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Abstract 
     Protein tyrosine phosphatase 1B (PTP 1B) has been implicated as negative regulator of insulin receptor 
signaling system.  Design of small molecule PTP 1B inhibitors has received considerable attention as inhibition of 
PTP 1B enzyme is expected to improve insulin action, to treat non insulin dependent diabetes mellitus (NIDDM). 
In this work, we report three dimensional quantitative structure activity relationship (3D-QSAR) study performed 
by genetic function approximation (GFA) technique on a series of benzofuran/benzothiophene biphenyls as PTP 
1B inhibitors. The QSAR models were generated using 92 compounds, and the predictive ability of the resulting 
each model was evaluated against a test set of 26 compounds. The internal and external consistency of the final 
QSAR model was 0.694 and 0.672. Analyses of results from the present QSAR study indicate that electronic, 
structural, and shape descriptors govern the PTP 1B inhibitory activity.  
 
Keywords. Three-dimensional quantitative structure activity relationship; 3D-QSAR, Genetic function 
approximation; GFA; Protein Tyrosine Phosphates 1B; PTP 1B, non insulin dependent diabetes mellitus; NIDDM; 
descriptor.  
 

1 INTRODUCTION 

 
  Resistance to the biological actions of insulin in its target tissues is a major feature of the 

path-physiology in human obesity and non-insulin dependent diabetes mellitus (NIDDM). 

Tyrosine phosphorylation of specific intracellular proteins controlled by the actions of protein 

tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) is recognized as a key process 

by which a number of polypeptide hormones and growth factors transduce and coordinate their 

biological effects in vivo [1]. Recent insights into the mechanism of insulin actions have 

demonstrated that reversible tyrosine phosphorylation of the insulin receptor and its cellular 

substrate proteins play a central role in the mechanism of insulin action [2]. Biochemical and 

cellular studies have provided evidences that PTPs have an important role in the regulation of 

insulin signal transduction [3]. 
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  Protein tyrosine phosphates 1B (PTP 1B), a cytosolic PTP play a major role in the 

regulation of insulin sensitivity and dephosphorylation of the insulin receptor. PTP 1B has been 

implicated as negative regulator of insulin receptor signaling [4,5]. Clinical studies have found a 

correlation between insulin resistance states and levels of PTP 1B expression in muscle and 

adipose tissue, suggesting that PTP 1B has a major role in the insulin resistance associated with 

obesity and NIDDM [6, 7]. A recent pivotal PTP 1B knock out study revealed that mice lacking 

functional PTP 1B were viable, healthy, and lean; displayed enhanced insulin sensitivity and 

resistance to diet induced obesity [8]. All these results establish a direct role for PTP 1B in down 

regulating the insulin functions. Hence potent, selective and orally active PTP 1B inhibitors could 

be potential pharmacological agents for the treatment of obesity and NIDDM. 

  Malamas et al. reported a series of 118 molecules belonging to benzofuran/benzothiophene 

biphenyls as PTP 1B inhibitors with antihyperglycemic activity [9]. The logarithm of measured 

IC50  (µM), against human recombinant PTP 1B enzyme (h-PTP 1B) as pIC50   was used as 

dependent variable for the present QSAR analysis. The activity data used in the present study is in 

vitro data and such a type of activity data could have contributions not only form steric and 

electrostatic interactions but also from other physicochemical parameters. The factors contributing 

to the biological activity can be understood through use of different physicochemical descriptors in 

the generation of QSAR models. Analysis of antibacterial activity of macrolide compounds has 

resulted in the identification of physicochemical descriptors such as log P, log D, CMR, pKa and 

HPLC capacity factor deriving correlation with in vitro MIC and in vivo activity [10]. Various 

quantum chemical and quantum mechanical descriptors are being applied for the quantitative 

structure activity relationship and quantitative structure pharmacokinetic relationship studies 

involving complex biological phenomenon [11]. Use of descriptors, which characterize the 

molecular shape related properties, might be especially useful to explain variance in the biological 

activity among a series of the compounds [12].  

 We have used genetic function approximation (GFA) technique to generate different 3D-

QSAR models from various descriptors available within Cerius2 modeling software [13] in order 

to deduce correlation between the structure and biological activity of the present series of 

molecules. Our strategy follows the methodology used previously to generate successful 3D-

QSAR models for antifungal [14], antibacterial [15], antitubercular [16], and anti-inflammatory 

agents [17]. GFA technique was used since it generates a population of equations rather than one 

single equation for correlation between biological activity and physicochemical properties. GFA 

developed by Rogers, involved the combination of Friedman’s multi variate adaptive regression 
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splines (MARS) algorithm with Holland’s genetic algorithm to evolve population of equations that 

best fit the training set data [18]. This is done as follows: (i) An initial population of equations is 

generated by random choice of descriptors. The fitness of each equation is scored by Lack- of- Fit 

(LOF) measure, LOF = LSE / {1- [c + d*p / m]}2 , where LSE is least square error, c is the number 

of basis functions in the model, d is the smoothing parameter which controls the number of terms 

in the equations and p is the number of features contained in all terms of the models, and m is the 

number of compounds in the training set. (ii) Pairs form the population of equations are chosen at 

random and “crossovers” are performed and progeny equations are generated. (iii)The fitness of 

each progeny equation is assessed by LOF measure. (iv) If the fitness of new progeny equation is 

better, then it is preserved. The model with proper balance of all statistical terms will be used to 

explain variance in the biological activity.  

A distinctive feature of GFA is that it produces a population of models (eg. 100), instead of 

generating a single model, as do most other statistical methods. The range of variations in this 

population gives added information on the quality fit and importance of the descriptors. By 

examining these models, additional information can be obtained. For example, the frequency of 

use of a particular descriptor in the population of equations may indicate how relevant the 

descriptor is to the prediction of activity. Combination of robust statistical technique GFA coupled 

with the use of different types of descriptors would result in better prediction of biological activity 

for PTP1B enzyme inhibitors. 

   
2 MATERIALS AND METHODS 

 2.1 Chemical Data 
 2.1.1 Molecules   

              A series of 118 molecules belonging to benzofuran/benzothiphene biphenyls as PTP 1B 

inhibitors were taken from the literature and used for the present study [9].  The 3D-QSAR models 

were generated using a training set of 92 molecules. The structures observed and predicted 

biological activities of the training set molecules are presented in Table 1. Predictive power of the 

resulting models was evaluated by a test set of 26 molecules with uniformly distributed biological 

activity. The structures observed and predicted biological activities of the test set molecules are 

presented in Table 2. Selection of test set molecules was made by considering the fact that, test set 

molecules represent range of biological activity similar to training set. The mean of biological 

activity of training and test set was 0.65 and 0.69, respectively. Thus test set is the true 

representative of the training set.  
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 2.1.2 Biological activity 

The logarithm of measured IC50 (µM) against human recombinant PTP 1B (h-PTP 1B) enzyme 

as pIC50 (pIC50 = log 1/IC50) was used as dependent variable, thus correlating the data linear to the 

free energy change. Since IC50 against h-PTP 1B for compounds exhibiting >70% inhibition at 2.5 

µM concentration (average of quadruplet) was not determined, such compounds were excluded 

from the present study. Further details regarding the biological testing can be found in [9].  

 2.2 Molecular Modeling 

   2.2.1 Software 

 All molecular modeling studies were carried out using Cerius2 (version 3.5) running on 

Silicon Graphics O2 R5000 workstation [13]. Structures were constructed from the builder module 

and partial charges were assigned using charge equilibration method within Cerius2 [19]. 

Throughout the study, Universal forcefield 1.02 was used [20]. The molecules were subsequently 

minimized until a root mean square deviation 0.001 kcal/mol Å was achieved and used in the 

study.  

2.2.2 Calculation of descriptors 

 Different types of descriptors were calculated for each molecule in the study table using 

default settings within Cerisu2. These descriptors include electronic, spatial, structural, 

thermodynamic and molecular shape analysis (MSA). A complete list of descriptors used in the 

study is given in given Table 3.  

2.2.3 MSA descriptors 

MSA descriptors [21] were calculated using MSA module within Cerius2. As MSA 

descriptors calculate three-dimensional properties of the ligands, knowledge of active conformer of 

the molecules under study is essential. The crystallographic conformation of the present series of 

molecules was not available/deposited at protein data bank. Hence conformational analysis on all 

molecules was performed using random sampling search [22] and Universal force field [20], with 

maximum number of conformers set equal to 10. The lowest energy conformer of the molecule 

with the highest biological activity (compound 54, Table 1) was used as reference for calculation 

of MSA descriptors. Crystallographically two different orientations were shown for phenyllactic 

acid and sulfosalicylic acid type of inhibitors [9]. In the present QSAR study no descriptor related 

to ligand-enzyme interactions (such as binding energy) has been used. Hence we think that 

differences in binding orientations would have no effect on the conclusions from present QSAR 

analysis. 
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           Table 1.  Structures and biological activities of the training set molecules.  

                                          

OR2

X R1
 

No R1 R2 X Obsd.acta Pred.actb

1 butyl H O 0.130 -0.048 
2 benzyl H O 0.0362 0.147 
3 benzoyl H O 0.130 0.065 
4 butyl H S 0.154 0.164 
5 4-OH benzyl H S -0.033 -0.045 
6 benzyl CH(CH2Ph)COOH (R) O 0.455 0.676 
7 benzyl CH(CH2CH2Ph)COOCH3(S) O 0.657 0.740 

8 benzyl CH(CH2CH2-N-pthalinimide) –
COOH(S) O 0.468 1.153 

9 benzyl CCH3(CH2Ph)COOH(R) O 0.537 0.845 
10 benzyl CH(CH3)COOH(R) O 0.120 0.368 
11 benzoyl CH(CH2Ph)COOH(R) O 0.167 0.580 
12 CH(OH)phenyl CH(CH2Ph)COOH(R) O 0.958 0.587 
13 benzyl CH2Ph-4-COOH O 0.443 0.778 
14 butyl CH(CH2Ph)COOH(R) S 0.769 0.518 
15 benzyl CH(CH2Ph)COOH(R) S 1.022 0.743 
16 butyl CH(Ph)COOH (R) S 0.958 0.713 
17 4-F-benzyl CH(CH2Ph)COOH (R) S 0.920 0.681 
18 4-OCH3-benzyl CH(CH2Ph)COOH(R) S 1.113 0.769 
19 2,4-di-OH-benzyl CH(CH2Ph)COOH (R) S 0.920 0.681 

20 
O

O

 

CH(CH2Ph)COOH(R) S 1.113 0.769 

21 2-methyl thiazolo CH(CH2Ph)COOH(R) S -0.064 0.616 
22 2-methyl pyridyl CH(CH2Ph)COOH(R) S -0.190 0.655 

No R R1 Obsd.acta Pred.actb

 
23 

O

F

Ph

OR1

 

CH(CH2Ph)COOH(S) 0.886 0.609 
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24 

O

CH3

Ph

OR1

 

CH(CH2Ph)COOH(R) 0.387 0.862 

 
25 

OR1

PhON

 

 
CH(CH2Ph)COOH(S) 

 
0.229 

 
0.578 

 
 

26 
O

Ph

OR1

 

 
CH(CH2Ph)COOH(R) 

 
0.455 

 
0.678 

     

27 

S Ph

OR1

 

             
CH(CH2Ph)COOH(R) 0.0132 0.361 

     

  28 
S Ph

OR1
CH3

CH3

 
 

              
CH(CH2Ph)COOH(R) 

 
0.292 

 
0.672 

     
 

Ph

OR3

R1

R2X
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No R1 R2 R3 X Obsd.acta Pred.actb

29 Br H H S -0.029 0.456 
30 Br Br H S 0.346 0.806 
31 I I H S 0.283 0.813 
32 Br Br CH(CH2Ph)COOH(R) S 1.602 0.894 
33 4-OCH3-Ph H CH(CH2Ph)COOH(R) S 1.275 1.278 
34 Br Br CH(CH2CH2Ph)COOH(S) S 0.537 1.166 

35 Br Br CH(CH2CH2-N-
pthalinimide)-COOH S 1.356 1.563 

36 Br Br CH(CH2CH2NHCOPh-2-
COOH)COOH S 0.744 1.466 

37 Br Br CH(CH2CH2NHCOPh-2-
COOH)COOCH3 S 1.267 1.540 

38 Br H CH2COOH S 0.443 0.574 
39 Br Br CH2COOH S 1.000 0.820 
40 4-OCH3-Ph H CH2COOH S 1.096 0.955 
41 4-OC2H5-Ph H CH2COOH S 1.283 0.968 
42 2,3-di-OCH3-Ph H CH2COOH S 1.148 1.094 
43 3,4,5-tri-OCH3-Ph H CH2COOH S 1.000 1.210 
44 4-OCH3-Ph Br CH2COOH S 1.537 1.226 
45 2,4-di-OCH3-Ph Br CH2COOH S 1.327 1.321 

46 3-OCH3-Ph 
3-
OMe-
Ph 

CH2COOH S 1.602 1.487 

47 4-OCH3-Ph 
4-
OMe-
Ph 

CH2COOH S 1.602 1.406 

48 Br H CH2CH2CH2COOH S 0.769 0.685 
49 Br H CH(CH2PhCOOH(S)) O 1.251 0.835 
50 4-OCH3-Ph H CH(CH2Ph)COOH(S) O 1.366 1.303 
51 NO2 H CH(CH2Ph)COOH(R) O 0.638 0.713 
52 Br Br CH(C2H5)COOH(S) O 0.886 0.902 

53 Br Br CH[CH2CH(CH3)2)COOH 
(R) O 1.267 0.572 

54 Br Br CH[CH2)5CH3]COOH O 1.638 0.932 
55 CH3 CH3 CH(CH2Ph)COOH(R) O 1.130 0.965 
56 Cyclopentyl H CH(CH2Ph)COOH(S) O 1.259 1.208 
57 Cyclopentyl H CH2COOH O 0.769 0.715 
58 NHCH2CH2COOH H CH2CH2Ph O 0.853 0.715 
59 NHCOCH2CH2COOH H H O 0.036 0.743 
60 NHCOCH=CHCOOH H H O 0.337 0.356 
61 NHCO-C6H4-2-COOH H H O 0.795 0.568 
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OR2

R3

R4

R1

  

No             R1   R2        R3         R4 Obsd.acta Pred.actb

 
62 

O

F  

 
 
CH2COO
H 
 

 
 
4-OCH3-
Ph 
 

 
4-OCH3-Ph 

 
  1.508 

 
  1.318 

 
R2

R3

OR2X

O
 

 

No R1 R2 R3 X Obsd.acta Pred.actb

63 H H H CH2 -0.0755 -0.077 
64 H Br Br CH(OH) -0.146 0.458 
65 CH2COOH H H CH2 -0.060 0.138 
66 CH2-tetrazole H H CH2  0.292 0.240 
 
[substituted oxazole biphenyls] 

                          

R2

OR1

R33'

4'N

O
CH3

CF3

 

No R1 R2 R3 P.O.A1 Obsd.acta Pred.actb 

67 CH2COOH H H 4’ 0.096 -0.278 
68 CH(CH2Ph)COOH H H 4’ -0.113 0.114 
69 CH2-tetrazole H H 4’ 0.045 0.047 
70 CH(CH2Ph)COOH H H 3’ -0.204 0.114 
71 H Br Br 4’ 0.187 0.308 
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72 CH2COOH Br Br 4’ 0.327 0.319 
1Point of attachment 

 
 [2-butyl benzofuran naphthalenes] 
 

                         
O

X

OR1

R2

 
 
 

No R1 R2 X Obsd.acta Pred.actb 

73 H H CH(OH) -0.041 -0.227 
74 H Br CH(OH) 0.318 -0.014 
75 H Br CH2 0.481 0.068 
76 H I CH2 0.420 0.082 
77 CH2COOH Br CH2 -0.146 0.181 
78 CH(CH2Ph)COOH Br CH2 0.431 0.539 
79 CH(CH2Ph)COOH Br CO -0.079 0.455 
80 CH(CH2Ph)COOH I CH2 0.494 0.624 
81 CH2-tetrazole Br CH2 0.154 0.344 

     

                

OR1

R2
N

O

CF3

CH3  

              
     [sulphono biphenyls] 
            

No R1 R2 
           
Obsd.acta Pred.actb 

82 CH2COOH Br             -
0.113 0.120 
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Ph

O

O

R1

R2

R3

R4X

SO

 
 

No R1 R2 R3       R4 X Obsd.acta Pred.actb 

83 H COOH H       H O 1.124 1.00 
84 COOH H H       H O 0.974 0.926 
85 OH COOH H       H O 1.408 1.110 
86 OH COOH CH3       CH3 O 1.468 1.266 
87 OH COOH H       H S 1.552 1.562 

 
O

O

R1

R2

R3

R4

SOR5

 
 
 

No R1 R2 R3 R4              R5 Obsd.acta Pred.actb 

88 OH COOH H H 

S
Ph

CH3

CH3  

1.494 1.032 

89 OH COOH cyclopentyl H 
Ph

O

O  

1.397 1.460 

90 OH COOH H H 

     
O

 

0.450 0.347 
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91 OAc COOH H H 

     
O

 

-0.064 0.731 

92 OH COOH NO2 H 
Ph

O

O  

0.749 1.010 

a Obsd. act = observed biological activity is defined as log 1/ IC50 against human recombinant  
         PTP 1B enzyme (h-PTP 1B) in µM. 

b Pred. act = Predicted biological activity calculated using Equation 6 in Table 4. 
 

     Table 2.  Structures and observed, predicted activities along with residuals for the test set  molecules.  

OR2

X R1
 

 

No R1 R2 X Obsd.acta Perd.actb Residual 

1 2,4-di-OH-benzyl H S 0.236 0.294 -0.058 
2 butyl CH2COOH O -0.340 0.527 0.187 
3 butyl CH(CH2Ph)COOH O 0.356 0.504 -0.148 
4 benzyl CH(CH2Ph)COOH O 0.568 0.775 -0.207 
5 benzyl CH(CH2Ph)COOH(S) O 0.494 0.775 -0.281 
6 benzyl CH(Ph)COOH(R) O 0.397 0.678 -0.281 
7 3,4-OCH3-benzyl CH(CH2Ph)COOH(R) S 0.920 0.657 0.263 

8 2,4-di-OCH3-
benzyl CH(CH2Ph)COOH S 1.070 0.646 0.424 
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Ph

OR3

R1

R2X
 

 
 

OR2

R3

R4

R1

 

No               R1       R2     R3      R4 Obsd.acta Pred.actb Residual 

 
 
16 

O

F

Ph

 

 
 
 
CH2COOH 
 

 
 
4-OCH3-
Ph 

 
 
4-OCH3-
Ph 

 
 
1.318 

 
 
1.431 

 
 
0.113 

 
 [2-butyl benzofuran biphenyls] 

                                               

R2

R3

OR2

O

X

 

 
 

No R1 R2             R3 X Obsd.acta Pred.actb Residual 

9 Br H CH(CH2Ph)COOH(R) S 1.236 0.723 0.513 
10 4-Cl-Ph H CH(CH2Ph)COOH(R) S 1.283 0.955 0.328 
11 Ph H CH2COOH S 1.00 1.251 -0.257 
12 3-OCH3-Ph Br CH2COOH S 1.552 1.105 0.447 
13 Br Br CH(CH2Ph)COOH(S) O 1.420 0.850 0.570 
14 Br Br CH[(CH2)3CH3]COOH O 1.283 1.075 0.208 
15 NHCH2COOH H CH2CH2Ph O 1.086 0.699 0.387 

No                 R1  R2  R3     X Obsd.acta Pred.actb Residual 

17 CH2COOH H H CH(OH) 0.267 0.064 0.203 
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[oxazolo biphenyls] 

R2

OR1

R33'

4'N

O

CF3

CH3  
 

No R1 R2 R3 P.O.A1 Obsd.acta Pred.actb Residual 

18 CH(CH2Ph)COOH H H 3’ -0.204 0.284 0.080 
19 CH(CH2Ph)COOH Br Br 4’ 0.886 0.5245 0.361 

       1Point of attachment  
 
[2-butyl benzofuran naphthalenes] 

O

X

OR1

R2

 
 

No R1 R2 X Obsd.acta Pred.actb Residual 

20 H H CH2 -0.113 -0.115 0.002 

21 CH2-tetrazole Br CO -0.04 0.173 0.133 

[sulphono biphenyls] 

                    
Ph

O

O

R1

R2

R3

R4X

SO

 

 

No R1 R2 R3 R4 X Obsd.acta Perd.actb Residual

22 COOH OH H H O 1.585 0.981 0.604 
23 OH COOH NO2 H O 1.537 1.073 0.464 
24 OH COOH Cyclopentyl H O 1.552 1.4612 0.090 
25 OH COOH Br H S 1.619 1.238 0.381 
26 OH COOH Br Br S 1.522 1.311 0.211 



Internet Electronic Journal of Molecular Design 2003, 2, 000–000 
 

 

13 
BioChem  Press http://www.biochempress.com
 

 
  a Obsd. act = observed biological activity is defined as log 1/ IC50 against human recombinant  
    PTP 1B enzyme (h-PTP 1B) in µM 

b Pred. act = Predicted biological activity calculated using Equation 6 in Table 4. 
 
Table 3.  Descriptors used in the present study 

No Descriptor  Type  Descriptors 

1 Vm Spatial Molecular volume 
2 Area Spatial Molecular surface area 
3 Density Spatial Molecular density 
4 RadOfGyr Spatial Radius of Gyration 
5 PMI-mag Spatial Principle moment of inertia 
6 PMI_X Spatial Principle moment of inertia X- component    
7 PMI_Y Spatial Principle moment of inertia  Y-component 
8 PMI_Z Spatial Principle moment of inertia Z-component9  
9 MW Structural Molecular weight 
10 RotlBonds Structural Number of rotatable bonds 
11 HbondAcc Structural Number of hydrogen bond acceptors 
12 HbondDon Structural Number of hydrogen bond donors 
13 AlogP Thermodynamic Logarithm of partition coefficient 
14 MolRef Thermodynamic Molar refractivity 
15 Dipole-mag Electronic Diploe moment   
16 Dipole-X Electronic Diploe moment- X-component 
17 Dipole-Y Electronic Dipole moment-Y-component 
18 Diploe-Z Electronic Dipole moment-Z-component 
19 Charge Electronic Sum of partial charges 
20 Apol Electronic Sum of atomic polarizabilities 
21 HOMO Electronic Highest occupied molecular orbital energy 
22 LUMO Electronic Lowest unoccupied molecular orbital energy 
23 Sr Electronic Superdelocalizability 
24 Foct Thermodynamic Desolvation free energy for octanol 
25 Fh2o Thermodynamic Desolvation free energy for water   
26 Hf Thermodynamic Heat of formation 
27 DIFFV MSA Difference volume 
28 COSV MSA Common overlap steric volume 
29 Fo MSA Common overlap volume ratio 
30 NCOSV MSA Non-common overlap steric volume 
31 Shape RMS MSA RMS to shape reference 
32 SR Vol MSA Volume of shape reference compound 

 

2.2.4 Generation of QSAR models 

 QSAR analysis in computational research is responsible for the generation of models to 

correlate biological activity and physicochemical properties of a series of compounds. The 

underlying assumption is that the variations of biological activity within a series can be 
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correlated with changes in measured or computed molecular features of the molecules. In the 

present study, QSAR model generation was preformed by GFA technique. The application of the 

GFA algorithm allows the construction of high-quality predictive models and makes available 

additional information not provided by standard regression techniques, even for data sets with 

many features.  GFA was preformed using 100,000 crossovers, smoothness value of 2.0 and 

other default settings for each combination. The number of terms in the equation was fixed to 

five including constant in the training set. The set of equations generated were evaluated on the 

following basis: (a) LOF measure; (b) Variable terms in the equations; (c) Cross validated and 

non cross validated r2; (d) Randomized cross validated r2; (e) Predictive ability of equation. 

Cross validated r2 (r2
cv), Randomized cross validated r2, were calculated using cross validated 

test option in the statistical tools supported in Cerius2.  

 The predictive r2 was based only molecules not included in the training set and is defined 

as: r2 pred  =  (SD - PRESS) / SD, where SD is the sum of the squared deviations between the 

biological activity of molecules in the test set and the mean biological activity of the training set 

molecules and PRESS is the sum of squared deviations between predicted and actual activity 

values for every molecule in the test set. Like r2
cv  the predictive r2 can assume a negative value 

reflecting a complete lack of predictive ability of the training set for the molecules included in 

the test set [23, 24]. 

3. RESULTS AND DISCUSSIONS  
3.1 Results 

 In the present study, QSAR models were generated using a training set of 92 molecules 

(Table 1). Test set of 26 molecules (Table 2) with regularly distributed biological activities was used 

to assess the predictive ability of the generated QSAR models. Biological activity was expressed in 

terms of pIC50, the logarithm of measured IC50 (µM) against human recombinant PTP 1B (h-PTP 

1B) enzyme. The conformational space of the rotatable bonds in the molecules was explored using 

random sampling technique in order to obtain sterically accessible conformations within optimum 

computational time.  Conformational search was preformed during molecular shape analysis (MSA) 

technique and the lowest energy conformer of each molecule was used for alignment using MSA 

technique. All the molecules were superimposed on the lowest energy conformer of the molecule 

with highest biological activity (compound 54). Pharmacophoric superposition of the molecules used  

in the present study is shown in Figure 1. The alignment resulted in the orientation of the molecule 

in such a way that, oxo-acetic acid functional group of compound 54 was oriented to z-axis 

(perpendicular to the plane of biphenyl ring), and substituents on the chiral carbon atom of oxo-
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acetic acid group oriented to Y-axis. Conformations obtained from the random sampling technique 

were found to be similar to the conformations derived in our 3D-QSAR study [25]. GFA technique 

was used to generate QSAR models. It was observed that in each case 100,000 crossovers and 

smoothing factor d = 2.0 resulted in optimum internal and external predictivity. Hence the number of 

crossovers has been set to 100,000 for all other models.  

 

 Figure 1. Pharmacophoric superposition of PTP 1B inhibitors used in the present QSAR study.   
         

  3.1.1 Significance of molecular descriptors 

The Cerius2 QSAR generates different descriptors belonging to different categories like 

conformational, electronic, shape, spatial, thermodynamic, etc. Interpretation of QSAR models 

with more terms becomes difficult for the drug design. Moreover all the terms may not be relevant.   

Equations generated without restricting the number of descriptors (infinite chain length) showed 

good internal predictivity but have poor external predictivity.  

BA =  - 2.90589 - 0.00229 Area + 0.00105 A Pol – 0.00237 PMI-Y + 0.150797 H bond acceptor –  

0.02825 Dopole_X – 0.00289 MW – 0.0001867 Vm + 0.395774 A log P 

LOF = 0.124,  Ftest  = 33.096, r2  = 0.708, r2
pred  =  0.132 

Hence to determine more relevant descriptors, GFA equations were generated with an option that 

they have no more than five terms including a constant. In order to obtain stable and consistent  
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Table 4. Summary of the best equations selected from different GFA models. Equation 6 from Model C was selected to  
explain the observed PTP 1B inhibitory activity of benzofuran/benzothiophen biphenyls derivatives.  

 

results from GFA and also to determine relevant descriptors, we have used a procedure to select a 

subset of descriptors, from a much large pool of descriptor.  In order to explore more relevant 

descriptors contributing to the biological activity of PTP 1B inhibitors, GFA was run for several 

times by using molecular descriptors. Three models were generated using combination of different 

descriptors: Model A: Using 20 default descriptors (Table 3, from 1-20 descriptors); Model B: 

Default+ Descriptors from 21-26 in Table 3 (Three electronic and Three thermodynamic); Model C: 

Descriptors of Model A+ Model B+ six MSA descriptors (Table 3). We have checked the 

“intervariable correlation matrix” (option available within Cerius2) for the equations in all the 

models (Models A, B, C). This parameter was used to filter off the equations that were showing 

intercorrelation among the descriptors, even though those equations showed good statistical data. 

No. Equation LOF r2 r2
cv F- value r2

pred 
Model A       
1 BA = -2.37109 – 0.01869 (Dipole_X) + 

0.1349 (Alog P)  
– 0. 00064  (A pol) 

0.150 0.549 0.507 35.722 0.328 

2 BA = -2.1029 + 0.006549 (Vm)  
– 0.07565 (Rotlbonds) + 0.0471  
(A log P) 

0.155 0.534 0.490 33.563 0.364 

Model B       
3 BA = -0.8588 - 0.015386 (Dipole_X) + 

0.0151(Molref) + 0.0966 (HOMO) 
0.150 0.547 0.508 35.538 0.484 

4 BA = 0.31685 + 0.2600 (HOMO) + 
0.007381(Vm) - 0.090578 (Dipole_X) 

0.152 0.542 0.504 35.773 0.513 

5 BA = -1.783611+ 0.19583(HOMO) + 
0.00491(Vm) - 0.0168 (Dipole_X) 

0.146 0.551 0.513 36.050 0.444 

Model C       
6 BA = 3.7344 - 0.0193  (Dipole_X) + 

0.2465(HOMO) - 0.007399         
 (DIFFV) -0.07644 (Rotlbonds)  

0.118 0.694 0.658 45.960 0.672 

7 BA = 1.48729 - 0.007342 (DIFFV) + 
0.02055 (Dipole_X) –0.0722 
(Rotlbonds)  + 0.0001883 (NCOSV) 

0.122 0.685 0.646 44.00 0.562 

8 BA = 0.12294 - 0.018696 (Dipole_X) + 
0.23116 (HOMO) + 
0.01655 (MolRef) –0.00116 (Hf) 

0.131 0.681 0.644 43.322 0.617 

9 BA = -2.172 - 0.02066 (Dipole_X) - 
0.00109 (Hf) + 0.01452 (MolRef) + 
0.06182 (Alog P)  

0.118 0.678 0.635 42.675 0.537 
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All the statistically significant equations for each QSAR model have been represented in Table 4. 

The term BA in the equations represent biological activity expressed as pIC50 (µM).  

Model A: QSAR equations using GFA were generated using 20 default descriptors (Table 3). 

Observation of variable usage graph indicates that, dipole_X, AlogP, Vm, and rotl.bonds contribute 

more significantly than all other descriptors for this model (Table 5). The resultant equations were 

evaluated for their predictive power.  The best equation from the set of equations was selected on the 

basis of predictivity, LOF and other statistical parameters such as F value. Equations 1 and 2 (Table 

4) showed better internal predictivity and also resulted in better predictions for test set of molecules. 

The variable terms in the equations show low correlation among themselves indicating low 

probability of chance correlation. Equation 2 with better predictive r2 value is proposed as the QSAR 

model with 20 default descriptors for the present series of molecules.  

Model B: This model was built by combination of default, three thermodynamic, and three 

electronic descriptors. The generated set of QSAR equations were evaluated on the basis of cross 

validated r2, non-cross validated r2, LOF and frequency of variables used (Table 5) for model 

generation. As indicated by variable usage graph, HOMO (highest occupied molecular orbital) and 

dipole_X descriptors were repeatedly used for the generation of set of equations.  This resulted in the 

identification of three best equations 3-5 (Table 4). These three equations were analyzed for their 

predictive power. Equation 4 with highest external predictivity was selected as the best QSAR 

equation for Model B (Table 4). Addition of six descriptors to QSAR table increased the internal 

predictivity of the model moderately.  

Model C: Deviation of biological activity for a series of molecules can be explained on the basis 

of differences in the physico-chemical descriptors. Hence, we considered using shape related 

descriptors in the generation of QSAR models.  Addition of six MSA descriptors to QSAR table 

resulted in the generation of equations with all thirty-two descriptors (Table 4) for model C.  These 

equations were analyzed on the basis of cross validate and non-cross validated r2, LOF, F value 

and variable terms in the equation. Analyses of frequency of variables used in the model 

generation (Table 5) indicate that dipole_X, HOMO, diff.vol. contribute more significantly than all 

other descriptors. The equations and variable terms in the equations clearly indicate the importance 

of electronic, shape and structure based factors in governing the biological activity of these 

compounds. Detailed statistical analysis of equations resulted in the identifications of five 

equations 6-10 (Table 4) for Model C.  Equation 6 (Table 4) was selected as a single best equation 

with proper balance of statistical terms for Model C. Inclusion of MSA based parameters clearly 

shows the improvement in the internal and external predictivity of the model C. The internal and  
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Table 5.The frequency of use of variables for each QSAR model generation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

external predictivity of equation 6 from Model C is more than Model A and B equations. This 

equation also has low LOF and higher F value than Model A and B. Therefore, this equation 

clearly shows the importance of shape related descriptors. Figure 2 shows the graph of actual and 

fitted activities of the training set molecules using Equation 6 from Model C.   Figure 3 shows 

graph of actual and predicted activities of test set molecules using Equation 6 from Model C. 

Varaiable  Usage 

Model A  

a) Diploe_X 65 
b) Rotlbonds 45 
c) Vm 42 
d) A log P 32 
e) Area 30 
f) A pol 22 
g) MolWt 18 
h) PMI_Z 12 
i) PMI_Y 10 

Model B  

a) Diploe_X 75 
b) Vm 42 
c) HOMO  35 
d) Area 30 
e) A pol 34 
f) Rotlbonds 27 
h) MolRef 29 

) RadOfGyr 27 
j) Alog P 24 
k) Hf 15 
l) PMI_X 09 

Model C  

a)Dipole_X 95 
b) HOMO  44 
c) DIFFV 35 
d) Rotlbonds 32 
e) NCOSV 32 
f) A log P 29 
g) Mol.Ref 17 
h) RadOfGyr 15 
i) LUMO  12 
j) Hf 12 
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 Equation 6 from Model C with proper balance of all statistical terms was selected as the 

best equation to explain the variance in the biological activity of benzofuran/benzothiophene 

biphenyls as PTP 1B enzyme inhibitors from the present QSAR analysis.   

3.2 Randomization tests 

 To determine model’s reliability and significance, the randomization procedure was 

performed at 95 % (19 trials) and 98 % (49 trials) confidence levels. The randomization was 

carried out by repeatedly permuting the dependent variable set. If the score of the original QSAR 

model proved better than those from the permuted data sets, the model would be considered 

statistically significant.  
  Table 6. Results of randomized  r2   for Equation 6 (Model C).  

Confidence  

Level 

Trials r2 
nonrandom  

 r2 
random 

 SDa SDb r2 < c  

 

r2 < d 

95 % 19 0.694 0.173 2.976 0.173 19 0 

98 % 49 0.694   0.145   3.237   0.145   49 0 

a Number of standard deviations of the mean value of r2 of all random trials to the  non-random r2 value.  
b Standard deviation of the r2 values of all random trials from the mean value of r2  
c Number of r2 values from random trials that are less than the r2 value for the non-random trial 
d Number of r2 values from random trials that are greater than the r2 vale for the non-random trial 

The results of randomization tests are shown in Table 6. The correlation coefficient r2 for the non-

randomized QSAR model was 0.698, better than those obtained from randomized data. None of 

the permuted data sets produced an r2 comparable to 0.698; hence, the value obtained from original 

GFA model is significant.  
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Figure 2. A graph of actual versus fitted activities of training set molecules using Equation 6 of from Model C. 
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Figure 3. A graph of actual versus predicted activities of test set molecules using Equation 6 of from Model C.  

3.3  Discussion 

 The Cerius2 QSAR module provides different descriptors divided into categories like 

spatial, structural, electronic, conformational, thermodynamic and receptor. Among those some 

descriptors constitute a default set. Using this default set we have obtained reasonably well-

predicted model (Model A) with cross validated r2 (r2 cv ) of 0.507. Therefore in order to optimize 

the internal and external predictivity, the default descriptor set was extended in two different 

ways by including (a) three electronic and three thermodynamic (Model B), (b) Descriptors of 

Model B + six MSA descriptors (Model C);  available in the Cerius2 QSAR module to generate 

different models using GFA. With these additions the models were greatly improved in terms of 

internal and external consistency.   

3.3.1 Interpretation of models 

    Model A  

 The equation describing biological activity for this model is equation 2 (Table 4) 

containing Vm – spatial descriptor, Rotl.bonds – structural descriptor and AlogP – 

thermodynamic descriptor. The spatial descriptors, Vm and structural descriptor, rotl.bonds 

describes the molecular volume and rigidity of the molecules respectively.  These two 

descriptors reflect the importance of size and conformation of the molecule to exhibit PTP 1B 

inhibitory activity. AlogP is the partition coefficient calculated using atom based approach and 

represents the hydrophobicity of the molecules [26]. AlogP is positively correlated with the 

biological activity. This property assumes significance in the present case because of the fact that 

the molecules under study contain lipophilic groups. This equation showed low internal as well 

as external predicitivity. This indicates that other physicochemical parameters may be 

responsible for the variance in the biological activity of present set of compounds.  
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    Model B 

 An important observation in Model B QSAR equations was the occurrence of HOMO and 

diploe_X as common descriptors in statistically significant equations 3, 4, and 5 (Table 4). 

Equation 4 with better predictive r2 of 0.513 was selected as the representative for Model B. The 

variable terms contribute for the biological activity in equation 4 from  Model B include two 

electronic descriptors – dipole_X, HOMO and one spatial descriptor – Vm.  

 Dipole_X, an electronic parameter indicates the dipole moment in X-axis. This term was 

negatively correlated and indicates that the compounds having dipole moment in X-axis may 

show less activity. Compounds 2 and 5 (Table 1) with functional groups orienting towards X-

axis showed less activity.  

 HOMO is an electronic parameter. When a molecule acts as an electron pair donor, 

electrons from its HOMO are supplied. This term indicates the importance of hydrogen bonding 

interactions and was positively correlated. Compound 54 and 87 (Table 1) with high HOMO 

energy were more active than compounds 2 and 5 with low HOMO energy (Table 1).  

 Vm, a spatial descriptor defines the molecular volume of ligand inside the contact surface 

with receptor during ligand-receptor interactions.  Molecular volume is related to binding and 

transport. This descriptor represents the importance of size and shape of the molecule to bind 

tightly with enzyme during ligand-receptor interactions. Positively correlated Vm underlines the 

importance of essential volume of the molecules under study required to possess as that of the 

shape reference molecule (compound 54) to bind effectively with the receptor. Compounds 2 and 

5 (Table 1) with less  molecular volume compared to the shape reference compound (compound 

54) showed less biological activity because of the absences of terminal hydrophobic functional 

groups.  

     Model C 

 QSAR equations for model C were generated using thirty two descriptors (Table 3). 

Equations 6 (Table 4) with better internal and external predictivity was selected as the 

representative equation for model C. The variable terms in this equation are dipole_X, HOMO, 

diff.vol and rotl.bonds.   

  3.3.2 Structure activity relationship of PTP 1B Inhibitors with representative QSAR equation  

 Equation 6 (Model C, Table 4) with good internal and external predicitivity was selected as 

representative equation to explain the variance in the biological activity of PTP 1B inhibitors from 

the QSAR models A, B, and C. This equation includes two electronic parameters – Dipole_X, 
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HOMO, a shape parameter – diff.vol and a structural parameter – rotl.bonds contributing for the 

biological activity.  

Dipole moment: Dipole moment, an electronic parameter and is important in case when dipole-

dipole interactions are involved in ligand-receptor interactions. Dipole_X describes the dipole 

moment along the X-axis i.e. parallel to the plane of biphenyl ring system. Thus the interaction 

between the electron rich functional groups of PTP 1B inhibitors and corresponding amino acid 

residues in the enzyme active site play an important role during enzyme inhibition. It is evident 

from our docking and molecular dynamics simulations on a series of PTP 1B inhibitors that, the 

interaction between ionizable functional group of ligands and Arg221 amino acid residue of PTP 

1B active site residue is critical for enzyme inhibition [27]. Is was observed during conformational 

analysis of compounds that oxo-acetic acid, substituted oxo-phenyllactic acid, sulfosalicylic acid 

functional groups oriented perpendicular to the biphenyl ring system (along Z-axis).  Compounds 

having the aforementioned functional groups showed better inhibitor potency than compounds 

having phenolic hydroxyl group oriented towards X-axis. The term dipole_X in QSAR equation 

was correlated negatively. This indicates the importance of ionizable functional group and its 

orientation in determining the activity of PTP 1B inhibitors.    

The conformation obtained form random sampling method [22] used in the present QSAR 

study was found to be similar with the conformation used in our 3D-QSAR CoMFA (Comparative 

molecular field analysis) and docking studies on PTP 1B inhibitors [25]. The CoMFA fields were 

mapped on to the active site of PTP 1B enzyme. High level of correlation between CoMFA fields 

and amino acid residues of PTP 1B enzyme active site validates our choice of conformation used 

for CoMFA study.  Hence we justify the use of dipole_X descriptor in equation 6 (Table 4) to 

explain variance in the   biological activity of PTP 1B inhibitors in the present study.  

HOMO: HOMO is an electronic parameter and is the highest energy level in the molecule that 

contains electrons. It is crucially important in governing the molecular reactivity and properties. 

When a molecule acts as an electron pair donor in bond formation, the electrons are supplied form 

the molecules HOMO. In the present series of molecules compounds having oxo-acetic acid, 

substituted phenyllacticacid, and sulfosalicylic acid functional groups with high HOMO energy 

(compounds 7, 54, 87 - Table 1) are more active than compounds bearing phenolic hydroxyl group 

(compounds 2, 5 - Table 1) with low HOMO energy. Hence HOMO descriptor denotes 

nucleophilicity of the molecule and this term was correlated positively. This indicates that 

hydrogen bonding interactions between the terminal ionizable functional group on biphenyl ring 

system in the present series of molecules and amino acid residues of PTP 1B enzyme active site 
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are crucial in the ligand-receptor interactions. It is evident from the literature that high-density 

basic residues surround the active site cleft of PTP 1B enzyme [28].  Hydrogen bonding 

interactions between inoizable functional groups of inhibitor molecules and signature motif amino 

acid residues (Cys215-Arg221) of PTP 1B enzyme serve as key recognition elements in the ligand-

receptor interactions [29]. These evidences support the importance of positively correlated HOMO 

descriptor in the QSAR equation in governing the potency of PTP 1B inhibitors. 

Diff. Vol: A shape descriptor, Differential volume (diff.vol) represents the difference between the 

volume of the individual molecule and volume of the shape reference compound.  This term was 

correlated negatively with the biological activity in the present QSAR analysis. The sulphono 

biphenyl compounds (83-87, Table 1) having approximately same volume compared to the shape 

reference compound showed good PTP 1B enzyme inhibition. The 2-substitutued-benzofuran 

naphthalene compounds (73-82, Table 1) with less volume compared to the shape reference 

compound showed less PTP 1B inhibitory activity. This descriptor indicates the importance of 2-

substituted benzofuran/benzothiophene biphenyl ring system to effectively occupy the available 

space in the active site of PTP 1B enzyme [30]. 

Rotl. Bonds: Rotl.bonds, a structural descriptor correlated negatively with biological activity. This 

term indicates that conformational rigidity of the molecules is important for the activity. This is 

evident from better inhibitory activity of compounds with rigid 2-substituted 

benzofuran/benzothiophene biphenyls ring system compared to the compounds with spacer group 

between heterocycle and the biphenyls ring system. Compounds 63-66 (Table 1) with spacer 

groups –CH2, –CH (OH) in training set and compound 17 (Table 2) with –C=O spacer group in 

test set between benzofuran heterocycle and biphenyls ring system showed less activity than 

compounds without spacer group (Compounds 7, 54, 87, Table 1). Similarly compounds 73-81 in 

training set (Table 1) with spacer groups –CH2, –CH (OH),  –C=O and compounds 20-21 with –

CH2, –CH (OH) spacer groups in test set (Table 2) between 2-butyl benzofuran heterocycle and 

naphthalene ring showed less activity compared to compounds without spacer groups (Compounds 

7, 54, 87, Table 1). Hence conformational rigidity is important for the present series of molecules 

to exhibit better PTP 1B enzyme inhibition.   

4. CONCLUSIONS 
 In conclusion, 3D-QSAR analysis on a series of benzofuran/benzothiphene biphenyls with 

PTP 1B inhibitory activity expressed as pIC5o (µM) against human recombinant PTP 1B enzyme 

was preformed using robust statistical technique GFA, coupled with the use of combination of 

different classes of descriptors. The generated equations in each QSAR model were analyzed for 



Internet Electronic Journal of Molecular Design 2003, 2, 000–000 
 

 

24 
BioChem  Press http://www.biochempress.com
 

their statistical significance and predictive ability by using test set of 26 molecules that were not 

used in model generation. Randomization test and intervariable correlations matrix were used to 

check the possibility of “chance correlation” for the generated equations. GFA handled the 

physico-chemical descriptors effectively in the generation of QSAR models with significant 

statistical terms including external predictivity.  Equation 6 from model C was selected as 

representative equation to explain the variance in the biological activity for present series of PTP 

1B inhibitors. This equation explains about 70% (r2 = 0.694) variance in the biological activity.  

The variables in the equation reveal that electronic, spatial and structural descriptors contribute 

significantly for the biological activity of PTP 1B inhibitors. Two electronic descriptors dipole_X, 

HOMO underlines the importance of electron rich functional groups (oxo-acetic acid, substituted 

oxo-phenyllactic acid, sulfosalicylic acid) and their orientation on biphenyls ring system for PTP 

1B enzyme inhibition. The spatial descriptor diff.vol indicates essential volume of the inhibitors 

required to show better PTP 1B inhibitory activity. This descriptor underlines the importance of 

the benzofuran/benzothiophene biphenyl ring system for the effective binding of inhibitors with 

PTP 1B enzyme. The structural descriptor rotl.bonds indicates the importance of conformational 

rigidity of the compounds required for enzyme inhibition. This QSAR equation agrees with the 

structure activity relationship of present series of PTP 1B inhibitors. The results from the present 

QSAR analysis are presently being used for the design of newer compounds with better PTP 1B 

inhibitory activity.  
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