on the similarity of the properties that explain the phenomenon.  
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Table 1. Observed, predicted, and residual values of soil sorption coefficients for the 44 

compounds used to derive the QSPR. 

Number Compounds ObservedPredictedDeleted Residuals
1 Phenylurea 1.500 1.335 0.165 
2 2-Chlorophenylurea 1.610 1.691 -0.081 
3 2-Fluorophenylurea 1.320 1.348 -0.028 
4 3-Chlorophenylurea 2.010 1.916 0.094 
5 3-Fluorophenylurea 1.770 1.617 0.153 
6 3-Bromophenylurea 2.120 2.056 0.064 
7 3-Methylphenylurea 1.560 1.573 -0.013 
8 3-Trifluoromethylphenylurea 1.980 2.015 -0.035 
9 4-Fluorophenylurea 1.520 1.655 -0.135 

10 4-Bromophenylurea 2.060 2.082 -0.022 
11 4-Phenoxyphenylurea 2.560 2.810 -0.250 
12 3,4-Dichlorophenylurea 2.530 2.505 0.025 
13 3-Chloro-4-methoxyphenylurea 2.000 1.898 0.102 
14 3-Methyl-4-fluorophenylurea 1.750 1.748 0.002 
15 3-Methyl-4-bromophenylurea 2.370 2.296 0.074 
16 N-Phenyl-N’-cyclopropylurea 1.740 1.862 -0.122 
17 N-Phenyl-N’-cyclopentylurea 1.930 2.055 -0.125 
18 N-Phenyl-N’-cyclohexylurea 2.070 2.196 -0.126 
19 N-Phenyl-N’-cycloheptylurea 2.370 2.287 0.083 
20 Siduron 2.310 2.230 0.080 
21 N-Phenyl-N-methylurea 1.290 1.341 -0.051 
22 N-(3-Chlorophenyl)-N’-methylurea 1.930 1.957 -0.027 
23 N-(3,4-Dichlorophenyl)-N’-methylurea 2.460 2.546 -0.086 
24 N-(3-Chloro-4-methylphenyl)-N’-methylurea 2.100 2.160 -0.060 
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25 N-(3-Chloro-4-methoxyphenyl)-N’-methylurea 1.840 1.939 -0.099 
26 Fenuron 1.400 1.298 0.102 
27 N-(3-Chlorophenyl)-N’,N’-dimethylurea 1.790 1.880 -0.090 
28 N-(3-Methoxyphenyl)-N’,N’-dimethylurea 1.720 1.479 0.241 
29 N-(3-Fluorophenyl)-N’,N’-dimethylurea 1.730 1.581 0.149 
30 Fluometuron 2.000 1.979 0.021 
31 N-(4-Fluorophenyl)-N’,N’-dimethylurea 1.430 1.619 -0.189 
32 Monuron 1.950 1.909 0.041 
33 N-(4-Methylphenyl)-N’,N’-dimethylurea 1.510 1.564 -0.054 
34 N-(4-Methoxyphenyl)-N’,N’-dimethylurea 1.400 1.521 -0.121 
35 Metoxuron 1.720 1.862 -0.142 
36 Chlorotoluron 2.020 2.083 -0.063 
37 N-(3,5-Dimethylphenyl)-N’,N’-dimethylurea 1.730 1.766 -0.036 
38 N-(3,5-Dimethyl-4-bromo-phenyl)-N’,N’-dimethylurea 2.530 2.489 0.041 
39 Diuron 2.400 2.469 -0.069 
40 Chloroxuron 3.550 3.385 0.165 
41 Monolinuron 2.100 1.935 0.165 
42 Metobromuron 2.100 2.071 0.029 
43 Linuron 2.700 2.494 0.206 
44 Chlorbromuron 2.700 2.678 0.022 

 

 

Table 2. Statistical parameters of the lineal regressions models obtained for the twelve 

kinds of descriptors. 

  
Descriptors Variablesa S R2 F q2 

Spectral moments µ9GM, µ4H,  µ13H, µ1P, µ2P 0.118 0.938 115.18 0.917
Constitutional  MW, AMW, Mv, nBO, nO 0.156 0.893 63.14 0.842

Molecular walk counts MWC03, MWC06, MWC07, MWC08,  
MWC09 

0.301 0.603 11.565 0.521

BCUT BEHm2, BEHm3, BEHm4, BELm4, BELe8 0.158 0.890 61.72 0.832
Charges indices GGI3, GGI6, GGI8, GGI10, JGI8  0.294 0.621 12.47 0.524

2D autocorrelations ATS8m, ATS1p, GATS6m, GATS7e, 
 GATS1p 

0.227 0.773 25.89 0.703

Randic molecular profiles DP01, DP06, DP18, SP05, SP20 0.324 0.539 8.88 0.462
Geometrical J3D, G1, G(N..Cl), G(N..Br), G(O..O) 0.167 0.877 54.04 0.821

RDF RDF040u, RDF125u, RDF045m,  
RDF080m, RDF040p 

0.171 0.871 51.46 0.824

3D-MORSE Mor01m, Mor19m, Mor20m, Mor24m, 
 Mor16p 

0.155 0.894 64.32 0.831

WHIM E2u, P1p, E1s, Tm, Kp 0.189 0.843 41.00 0.806
GETAWAY ITH, HATS8m, H3p, HATS2p, RTu 0.139 0.915 81.64 0.884

a The definition of the terms appears largely explained in reference 31. 
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Table 3. Contributions of different groups to the soil sorption coefficients of the 

phenylureas herbicides in study. 

 

Studied Fragments Group contribution Studied Fragments Group contribution
F1 -0.03 F20 -0.05 
F2 0.13 F21 0.13 
F3 0.20 F22 -0.04 
F4 0.16 F23 0.13 
F5 0.47 F24 0.25 
F6 0.61 F25 0.32 
F7 0.005 F26 0.03 
F8 0.19 F27 0.06 
F9 0.35 F28 0.21 
F10 0.41 F29 0.28 
F11 -0.12 F30 0.50 
F12 -0.11 F31 1.13 
F13 -0.247 F32 -0.19 
F14 0.242 F33 0.22 
F15 0.13 F34 -0.104 
F16 -0.13 F35 0.25 
F17 0.11 F36 0.34 
F18 -0.04 F37 0.47 
F19 0.83 F38 0.55 
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Figure 1. The linear relation between observed and predicted soil sorption for the 

compounds of the training set. 
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Figure 2. Structures of selected fragments for which their contributions to the soil 

sorption coefficient. 
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