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Abstract 
Motivation. The problem of toxicity prediction is mainly related to the necessity of processing many data that 
most of the time come from different sources and have different biological meaning. Often, the real mechanism 
of action of a toxicant is unclear or difficult to reproduce; in addition, a chemical compound exercises its toxic 
action through many steps that depend both on its structure and on the specific environment where it is acting. In 
this perspective, the classification of compounds can be of great help because decreases the number of the 
alternatives to those specific of that class, allowing a more focused analysis. The classification of narcotic 
pollutants into polar and nonpolar sets is certainly an important aspect of this type of problems. 
Method. Object classification requires two principal components: the selection of the molecular descriptors and 
the choice of the classification algorithm. The calculation of the molecular descriptors is performed using our 
own approach that is based on empirical equations. We calculated three descriptors (Helc, HQ+, Elcdif) that are 
used in pairs (Helc and Elcdif, or HQ+ and Elcdif). Using two classification algorithms, a classical neural 
network and a tree neural network, we analyze two compound sets; the first contains 190 narcotic pollutants (114 
nonpolar and 76 polar), the second contains 30 pollutants (20 nonpolar, 5 polar, 5 acetylcholinesterase 
inhibitors). In a broad sense, the first set is used as training set and the second as test set. 
Results. The use of simple descriptors allows for a very good classification of narcotic pollutants demonstrating 
that it is not necessary to use high level theories to make simple operations. On the contrary, much work is still 
required to obtain an acceptable theoretical prediction; part of it is definitely on the modelers’ side, but the rest 
concerns a better rationalization of the experimental data without which any model will have problems. 
Conclusions. Classification of narcotic pollutants into polar and nonpolar sets is required to ease the QSAR 
treatment of their toxic effects. However, there still remains many questions on the validation of theoretical 
models using only experimental data. 
Keywords. Aquatic toxicity; narcotic pollutants; compound classification; empirical descriptors; experimental 
classification 

Abbreviations and notations 
Elcdif, chemical potential difference between non 
hydrogen atoms 

HQ+, residual atomic charge on hydrogen atom 

Helc, residual chemical potential on hydrogen atom LUMO, Lowest Unoccupied Molecular Orbital 

1 INTRODUCTION 

The solution of the problems posed by environmental toxicity of chemicals requires many lines 
of reasoning; however, the first objective of any study in this field must be directed toward the 
determination of the toxicity level of the compounds. The first possibility is the experimental 
measure of the toxicity values, the second is their theoretical prediction. Aquatic toxicity is 
considered well-represented by the toxic effects of chemicals on fathead minnow [1-4], whose 
behaviour in the presence of chemical compounds has been studied and used to classify modes of 
action. [2] One of these last is the narcosis effect that is the consequence of the incorrect 
functioning of cell membranes. There are two different narcosis effects: in the first mode the fish 
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shows depressed locomotor activity with scarce response to outside stimuli (narcosis I or base-line 
narcosis); in the second mode the fish is hyperactive and highly sensitive to outside stimuli 
(narcosis II or polar narcosis). Two classes of compounds have been correlated to the two modes: 
non-polar and polar narcotic compounds, thus the classification of compounds in the correct class 
permits the more appropriate use of prediction models. Very recently, Ivanciuc [5] developed a 
highly efficient system for the classification of non-polar and polar narcotic pollutants, using two 
quantum descriptors (atomic charges on hydrogen atoms and the energies of the lowest unoccupied 
molecular orbital) and a new class of algorithms, Support Vector Machines (SVM). [6] In this 
paper, we are going to use simpler descriptors and two diverse clustering methodologies: 
Classification Neural Network and Classification Tree. [7] In addition, the second method allows 
for the sub classification of objects giving further insights into the compound relation. Finally, we 
will use a second compound set to discuss the differences that still are present between theoretical 
and experimental models. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 

2.1.1 Calculation of descriptors. Charges and residual chemical potentials 

The choice of descriptors is the critical point when developing a model. Often, we have too 
many potential descriptors whose selection will affect the outcome of the model. Where it is 
possible to make a hypothesis on the mechanism of the biological action we can support our choice 
on that ground. However, in all other cases the choice is guided by our mere opinion. In the present 
case, we accept the choice made by other authors [5, 8-9] that select charge and molecular 
nucleophilicity (represented by LUMO energy) as good descriptors of molecule “polarity”. It is 
clear that this model is quite simple, but the reported results in the compound classification are 
impressive. Taken into consideration the model simplicity we would like to test if the use of the 
same descriptors calculated at lower theory level works similarly. 

We are going to use our own program [10-12] for atomic descriptor calculation to obtain: 

 the highest positive charge on a hydrogen atom, as used by Ivanciuc [5]; or, the highest 
residual chemical potential on a hydrogen atom, representing the same effect 

 the highest difference in residual chemical potentials between non hydrogen atoms, as a 
substitute of LUMO energy, the descriptor of the molecule nucleophilicity 

2.2 Biological Data 
We are going to use two sets of biological data, both concerning narcosis effects. The first set is 
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exactly the same set used by Ivanciuc [5]; it will be the training set of the analysis and its use should 
allow for a comparison to the Ivanciuc’s result. The second set is a smaller set (30 compounds) 
selected from the list of Russom et al. [2] showing different experimental toxic effects; it will be 
used to test the classification model and to discuss the differences between experimental and 
calculated toxicities. 

2.3 Classification Algorithms 
Object classification is achieved using many different models. We chose two different 

approaches that are representative of two different techniques. [7] The first is a classical artificial 
neural network that partitions a set of objects into the assigned classes and validates the results; the 
second is a hierarchical method that grows a tree where each final leaf contains a subset resulting 
from successive splitting operations. 

The two models have been applied to two descriptor sets (HQ+/Elcdif; Helc/Elcdif), to two 
compound sets (training set (190), test set (30)). In all cases a further run has been performed using 
randomized class assignment in order to check the algorithms predictivity; the results show that the 
randomized sets do not give reliable classifications. 

2.3.1 Classification NN 

 

It is a very basic implementation of FeedForward - BackPropagation Neural Network, used for 
prediction and classification problems. 

2.3.2 Classification tree 
 

It is a classification model that 

o uses C4.5 algorithm by Ross Quinlan. [13] 

o has a Node Splitting Criterion that uses Entropy based criterion to select the split. 
While growing the tree, at any point a predictor is chosen to split a node such that the Information 
Gain is maximized after the split. As specified in C4.5, it actually uses the Gain Ratio (= Gain / 
Split Info) to choose the split.  

o has a Stopping Criteria that stops splitting a node and declares it as a leaf node if any 
one of the following criterion is met.  

 Number of records in the node is less than some pre-specified limit.  

 Purity of the node is more than some pre-specified limit p. This means that 
the proportion of records in the node with class equal to the majority class is p or more.  
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 Depth of the node is more than some pre-specified limit.  

 Predictor values for all records are identical.  

o has a Tree Pruning based on the pessimistic error rate at the node. If the pessimistic 
error rate of a node is less than that of the subtree rooted at that node, the node is pruned. If we fail 
to prune a node - none of its predecessors is pruned.  

o has a Rule Generation according to the methods mentioned in C4.5.  

3 RESULTS AND DISCUSSION 

3.1 Polarity Prediction 
The training set is exactly that used by Ivanciuc [5], thus we are not explicitly reporting its 

components. The compounds in the test set are shown in Figure 1. They have been selected from 
Russom et al. [2], 20 molecules are reported to have narcosis I effect, 4 narcosis II effect (T8, T9, 
T15, T25), 1 narcosis III effect (T14), 5 are acetylcholinesterase inhibitors (T2-T6). 
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Figure 1. Compounds in the test set 
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Figure 2. Compounds in the test set 

 

For all the 220 molecules we have calculated the atomic descriptors and selected those useful for 
the model. In particular, we selected the greatest chemical potential difference between connected 
non-hydrogen atoms, the greatest chemical potential on a hydrogen atom, and the greatest residual 
charge on a hydrogen atom. The first descriptor is greater if the two connected atoms are 
electronically different; it can be interpreted as the force acting on an external positive charge, i.e. it 
represents the Q+ accepting power. The second descriptor has the same meaning concerning Q- 
accepting power by hydrogen atoms; it is thus related to hydrogen bond formation. The last 
descriptor is the same used by Ivanciuc [5], but calculated by our method. The reason behind the 
alternative use of the second and third descriptors is strictly related to the calculation method. In 
fact, depending on the molecular neighborhood the residual charge can be different on hydrogen 
that have the same residual chemical potential; thus, if we consider that the hydrogen bond power is 
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only an electrostatic effect the third descriptor is the right one, but if the hydrogen bonding involves 
an electron movement the second descriptor must be used. 

3.2 Narcosis Classification 
This biological effect is experimentally measured observing the fish behavior after the treatment 

by the chemical at different concentrations and in different combinations. There is ample literature 
on this matter and we are not going to discuss the different data or protocols. Nevertheless, it must 
be emphasized that there exists some discrepancies between single laboratory results and their 
interpretation. This is important because the discussion on the models must consider the variability 
of the biological data. 

In principle, there are several narcosis syndromes that can be roughly divided into base-line 
narcosis, polar narcosis, and ester narcosis, this last can be merged with the second type. In 
addition, there are several confidence levels in the syndrome allocation. We generally accept the 
Ivanciuc interpretation when studying the training set, whereas we are going to discuss the results of 
the test set considering the Russom et al. indications. 

3.2.1 Training set and test set 

In the following two Tables the results of the models are reported. 

Classical NN classification gives a result that is in overall agreement with Ivanciuc’s. [5] There 
are 5 misclassified objects using both Helc and HQ+  (54, 164, 181, 182, 183) with respect to 11 
objects in Ivanciuc (21, 23, 32, 47, 60, 62, 68, 69, 156, 157, 164). It is worth to note that, excluding 
compound 164, the misclassified objects are different. In our case, misclassification is related to 
Elcdif in all cases but for compound 164 (here the HQ+, or Helc, is responsible). The analyses have 
been performed at least five times randomly selecting a 10% validation set and the result has always 
been the same. The test set has been classified using the obtained models and the result showed 
slightly better for the HQ+ descriptor. Not all the test compounds are in the expected class, but we 
have 11 or 8 misclassifications (T8-T10, T12, T15, T19, T22, T25-T27, T30), or (T8-T10, T15, 
T22, T25-T26, T30). It is remarkable that many misclassifications present in HQ+ are also present 
in Helc. 

Tree classification gives a result that is very similar to the previous one. Both Helc and HQ+ 
show a small number of misclassifications (5 and 6, respectively) of the same compounds (54, 164, 
181, 182, 183, 75) in very good agreement with the Classical NN. This demonstrates that the two 
classification methods have very similar behaviour, as expected. This fact is confirmed by the test 
set that gives similar misclassifications (T8-T10, T12, T15, T19, T22, T25-T27; T8-T10, T14-T15, 
T22, T25-T26, T30). In this case the class values have been calculated using the rules that the 
approach produces during the training. These rules are, in order of application: 
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1. Elcdif < 0.91 

2. Helc < 2.35 

3. Elcdif < 0.67 

and 

1. HQ+ < 39 

2. Elcdif< 0.91 

 
Table 1. Classical-NN representative results 

  training misclassified validation misclassified 
Helc+Elcdif class 1 101 1 12 0 
 class 2 64 4 8 0 
test class 1 18 7   
 class 2 1 4   
rand class 1 0 84 0 10 
 class 2 86 0 10 0 
      
HQ+Elcdif class 1 96 1 17 0 
 class 2 69 4 3 0 
test class 1 21  4   
 class 2 1 4   
rand class 1 87 0 7 0 
 class 2 0 83 0 13 

 
Table 2. Tree results 

  training misclassified nodes levels 
Helc+Elcdif class 1 110 4 4 4 
 class 2 75 1   
test class 1 19 6 3  
 class 2 1 4   
rand class 1 69 45 10 11 
 class 2 51 25   
      
HQ+Elcdif class 1 110 4 3 3 
 class 2 74 2   
test class 1 21 4 3  
 class 2 0 5   
rand class 1 70 44 10 8 
 class 2 46 30   

 

3.2.2 Subclassification 

Compound classification in non-polar and polar narcotics is definitely interesting because it 
should allow for the use of the appropriate QSAR. However, due to the extended diversity of 
compounds it could be also interesting to divide them in more classes with the objective of a better 
prediction. This can be done using the Tree clustering method.  

In the Helc case we have four terminal leaves, whereas in the HQ+ we have only three terminal 
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leaves; as a consequence we obtain four or three compound subsets. They are: 

Using Helc 

1. 1-60; 54 misclassified 

2. 61-114 

3. 115-130; 156-157 

4. 131-190; 164 and 181-183 misclassified 

Using HQ+ 

1. 1-32, 56, 60 

2. 33-114; 54 and 75 misclassified 

3. 115-190; 164 and 181-183 misclassified 

If we translate the subsets into chemical terms, we have: 

Using Helc 

1. alcohols, ketones, esters, ethers; diphenyl ether misclassified  

2. halides, hydrocarbons 

3. nitro compounds, pyridine and quinoline 

4. phenols, anilines; N,N-dimethyl aniline and fluoro anilines misclassified 

Using HQ+ 

1. alcohols, furan, 2-hydroxy-4-methoxy acetophenone 

2. ketones, esters, ethers, halides, hydrocarbons; diphenyl ether and trichloroethene 
misclassified 

3. nitro compounds; pyridine and quinoline, phenols, anilines; N,N-dimethyl aniline and fluoro 
anilines misclassified 

For what the test set is concerned we have the following classification: 

Using Helc 

1. 1-7, 11, 13, 16-17, 21, 23-24, 28-29 

2. 14, 18, 20, 30; 8-10, 12, 15, 19, 22, 25-27, misclassified 

Using HQ+ 

1. 1-7, 12-13, 18-20, 23, 27 

2. 11, 16-17, 21, 24, 28-29; 8-10, 14-15, 22, 25-26, 30, misclassified 
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If we translate the misclassified compounds in chemical terms, we have: 

Using Helc 

diphenyl sulfoxide, alkyl nitriles, primary amine, nitro pyridinol, oxazole, triphenyl phosphine 
oxide, tributoxy-ethoxy phosphate, 4-trifluoromethyl-3-nitro phenol, 2,2,5,5-tetramethyl 
tetrahydrofurane 

Using HQ+ 

diphenyl sulfoxide, pyridinyl nitrile, primary amine, nitro pyridinol, tripropargyl amine, 
triphenyl phosphine oxide, tributoxy-ethoxy phosphate, 4-trifluoromethyl-3-nitro phenol, 2,2,5,5-
tetramethyl tetrahydrofurane 

In order to compare our result to that by Ivanciuc’s method [5] it is interesting to note the 
variable ranges that are:  

 Present 
work 

  Ivanciuc’s 
data 

HQ+ 0 – 244  HQ+ 0 – 397 

Elcdif 0 – 1.74  ELUMO -1.49 – 3.78  

Helc  0 – 2.57    

It is clear that using quantomechanical approaches the variability of the values is higher; 
however, this variability has an influence only in the case of ELUMO, because the HQ+ values are 
very similar. Nevertheless, the sensitivity of the molecular orbital methods to small variations in the 
molecular geometry is well known and, thus, the meaning of small variations of the ELUMO values 
are unimportant. The consequence is that it is seldom possible to predict and to understand the 
misclassifications; for example, in the case of 3-furanmethanol the ELUMO value is the cause of the 
wrong prediction when the power of hydrogen bond forming is probably due to the methanol part, 
only. Our values, on the contrary, allow for an immediate understanding of the misclassifications; 
for example, in the diphenyl ether case the Elcdif is the cause of the wrong prediction and it is 
related to the absence of sufficiently different atomic chemical potential (here the C-O bond is less 
polar than in alkyl compounds). 

3.2.3 Experimental data and theoretical predictions 

The final part of this paper will be concerned with the differences between theoretical 
predictions and experimental fish behaviour. Running through the table presented by Russom et al. 
[2] we can easily identify some compounds that are classified in behavioural classes different from 
those predicted by calculation. Let’s do some examples. 

1,1,1-trichloroethane causes a class 2 syndrome; 
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N,N-dimethylaniline causes a class 1 syndrome; 

4-ethylaniline  causes a class 1 syndrome; 

4-chlorophenol, 4-methoxyphenol, and pyridine, cause a class 3 syndrome. 

It is evident that the fish reaction to chemicals is more complex than that predicted by models. 
The test set is even more complicated. We find ~10/30 misclassifications, but we must take into 
consideration that here the class assignment is done following Russom et al. [2] We have 
difficulties in estimating the relative value of experimental fish behaviour and of calculated 
prediction. The experimental results have different levels of confidence, as reported by Russom et 
al., [2] but they are real effects. On the other hand, calculated predictions are self consistent and 
have the same reliability, but they can represent an underestimation of the reality. Compound 
classification is only a first step toward the quantitative assessment of toxicity; we have therefore 
the chance of getting further corrections in the successive analysis. 

A similar conclusion can be reached for acetylcholinesterase inhibitors; in the models they are 
classified in class 1 (nonpolar toxicants). However, their mode of action is completely different and 
should follow a different classification scheme. This fact is fundamental because it indicates that the 
polarity of a compound is not the only factor to consider when predicting its toxicity, but we must 
be very careful throughout our analysis. 

4 CONCLUSIONS 

Classification of compounds can represent a highly effective way to separate chemicals into 
specific sets that can then be analyzed by specific models. The choice of the descriptors useful to 
perform the classification is a critical point that requires attention both on the correspondence with 
physical properties and on the needed theory level. The choice of the classification algorithms is 
less crucial if the method is robust enough; a special attention can be dedicated to the selection of 
clustering algorithms with the aim of automatically sub classifying the compounds. Finally, the 
numerous details of the experimental data must be accurately considered to prevent invalid 
evaluation of the model performance. 

 
Appendix 1 

The descriptor values and class assignment are reported in the following Tables. 
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Table 3. Structure of the chemical compounds in training set, theoretical descriptors (Elcdfi, Helc, HQ+) and 
mechanism of toxic action (nonpolar, +1; polar, –1; experimental, Exp; prediction, Pre) 

No Compound Elcdif Helc HQ+  C-NN/ 
Helc 

C-NN/ 
HQ 

Tree/ 
Helc 

Tree/ 
HQ 

SVM 

     Exp Pre Pre Pre Pre Pre 
1 methanol 2.56 1 242 +1 +1 +1 +1 +1 +1 
2 ethanol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
3 1–propanol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
4 2–propanol 2.56 0.96 243 +1 +1 +1 +1 +1 +1 
5 1–butanol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
6 2–butanol 2.57 0.96 243 +1 +1 +1 +1 +1 +1 
7 isobutanol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
8 tert–butyl alcohol 2.56 0.94 243 +1 +1 +1 +1 +1 +1 
9 1–pentanol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
10 3–pentanol 2.56 0.96 243 +1 +1 +1 +1 +1 +1 
11 1–hexanol 2.56 1.01 242 +1 +1 +1 +1 +1 +1 
12 1–heptanol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
13 1–octanol 2.56 0.98 244 +1 +1 +1 +1 +1 +1 
14 1–nonanol 2.56 0.98 244 +1 +1 +1 +1 +1 +1 
15 1–decanol 2.56 0.98 244 +1 +1 +1 +1 +1 +1 
16 1–undecanol 2.56 0.98 244 +1 +1 +1 +1 +1 +1 
17 1–dodecanol 2.56 0.98 244 +1 +1 +1 +1 +1 +1 
18 1,2–ethanediol 2.56 0.98 243 +1 +1 +1 +1 +1 +1 
19 1,3–propenediol 2.56 0.98 243 +1 +1 +1 +1 +1 +1 
20 2–methyl–2,4–

pentanediol 
2.56 0.96 243 +1 +1 +1 +1 +1 +1 

21 3–furanmethanol 2.56 1.02 243 +1 +1 +1 +1 +1 –1 
22 cyclohexanol 2.56 0.96 243 +1 +1 +1 +1 +1 +1 
23 2,2,2–trichloroethanol 2.57 0.98 242 +1 +1 +1 +1 +1 –1 
24 butyldigol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
25 diethyleneglycol 2.56 0.98 243 +1 +1 +1 +1 +1 +1 
26 triethyleneglycol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
27 2–methoxyethanol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
28 2–ethoxyethanol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
29 2–isopropoxyethanol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
30 2–butoxyethanol 2.56 0.98 242 +1 +1 +1 +1 +1 +1 
31 2–(2–ethoxyethoxy) 

ethanol 
2.56 0.98 242 +1 +1 +1 +1 +1 +1 

32 2–phenoxyethanol 2.56 0.98 242 +1 +1 +1 +1 +1 –1 
33 acetone 2.18 1.21 19 +1 +1 +1 +1 +1 +1 
34 2–propanone 2.18 1.21 20 +1 +1 +1 +1 +1 +1 
35 2–butanone 2.18 1.21 20 +1 +1 +1 +1 +1 +1 
36 3–pentanone 2.18 1.21 20 +1 +1 +1 +1 +1 +1 
37 2–octanone 2.18 1.21 20 +1 +1 +1 +1 +1 +1 
38 5–nonanone 2.18 1.16 20 +1 +1 +1 +1 +1 +1 
39 2–decanone 2.18 1.21 20 +1 +1 +1 +1 +1 +1 
40 3–methyl–2–butanone 2.18 1.21 21 +1 +1 +1 +1 +1 +1 
41 6–methyl–5–hepten–2–

one 
2.18 1.21 37 +1 +1 +1 +1 +1 +1 

42 2,3,4–trimethoxy 
acetophenone 

2.19 1.14 36 +1 +1 +1 +1 +1 +1 

43 acetophenone 2.18 1.12 37 +1 +1 +1 +1 +1 +1 
44 3,3–dimethyl–2–

butanone 
2.18 1.21 19 +1 +1 +1 +1 +1 +1 

45 4–methyl–2–pentanone 2.18 1.21 20 +1 +1 +1 +1 +1 +1 
46 benzophenone 2.14 1.03 37 +1 +1 +1 +1 +1 +1 
47 2,4–dichloro 

acetophenone 
2.18 1.12 36 +1 +1 +1 +1 +1 –1 
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Table 3. (Continued) 
No Compound Elcdif Helc HQ+  C-NN/ 

Helc 
C-NN/ 
HQ 

Tree/ 
Helc 

Tree/ 
HQ 

SVM 

     Exp Pre Pre Pre Pre Pre 
48 cyclohexanone 2.18 1.21 20 +1 +1 +1 +1 +1 +1 
49 ethyl acetate 2.18 1.11 28 +1 +1 +1 +1 +1 +1 
50 diethyl ether 2.18 0.95 27 +1 +1 +1 +1 +1 +1 
51 diiso–propyl ether 2.18 0.91 29 +1 +1 +1 +1 +1 +1 
52 dibutyl ether 2.19 0.94 27 +1 +1 +1 +1 +1 +1 
53 dipentyl ether 2.19 0.94 27 +1 +1 +1 +1 +1 +1 
54 diphenyl ether 2.22 0.74 40 +1 –1 –1 –1 –1 +1 
55 tert–butylmethyl ether 2.19 0.95 26 +1 +1 +1 +1 +1 +1 
56 furan 2.15 1.03 62 +1 +1 +1 +1 +1 +1 
57 tetrahydrofuran 2.19 0.94 27 +1 +1 +1 +1 +1 +1 
58 2,6–dimethoxytoluene 2.19 0.96 36 +1 +1 +1 +1 +1 +1 
59 1,4–dimethoxybenzene 2.19 0.96 36 +1 +1 +1 +1 +1 +1 
60 2–hydroxy–4–methoxy 

acetophenone 
2.57 0.96 243 +1 +1 +1 +1 +1 –1 

61 dichloromethane 2.19 0.47 25 +1 +1 +1 +1 +1 +1 
62 chloroform 2.19 0.46 29 +1 +1 +1 +1 +1 –1 
63 tetrachloromethane 0 0.47 0 +1 +1 +1 +1 +1 +1 
64 1,1–dichloroethane 2.19 0.44 26 +1 +1 +1 +1 +1 +1 
65 1,2–dichloroethane 2.18 0.46 22 +1 +1 +1 +1 +1 +1 
66 1,1,1–trichloroethane 2.18 0.42 18 +1 +1 +1 +1 +1 +1 
67 1,1,2–trichloroethane 2.18 0.46 26 +1 +1 +1 +1 +1 +1 
68 1,1,2,2–tetrachloroethane 2.19 0.44 26 +1 +1 +1 +1 +1 –1 
69 pentachloroethane 2.18 0.44 26 +1 +1 +1 +1 +1 –1 
70 hexachloroethane 0 0.42 0 +1 +1 +1 +1 +1 +1 
71 1,2–dichloropropane 2.18 0.46 23 +1 +1 +1 +1 +1 +1 
72 1,3–dichloropropane 2.18 0.46 22 +1 +1 +1 +1 +1 +1 
73 1,2,3–trichloropropane 2.18 0.46 23 +1 +1 +1 +1 +1 +1 
74 1–chlorobutane 2.18 0.46 22 +1 +1 +1 +1 +1 +1 
75 trichloroethene 2.13 0.35 40 +1 +1 +1 +1 –1 +1 
76 tetrachloroethene 0 0.28 0 +1 +1 +1 +1 +1 +1 
77 hexachlorobutadiene 0 0.3 0 +1 +1 +1 +1 +1 +1 
78 lindane 2.18 0.36 23 +1 +1 +1 +1 +1 +1 
79 chlorobenzene 2.14 0.3 34 +1 +1 +1 +1 +1 +1 
80 1,2–dichlorobenzene 2.14 0.3 34 +1 +1 +1 +1 +1 +1 
81 1,3–dichlorobenzene 2.14 0.3 35 +1 +1 +1 +1 +1 +1 
82 1,4–dichlorobenzene 2.14 0.3 34 +1 +1 +1 +1 +1 +1 
83 1,2,3–trichlorobenzene 2.14 0.3 34 +1 +1 +1 +1 +1 +1 
84 1,2,4–trichlorobenzene 2.14 0.3 35 +1 +1 +1 +1 +1 +1 
85 1,3,5–trichlorobenzene 2.14 0.3 35 +1 +1 +1 +1 +1 +1 
86 1,2,3,4–tetrachloro 

benzene 
2.14 0.29 34 +1 +1 +1 +1 +1 +1 

87 1,2,3,5–tetrachloro 
benzene 

2.14 0.29 35 +1 +1 +1 +1 +1 +1 

88 1,2,4,5–tetrachloro 
benzene 

2.14 0.29 35 +1 +1 +1 +1 +1 +1 

89 3–chlorotoluene 2.18 0.26 36 +1 +1 +1 +1 +1 +1 
90 4–chlorotoluene 2.18 0.3 34 +1 +1 +1 +1 +1 +1 
91 2,4–dichlorotoluene 2.18 0.3 35 +1 +1 +1 +1 +1 +1 
92 2,4,5–trichlorotoluene 2.18 0.3 35 +1 +1 +1 +1 +1 +1 
93 3,4–dichlorotoluene 2.18 0.3 34 +1 +1 +1 +1 +1 +1 
94 pentachlorobenzene 2.14 0.3 35 +1 +1 +1 +1 +1 +1 
95 2–chloronaphthalene 2.14 0.3 35 +1 +1 +1 +1 +1 +1 
96 hexane 2.18 0.02 19 +1 +1 +1 +1 +1 +1 
97 octane 2.18 0.02 19 +1 +1 +1 +1 +1 +1 
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Table 3. (Continued) 
No Compound Elcdif Helc HQ+  C-NN/ 

Helc 
C-NN/ 
HQ 

Tree/ 
Helc 

Tree/ 
HQ 

SVM 

     Exp Pre Pre Pre Pre Pre 
98 decane 2.18 0.02 19 +1 +1 +1 +1 +1 +1 
99 benzene 2.14 0 34 +1 +1 +1 +1 +1 +1 
100 toluene 2.18 0.24 34 +1 +1 +1 +1 +1 +1 
101 o–xylene 2.18 0.22 34 +1 +1 +1 +1 +1 +1 
102 m–xylene 2.18 0.23 34 +1 +1 +1 +1 +1 +1 
103 p–xylene 2.18 0.23 34 +1 +1 +1 +1 +1 +1 
104 1,2,4–trimethylbenzene 2.18 0.22 34 +1 +1 +1 +1 +1 +1 
105 1,3,5–trimethylbenzene 2.18 0.23 34 +1 +1 +1 +1 +1 +1 
106 1,2,4,5–tetramethyl 

benzene 
2.18 0.23 34 +1 +1 +1 +1 +1 +1 

107 ethylbenzene 2.18 0.22 34 +1 +1 +1 +1 +1 +1 
108 cumene 2.18 0.19 34 +1 +1 +1 +1 +1 +1 
109 1–methylnaphthalene 2.18 0.23 34 +1 +1 +1 +1 +1 +1 
110 2–methylnaphthalene 2.18 0.23 34 +1 +1 +1 +1 +1 +1 
111 biphenyl 2.14 0.07 34 +1 +1 +1 +1 +1 +1 
112 cyclopentane 2.18 0 19 +1 +1 +1 +1 +1 +1 
113 cyclohexane 2.18 0 19 +1 +1 +1 +1 +1 +1 
114 methylcyclohexane 2.18 0.03 20 +1 +1 +1 +1 +1 +1 
115 nitrobenzene 2.14 0.82 39 –1 –1 –1 –1 –1 –1 
116 2–nitrotoluene 2.18 0.83 39 –1 –1 –1 –1 –1 –1 
117 3–nitrotoluene 2.18 0.82 39 –1 –1 –1 –1 –1 –1 
118 4–nitrotoluene 2.18 0.82 39 –1 –1 –1 –1 –1 –1 
119 2,3–

dimethylnitrobenzene 
2.19 0.83 39 –1 –1 –1 –1 –1 –1 

120 3,4–
dimethylnitrobenzene 

2.18 0.82 39 –1 –1 –1 –1 –1 –1 

121 2–chloronitrobenzene 2.14 0.82 39 –1 –1 –1 –1 –1 –1 
122 3–chloronitrobenzene 2.15 0.82 39 –1 –1 –1 –1 –1 –1 
123 4–chloronitrobenzene 2.15 0.82 39 –1 –1 –1 –1 –1 –1 
124 2,3–dichloronitrobenzene 2.15 0.82 39 –1 –1 –1 –1 –1 –1 
125 2,4–dichloronitrobenzene 2.15 0.82 39 –1 –1 –1 –1 –1 –1 
126 2,5–dichloronitrobenzene 2.15 0.82 39 –1 –1 –1 –1 –1 –1 
127 3,5–dichloronitrobenzene 2.15 0.82 39 –1 –1 –1 –1 –1 –1 
128 2–chloro–6–nitrotoluene 2.19 0.83 39 –1 –1 –1 –1 –1 –1 
129 4–chloro–2–nitrotoluene 2.19 0.83 39 –1 –1 –1 –1 –1 –1 
130 4–chloro–3–nitrotoluene 2.18 0.82 39 –1 –1 –1 –1 –1 –1 
131 phenol 2.56 0.86 242 –1 –1 –1 –1 –1 –1 
132 2–methylphenol 2.56 0.86 242 –1 –1 –1 –1 –1 –1 
133 3–methylphenol 2.56 0.86 242 –1 –1 –1 –1 –1 –1 
134 4–methylphenol 2.56 0.86 242 –1 –1 –1 –1 –1 –1 
135 2,4–dimethylphenol 2.57 0.86 242 –1 –1 –1 –1 –1 –1 
136 2,6–dimethylphenol 2.57 0.87 243 –1 –1 –1 –1 –1 –1 
137 3,4–dimethylphenol 2.56 0.86 242 –1 –1 –1 –1 –1 –1 
138 2,3,6–trimethylphenol 2.57 0.87 243 –1 –1 –1 –1 –1 –1 
139 2,4,6–trimethylphenol 2.57 0.87 243 –1 –1 –1 –1 –1 –1 
140 4–ethylphenol 2.56 0.86 242 –1 –1 –1 –1 –1 –1 
141 4–propylphenol 2.56 0.86 244 –1 –1 –1 –1 –1 –1 
142 4–n–butylphenol 2.56 0.86 244 –1 –1 –1 –1 –1 –1 
143 4–tert–butylphenol 2.56 0.86 244 –1 –1 –1 –1 –1 –1 
144 2–tert–butyl–4–

methylphenol 
2.57 0.87 244 –1 –1 –1 –1 –1 –1 

145 4–n–pentylphenol 2.56 0.86 244 –1 –1 –1 –1 –1 –1 
146 4–tert–pentylphenol 2.56 0.86 244 –1 –1 –1 –1 –1 –1 
147 2–allylphenol 2.56 0.86 242 –1 –1 –1 –1 –1 –1 
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Table 3. (Continued) 
No Compound Elcdif Helc HQ+  C-NN/ 

Helc 
C-NN/ 
HQ 

Tree/ 
Helc 

Tree/ 
HQ 

SVM 

     Exp Pre Pre Pre Pre Pre 
148 2–phenylphenol 2.56 0.87 241 –1 –1 –1 –1 –1 –1 
149 1–naphthol 2.57 0.86 242 –1 –1 –1 –1 –1 –1 
150 4–chlorophenol 2.56 0.86 242 –1 –1 –1 –1 –1 –1 
151 4–chloro–3–

methylphenol 
2.56 0.86 242 –1 –1 –1 –1 –1 –1 

152 4–chloro–3,5–dimethyl 
phenol 

2.56 0.86 242 –1 –1 –1 –1 –1 –1 

153 3–methoxyphenol 2.56 0.86 242 –1 –1 –1 –1 –1 –1 
154 4–methoxyphenol 2.56 0.76 242 –1 –1 –1 –1 –1 –1 
155 4–phenoxyphenol 2.56 0.76 242 –1 –1 –1 –1 –1 –1 
156 pyridine 2.15 0.68 40 –1 –1 –1 –1 –1 +1 
157 quinoline 2.15 0.67 41 –1 –1 –1 –1 –1 +1 
158 aniline 2.35 0.27 100 –1 –1 –1 –1 –1 –1 
159 2–methylaniline 2.36 0.27 100 –1 –1 –1 –1 –1 –1 
160 3–methylaniline 2.36 0.26 100 –1 –1 –1 –1 –1 –1 
161 4–methylaniline 2.35 0.27 100 –1 –1 –1 –1 –1 –1 
162 2,3–dimethylaniline 2.35 0.27 100 –1 –1 –1 –1 –1 –1 
163 3,4–dimethylaniline 2.35 0.27 100 –1 –1 –1 –1 –1 –1 
164 N,N–dimethylaniline 2.18 0.3 34 –1 +1 +1 +1 +1 +1 
165 2–ethylaniline 2.35 0.27 100 –1 –1 –1 –1 –1 –1 
166 3–ethylaniline 2.36 0.27 100 –1 –1 –1 –1 –1 –1 
167 4–ethylaniline 2.36 0.26 100 –1 –1 –1 –1 –1 –1 
168 4–butylaniline 2.35 0.26 100 –1 –1 –1 –1 –1 –1 
169 2,6–diisopropylaniline 2.36 0.28 100 –1 –1 –1 –1 –1 –1 
170 2–chloroaniline 2.36 0.27 100 –1 –1 –1 –1 –1 –1 
171 3–chloroaniline 2.35 0.27 100 –1 –1 –1 –1 –1 –1 
172 4–chloroaniline 2.36 0.27 100 –1 –1 –1 –1 –1 –1 
173 2,4–dichloroaniline 2.36 0.27 100 –1 –1 –1 –1 –1 –1 
174 2,5–dichloroaniline 2.36 0.27 100 –1 –1 –1 –1 –1 –1 
175 3,4–dichloroaniline 2.35 0.26 100 –1 –1 –1 –1 –1 –1 
176 3,5–dichloroaniline 2.35 0.27 100 –1 –1 –1 –1 –1 –1 
177 2,3,4–trichloroaniline 2.35 0.27 100 –1 –1 –1 –1 –1 –1 
178 2,3,6–trichloroaniline 2.36 0.26 100 –1 –1 –1 –1 –1 –1 
179 2,4,5–trichloroaniline 2.35 0.26 100 –1 –1 –1 –1 –1 –1 
180 4–bromoaniline 2.35 0.26 99 –1 –1 –1 –1 –1 –1 
181 α,α,α,4–tetrafluoro–3–

methylaniline 
2.35 1.18 101 –1 +1 +1 +1 +1 –1 

182 α,α,α,4–tetrafluoro–2–
methylaniline 

2.36 1.18 101 –1 +1 +1 +1 +1 –1 

183 pentafluoroaniline 2.36 1.17 104 –1 +1 +1 +1 +1 –1 
184 3–benzyloxyaniline 2.35 0.72 101 –1 –1 –1 –1 –1 –1 
185 4–hexyloxyaniline 2.35 0.72 100 –1 –1 –1 –1 –1 –1 
186 2–nitroaniline 2.36 0.82 103 –1 –1 –1 –1 –1 –1 
187 3–nitroaniline 2.35 0.82 100 –1 –1 –1 –1 –1 –1 
188 4–nitroaniline 2.35 0.82 101 –1 –1 –1 –1 –1 +1 
189 2–chloro–4–nitroaniline 2.35 0.82 101 –1 –1 –1 –1 –1 –1 
190 4–ethoxy–2–nitroaniline 2.35 0.82 103 –1 –1 –1 –1 –1 –1 
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Table 4. Structure of the chemical compounds in test set, theoretical descriptors (Elcdfi, Helc, HQ+) and mechanism of 
toxic action (nonpolar, +1; polar, –1; experimental, Exp; prediction, Pre) 

No Compound Elcdif Helc HQ+  C-NN/ 
Helc 

C-NN/ 
HQ 

Tree/ 
Helc 

Tree/ 
HQ 

     Exp Pre Pre Pre Pre 
T1 diethyl benzyl 

phosphonate 
1.04 2.22 38 +1 +1 +1 +1 +1 

T2 azinphos-methyl 1.03 2.22 38 ACI +1 +1 +1 +1 
T3 malathion 1.1 2.22 29 ACI +1 +1 +1 +1 
T4 disulfoton 0.97 2.22 28 ACI +1 +1 +1 +1 
T5 terbufos 0.97 2.22 28 ACI +1 +1 +1 +1 
T6 carbophenothion 0.97 2.22 36 ACI +1 +1 +1 +1 
T7 tributyl phosphate 1 2.22 29 +1 +1 +1 +1 +1 
T8 tris(2-butoxyethyl) 

phosphate 
1 2.22 29 –1 +1 +1 +1 +1 

T9 triphenyl phosphine 
oxide 

1.1 2.22 39 –1 +1 +1 +1 +1 

T10 diphenyl sulfoxide 0.85 2.22 40 +1 –1 –1 –1 –1 
T11 phenobarbital 1.14 2.36 118 +1 +1 +1 +1 +1 
T12 octyl cyanide 0.7 2.18 22 +1 –1 +1 –1 +1 
T13 2,6-dimethoxy toluene 0.66 2.19 36 +1 +1 +1 +1 +1 
T14 2-cyano pyridine 0.65 2.14 40 –1 –1 –1 –1 +1 
T15 3-trifluoromethyl-4-nitro 

phenol 
1.1 2.5 233 –1 +1 +1 +1 +1 

T16 m-bromo benzamide 1.04 2.35 105 +1 +1 +1 +1 +1 
T17 p-tbutyl benzamide 1.04 2.35 105 +1 +1 +1 +1 +1 
T18 3,6-dithia octane 0.11 2.18 19 +1 +1 +1 +1 +1 
T19 proprionitrile 0.7 2.18 21 +1 –1 +1 –1 +1 
T20 1-bromo octane 0.24 2.18 20 +1 +1 +1 +1 +1 
T21 N-phenyl diethanol 

amine 
0.97 2.56 242 +1 +1 +1 +1 +1 

T22 diphenyl amine 0.37 2.39 111 +1 –1 –1 –1 –1 
T23 dibenzyl sulfoxide 1.14 2.14 34 +1 +1 +1 +1 +1 
T24 2-amino-4’-chloro 

benzophenone 
1.14 2.39 105 +1 +1 +1 +1 +1 

T25 2,2,5,5-tetramethyl 
tetrahydrofuran 

0.9 2.18 18 –1 +1 +1 +1 +1 

T26 3-hydroxy-2-nitro 
pyridine 

0.76 2.51 236 +1 –1 –1 –1 –1 

T27 2,4,5-trimethyl oxazole 0.78 2.18 19 +1 –1 +1 –1 +1 
T28 urethane 1.04 2.35 102 +1 +1 +1 +1 +1 
T29 benzyl tert buthanol 0.94 2.56 245 +1 +1 +1 +1 +1 
T30 tripropargyl amine 0.52 2.18 70 +1 –1 –1 +1 –1 
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