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Abstract: Holographic Quantitative Structure-Activity Relationship (HQSAR) is an emerging QSAR 

technique with the combined application of molecular hologram, which encoded the frequency of 

occurrence of various molecular fragment types, and the subsequent partial least squares (PLS) regression 

analysis. In this paper, the acute toxicity data to the guppy (poecilia reticulata) for a series of 56 substituted 

benzenes, phenols, aromatic amines and nitro-aromatics were subjected and this resulted in a model with a 

high predictive ability. The influence of fragment size and fragment distinction parameters on the quality of 

HQSAR model was investigated. The robustness and predictive ability of the model were also validated by 

leave-one-out (LOO) cross-validation procedure and external testing data set.  
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Introduction 

It is widely recognized that knowledge on the emissions, environmental fate and acute or chronic 
toxicity of pollutants are basic needs in environmental risk assessment. However, because of time and 
monetary constraints, hazards have been assessed for only a small percentage of these chemical compounds 
(Ren et al., 2002). Increasing concern over the use of animals in toxicity testing, allied to the cost of these 
tests, has made the search for and validation of alternative methods to predict the hazard a priority. In the 
past several decades, quantitative structure-activity relationships (QSARs) have been used widely to practice 
the hazard of untested chemicals with already tested chemicals by developing statistical relationships 
between molecular physicochemical descriptors and biological activity (Kurup, et al., 2001). Most 
promising QSARs were developed and subsequently used as prediction tool, for compounds with same or 
similar mode of toxic action (Mckim et al. 1987; Lipnick, 1989). However, due to the complexity of 
molecular structures of chemicals and the diverse factors involved in the complicated interaction between 
xenobiotics and bio-systems, it is not an easy task to correctly assign a mode of toxic action.  

QSARs are now acknowledged to be in the heart of the long-term task as systematically evaluation of 
existing chemicals (Blum and Speece, 1990). At present, the challenge is to improve the accuracy and 
predictability of QSAR by taking into account the structural and physicochemical features of the tested 
compounds. A comparative molecular field analysis (CoMFA) program is in keeping with the general 
pattern of searching for these new descriptors, where steric and electrostatic fields of tested molecules are 
mapped by probe atom. Since its introduction in the year of 1988, the utility of CoMFA has rapidly been 
demonstrated in a wide range of applications (Briens, et al., 1995; Tong, et al., 1998; Debnath, et al., 1999). 
However, CoMFA requires some knowledge or hypothesis regarding the functionally active conformations 
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of the molecules and molecular superposition as a prerequisite for structural alignment. Moreover, care must 
be exercised when constructing molecular alignments because slight differences in alignment can lead to 
wide variation in the resultant CoMFA model (Agarwal, et al., 1993; Hasegawa, et al., 1999). 

Holographic QSAR (HQSAR) is a newly developed QSAR technique, which relates biological activity 
to structural molecular composition, where molecular composition is described in terms of patterns of 
sub-structural fragments eliminates the need for generation of 3D structure, putative binding conformations, 
and molecular alignment. In HQSAR, each molecule in the database is divided into a set of unique 
overlapping structural fragments and sorted to form a molecular hologram, unlike other fragment-based 
fingerprinting methods, which encodes more information, such as branched and cyclic fragments and 
overlapping fragments as well as stereochemistry, and maintains a count of the number of times about each 
fragment occurs (Park Choo, et al., 2001; Rodrigues, et al., 2002; Cha, et al., 2003). With the combined 
application of molecular hologram and subsequent partial least squares (PLS) regression analysis, highly 
predictive QSARs are developed and validated with cross-validation procedure. No 3D molecular structure 
and molecular alignment are needed for the generation of hologram. With partial least square (PLS) 
regression analysis, the problem of co-linearity among parameters is avoided. In addition the molecular 
descriptors can be created automatically and quickly and avoid the selection and calculation or measurement 
of physicochemical descriptors required by traditional QSAR (Michael, et al., 1999). Thus, it provides 
promising screening tools for large scale of dataset. In the present work, we use the HQSAR technique to 
generate molecular representation and derive QSAR model, aiming to develop robust, highly predictive 
QSAR models for predictive use. 

 

1 Materials and Methods   

1.1 Biological Data 

Toxicity data of a series of 56 benzene derivatives are taken from literature (Verhaar, et al. 1992). The 

chemicals investigated include anilines, phenols, nitro-aromatics, alkyl- and / or chloro- substituted 

benzenes. The toxicological endpoint was defined as the negative logarithmic form of 50% lethal 

concentration (log1/LC50, mmol/l).  

 
1.2 Generation of Molecular Hologram 

The novel molecular hologram representation designed by Tripos Associates as generated by the 

HQSAR package (HQSAR Software ver 1.0, Tripos Associates) is used for HQSAR analysis. Generally 

HQSAR analysis includes three main steps: (1) the generation of the sub-structural fragments for each 

molecule in the dataset, (2) the encoding of these fragments in holograms, and (3) the correlation of the 

structure with activity/property. 

A molecular hologram is generated in much the same way as fingerprints generated by UNITY 

(UNITY Reference Manual, Tripos Inc.: St. Louis, MO, 1995) except for a major difference. Within UNITY, 

each corresponding fragment is mapped to a pseudo-random integer in the 0 to 231 using the CRC (cyclic 

redundancy check) algorithm. The integer generated by the CRC algorithm is unique and reproducible for 

each unique SLN (SYBYL Line Notation) string (Ash, et al., 1997). Then the hashing occurs by folding the 

pseudo-random integer for a particular SLN string into the bin range defined. A molecular hologram retains 

a count of the number of times each bin is set rather than using a binary bit string containing either 0 or 1 in 
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each bin. As a result, a molecular hologram is presented as a string of integers, just as follows: 

Hashed fingerprints    0  0   1   1   0   0   0   1   1    1    1   0   0   0   0  

Molecular hologram   0  0   6   18   0   0   0   12  5   14   42   0   0   0   0 

In the above example, the chemical structure contains 97 (6+18+12+5+14+42) fragments, which are hashed 

into the occupied bins as shown. 

 
1.3 HQSAR Building and Regression Method 

All molecular modeling and statistical analyses were performed on SGI INDIG O2 workstations using 

SYBYL 6.7 molecular modeling software (Tripos Inc.2001).  The 2D molecular structures of all 

investigated benzene derivatives were built by using the sketch option and then energy minimized with 

Tripos standard force field and Gasteiger-Huckel charge, with a 0.01 kcal mol-1
 energy gradient convergence 

criterion. 

HQSAR models were done using the following options: Fragment size: the molecular hologram 

generation was carried out for several fragment length size ranges, including 1─1, 1─3, 3─5, 3─10 and the 

default 4─7. Hologram length: 6 predetermined prime numbers from 97 to 353. Fragment distinction: 

atomic numbers (A), bond types (B), and atomic connections(C). According to the quality of the models, 

firstly we determined the better range of fragment size range and hologram length, then the molecular 

hologram generation for the better size range of fragment was processed, detailed additional description of 

parameters was considered, including other prime numbers for hologram length, donor and acceptor atoms 

(D) and inclusion of hydrogen atoms (H) for fragment distinction.  

In order to get a predictive statistical model, the method of partial least squares (PLS) is used to 

construct the correlation between biological activities and molecular hologram. The PLS algorithm is 

initially used with the leave-one-out (LOO) cross-validation option to establish the optimal number of 

components needed for the analysis. In the leave-one-out cross-validation, each compound is systematically 

excluded from the dataset, and its biological activity is predicted by the model based the rest of tested 

compounds. This process determines the number of optimal components corresponding to the smallest 

standards error of prediction. Using the number of optimal components, the final PLS analysis is carried out 

with non-cross-validation to generate a predictive QSAR model with a conventional coefficient r2. In this 

study, a cross-validated q2 and a standard error of prediction (S.E.P), non-cross-validated r2, and a standard 

error of estimate (S.E.) were used for the model performance characterization. 

 

2 Results and Discussion 

2.1 HQSAR model building 

Toxicity data of 56 benzene derivatives were listed in Table 1. We selected the hologram length from 

the predetermined prime numbers: 97, 151, 199, 257, 307, 353. Fragment distinction factors include atomic 

numbers (A), bond types (B), and atomic connections (C). An initial HQSAR runs using 10 components 

Table 1 Acute toxicity (log 1/LC50, mmol) of 56 benzene derivatives to the guppy and 
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calculated /cross-validation predicted toxicity by HQSAR model 

log 1/LC50 (mmol) log 1/LC50(mmol) 
 HQSAR  HQSAR chemicals 

Obser. Cal. Pred.

chemicals 

Obser. Cal. Pred.
0.57 0.47 0.54 1.59 1.54 1.52 1,2,3,4-tetrachlorobenzene

1,2,3,5-tetrachlorobenzene 0.57 0.63 0.69 1.50 1.41 1.39 
1,2,3-trichlorobenzene 1.11 1.05 1.08 1.79 1.89 1.97 
1,2,4-trichlorobenzene 1.12 1.12 1.14 1.38 1.31 1.64 
1,2-dichlorobenzene 1.60 1.72 1.78 1.47 1.60 1.67 
1,3,5-trichlorobenzene 1.26 1.32 1.31 1.22 1.19 1.15 
1,3-dichlorobenzene 1.70 1.74 1.75 2.02 2.17 2.20 
1,4-dichlorobenzene 1.43 1.38 1.47 1.99 2.14 2.17 
2,3,4,5-tetrachloroaniline 0.19 0.17 0.30 1.70 1.82 1.87 
2,3,4-trichloroaniline 0.85 0.81 0.88 2.16 1.98 1.93 
2,3-dichloronitrobenzene 1.34 1.26 1.29 2.35 2.49 2.51 
2,3-dimethylnitrobenzene 1.61 1.67 1.80 

3,4-dichloroaniline 
3,4-dichlorotoluene 
3,4-dimethylnitrobenzene
3,5-dichloroaniline 
3,5-dichloronitrobenzene
3,5-dichlorophenol 
3-chloroaniline 
3-chloronitrobenzene 
3-chlorophenol 
3-chlorotoluene 
3-ethylaniline 
3-methylaniline 2.53 2.37 2.32 

2,4,5-trichloroaniline 1.00 0.97 0.85 3-nitroaniline 2.57 2.5 2.44 
2,4,5-trichlorotoluene 0.94 1.09 1.10 3-nitrotoluene 2.34 2.37 2.36 
2,4-dichloroaniline 1.59 1.53 1.51 4-chloroaniline 2.31 2.06 1.95 
2,4-dichloronitrobenzene 1.54 1.49 1.45 4-chloro-2-nitrotoluene 1.56 1.61 1.66 
2,4-dichlorophenol 1.41 1.24 1.20 4-chloronitrobenzene 1.58 1.80 1.93 
2,4-dichlorotoluene 1.46 1.47 1.48 4-chlorotoluene 1.67 1.72 1.78 
2,5-dichloroaniline 1.01 1.20 1.36 4-ethylaniline 2.38 2.43 2.37 
2,5-dichloronitrobenzene 1.41 1.36 1.35 4-methylaniline 2.00 2.41 2.54 
2-chloroaniline 1.69 2.09 2.25 4-nitroaniline 2.59 2.48 2.35 
2-chloro-6-nitrotoluene 1.48 1.43 1.49 4-nitrotoluene 2.43 2.14 1.99 
2-chloronitrobenzene 2.28 2.07 1.96 aniline 3.13 3.03 2.89 
2-chlorophenol 1.94 1.86 1.82 benzene 2.91 2.98 2.62 
2-ethylaniline 2.79 2.61 2.34 monochlorobenzene 2.23 2.27 2.28 
2-methylaniline 2.88 2.55 2.31 nitrobenzene 2.70 2.79 2.76 
2-nitroaniline 1.85 2.08 2.27 phenol 2.50 2.55 2.47 
2-nitrotoluene 2.38 2.33 2.28 toluene 2.87 2.74 2.64 
Obs.=observed log 1/LC50 to guppy of benzene derivatives  
HQSAR_ cal..= calculated log 1/LC50 to guppy of benzene derivatives by no cross-validated analysis 

HQSAR_pred.= predicted log 1/LC50 to guppy of benzene derivatives by cross-validation analysis 

 

and leave-one-out cross-validation to determine the number of optimal components, then using the 

determined number of optimal component runs no-cross-validation procedure to yield the r2 and standard 

error of estimate (S.E.). The results of HQSAR analyses are summarized in Table 2. According to the quality 

of the models based on the lowest standard error associated with the cross-validation analysis, the optimal 

model with a fragment size 3─5 from a best hologram length of 199 with 4 components was obtained. The 

cross-validated q2 was 0.851 and the standard error was 0.263. The final (non-cross-validated) r2 was 0.930 

and the standard error was 0.180. Then for the better fragment size range 3─5 of fragment, detailed fragment 
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size of the molecular hologram generation was processed, another 6 predetermined prime numbers and other 

prime numbers near 199 for Hologram length were input for HQSAR analyses. Through these calculations 

the optimal model with a fragment size 4─5 from a best hologram length of 199 with 3 components was 

achieved. The cross-validated q2 was 0.868 and the standard error was 0.246. The final (non-cross-validated) 

r2 was 0.932 and the standard error was 0.176. At last additional description of fragment distinction 

parameters: donor and acceptor atoms (D) and inclusion of hydrogen atoms (H) was considered. The results 

denoted inclusion of donor and acceptor atoms (D) improved the quality, the most promising model was 

obtained with a fragment size 4─5 from a best hologram length of 199 with 4 components. The 

cross-validated q2 was 0.878 and the standard error was 0.238. The final (non-cross-validated) r2 was 0.951 

and the standard error was 0.151. However inclusion of hydrogen atom (H) degraded the quality of HQSAR 

model, resulting in a model with a fragment size 4─5 from a best hologram length of 199 with 5 components. 

The cross-validated q2 was 0.860 and the standard error was 0.257. The final (non-cross-validated) r2 was 

0.953 and the standard error was 0.149. 

 

Table 2  Result of HQSAR for toxicity to guppy of 56 benzene derivatives 

fragment 
size 

hologram 
length 

r2 S.E. q2 S.E.p components 
fragment 

distinction 

1─1 257 0.861 0.247 0.848 0.258 1 A,B,C 
1─3 97 0.866 0.242 0.847 0.259 1 A,B,C 
3─5 199 0.930 0.180 0.851 0.263 4 A,B,C 
4─7 199 0.955 0.144 0.836 0.276 4 A,B,C 

3─10 151 0.961 0.136 0.802 0.306 5 A,B,C 
2─5 199 0.931 0.179 0.859 0.255 4 A,B,C 
3─5 71 0.953 0.151 0.866 0.254 4 A,B,C 
4─5 199 0.932 0.176 0.868 0.246 3 A,B,C 
4─7 199 0.955 0.144 0.836 0.276 4 A,B,C 
5─5 71 0.952 0.151 0.851 0.265 5 A,B,C 

3─5 199 0.945 0.160 0.865 0.250 4 A,B,C,D 
4─5 199 0.951 0.151 0.878 0.238 4 A,B,C,D 
4─5 199 0.953 0.149 0.860 0.257 5 A,B,C,D,H 

r2= square of correlation coefficient, S.E.= standard error of estimation. 
q2=leave-one-out cross-validated r2, S.E.p = leave-one-out cross-validated standard error of 
prediction. Components = the number of optimal components to derive the HQSAR model. 
A=atomic numbers B=bond types C=atomic connections D=donor and acceptor atoms H=inclusion 
of hydrogen atoms  

 

As a result, the model with a fragment size of 4─5 resulted from a hologram length of 199 with 4 

components was the best model. HQSAR method yielded high r2 value (0.951) and reasonably high cross 

validation value q2 (0.878) for the fitting of all 56 compounds. A plot of calculated vs. observed toxicity (a) 

and cross-validation predicted vs. observed toxicity (b) by the final model is shown in Fig.1. Fragment size 
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parameters control the minimum and maximum length of fragments to be included in the hologram 

fingerprint. As mentioned previously, molecular holograms are formed by the generation of all linear, 

branched, overlapping fragments between M and N atoms in size. The parameters M and N can be changed 

to include smaller or larger fragments in the holograms. Perhaps default fragment lengths of M=4 and N=7 

can’t produce the optimal HQSAR model. The HQSAR results for several different sizes indicated either q2 

or r2 is sensitive to fragment size, and changing the default parameters such as fragment size, molecular 

hologram length, and fragment distinction factors will improve the quality of generated QSAR models based 

on molecular hologram. The inclusion of donor and acceptor atoms (D) for fragment distinction had slight 

effects on the quality of the HQSAR models, while inclusion of hydrogen atom (H) even lowered the quality 

of HQSAR model.  
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           (a)                                      (b) 
Fig.1 Scatter plot of calculated values (a) and cross-validation predicted values (b) from HQSAR 

analysis versus Observed log 1/LC50 value of 56 benzene derivatives to guppy 
 

2.2 Predictions for test set 

Perhaps a more convincing test is to use the HQSAR models to predict the values of a biological 

activity for an entirely new set of compounds, and to examine how well these predictions compare with 

experimental values. As an effort to examine the prediction of the HQSAR models for acute aquatic toxicity 

to guppy based on the molecular holograms and PLS technique, 16 compounds were excluded randomly 

from data set and acted as a testing set. These 16 compounds were shown in Table 3. The data set containing 

the rest 40 compounds was employed as the training set. HQSAR_PLS analyses were re-performed to derive 

a HQSAR model based on the training set. The derived HQSAR models were then used to predict the values 

of the chemicals of the testing sets. It can be inspected that the model quality of the HQSAR model based on 

the training set was almost identical to that of the HQSAR model based on the whole data set for acute 

toxicity to the guppy investigated. The model with a fragment size of 4─5 resulted from a hologram length 

of 199 with 4 components was developed. The cross-validated q2 was 0.865 and the standard error was 0.236. 

The final (non-cross-validated) r2 was 0.940 and the standard error was 0.201. The results predicted from 
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HQSAR model for the test compounds are shown in Table 3. A comparison of the predicted values from the 

training set HQSAR model with the experimental acute toxicity to the guppy of the testing set shows that 

they are very close. Statistical characteristics of the model are the following: n=16, r2=0.849, S.E.=0.225, 

F=78.181, p<0.0001.The differences between predicted values and the experimental acute toxicity to the 

guppy were listed in Table 3. The residuals of 16 test compounds are very low. The results confirmed the 

excellent prediction and the robustness of the QSAR models derived from molecular holograms and PLS 

analysis.  

 

Table3. Observed toxicity to guppy and Prediction from HQSAR model for the testing set 

Log 1/LC50(mmol) Log 1/LC50(mmol) 
 HQSAR  HQSAR chemicals 

Obser. pred. residual

chemicals 

Obser. pred. residual
1.11 1.22 -0.11 2-methylaniline 2.88 2.41 0.57 1,2,3-Trichlorobenzene 

1,2-Dichlorobenzene 1.60 1.76 -0.16 3,4-Dichloroaniline 1.59 1.46 0.13 
1,4-Dichlorobenzene 1.43 1.62 -0.19 3,5-Dichloroaniline 1.38 1.82 -0.44 
2,3-Dichloronitrobenzene 1.34 1.37 -0.03 3-chloroaniline 2.02 2.24 -0.22 
2,4,5-Trichlorotoluene 0.94 0.82 0.12 3-chlorotoluene 2.16 2.07 0.09 
2,4-Dichlorophenol 1.41 1.19 0.22 3-nitroaniline 2.57 2.47 0.10 
2,5-Dichloronitrobenzene 1.41 1.33 0.08 4-chloro-2-nitrotoluene 1.56 1.62 -0.06 
2-chloronitrobenzene 2.28 2.01 0.27 4-ethylaniline 2.38 2.30 0.08 

HQSAR_pred = predicted acute toxicity (log 1/LC50) to guppy of benzene derivatives by HQSAR model.  
Residul = Observ.�Pred. 
 

3 Conclusion 
In this paper, the newly developed QSAR method based on the molecular hologram was employed to 

predict acute toxicity of benzene derivatives to guppy. The results showed this new HQSAR approach 

present highly predictive models for aquatic toxicity of pollutants. The Predicted acute aquatic toxicity to the 

guppy (poecilia reticulata) for benzene derivatives is very close to the experimental values. Furthermore, 

based on molecular hologram, alignment-free QSAR models could be rapidly and easily developed with 

highly statistical significance and predictive ability, so HQSAR technique provides promising tool for the 

screening and prediction of large datasets of contaminants or pollutants. 
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