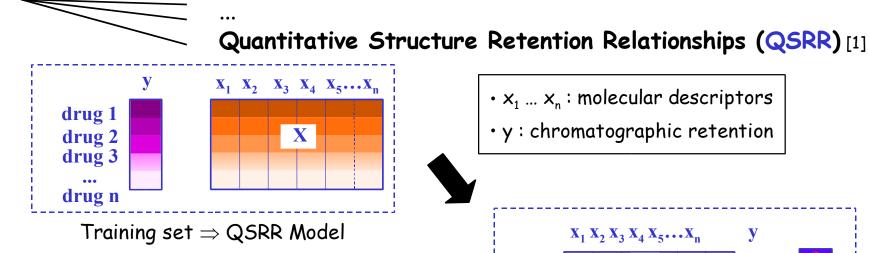


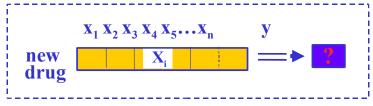
An application of Multi-variate adaptive regression splines (MARS) in QSRR

R. Put*, D.L. Massart, Y. Vander Heyden

Dept. of Pharmaceutical and Biomedical analysis,
Pharmaceutical Institute,
Vrije Universiteit Brussel,
Laarbeeklaan 103, B-1090 Brussel


* E-mail: <u>rafput@vub.ac.be</u>

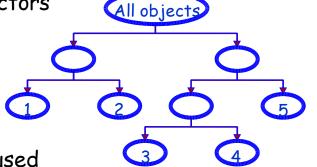
This poster can be downloaded at: http://put.be.tf/


Internet Electronic Conference of Molecular Design 2003

Introduction

Retention prediction for High Performance Liquid Chromatography

- $\cdot x_1 \dots x_n$: molecular descriptors
- · y: chromatographic retention



Predict y for new molecules

- Which Molecular descriptors to include in the QSRR-model?
 - selection based on chromatographical knowledge (log P,...)
 - selection of the "best" descriptors
 - feature selection techniques (Genetic Algorithms,...)
 - during the model building (CART, MARS,...)
- Aim: study the use of MARS (and CART for feature selection) in a QSRR context

CART [2]

- Goal: modeling the response variable, using independent predictors
- Splits: Defined by 1 predictor
 - Additional primary splits
 - \Rightarrow most important predictors
 - Surrogate splits
 - \Rightarrow used for missing values of the predictors used

- Result: set of predictors is selected in the model
 - Classes with low, intermediate and high response values
 - Mean of the responses within each class = predicted value for new objects

MARS [3]

- Multivariate non-parametric adaptive regression procedure
- Global MARS model: weighted sum of all local models:

$$\hat{f}_M(\mathbf{x}) = a_0 + \sum_{m=1}^M a_m B_m(\mathbf{x})$$

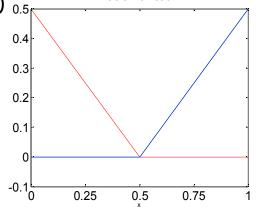
 a_0 : coefficient (constant basis function)

 $B_{\rm m}(\mathbf{x})$: mth basis function

 $a_{\rm m}$: coefficient of the basis function

M: number of basis functions included

MARS


3 steps in the model building:

Constructive phase

- Similar to recursive partitioning (CART)
- Introduces local models in several (overlapping) regions of the space of possible predictors:
 - \Rightarrow defined as basis functions = |- one single spline function
 - the product of 2 (or more) splines (interaction different predictors) 0.5

$$(x-t_0)_+ = \begin{cases} (x-t_0), & \text{if } x > t_0 \\ 0, & \text{otherwise} \end{cases}$$

- Splines
$$(x-t_0)_+ = \left\{ \begin{array}{l} (x-t_0) \text{ , if } x > t_0, \\ 0, \text{ otherwise} \end{array} \right.$$

$$(t_0-x)_+ = \left\{ \begin{array}{l} (t_0-x) \text{ , if } x < t_0, \\ 0, \text{ otherwise} \end{array} \right.$$

Basis Function

- ⇒ Overfitted MARS model

- \rightarrow Sequence of smaller and smaller MARS models

Pruning phase

- Backward elemination procedure: some basis functions are deleted
$$GCV(M) = \frac{1}{n} \frac{\sum_{m=1}^{n} (y_i - \hat{f}_M(\mathbf{x}_i))^2}{(1 - C(M)/n)^2}$$

- The generalized cross validation criterion is used:

- Sequence of smaller and smaller MARS models

 $C(M) = M + dc$

$$C(M) = M + dc$$

M: number of terms
c: number of nonlinear terms
 $d = 2$

- Selection of the optimal model
 - Using cross-validation (CV) (default: Leave-1-out) or an independent test set

Molecular Representations

- For all molecules the geometrical structure was optimized using Hyperchem 6.03 Professional software (Hypercube, Gainesville, Florida, USA).
 - The Polak-Ribiere conjugate gradient algorithm was used for the geometry optimization with a RMS gradient of 0.05 Kcal / (Å mol) as stop criterion.
 - Energy minimization was done with the Molecular Mechanics Force Field method (MM+).
- The Cartesian coordinates matrix of the positions of the atoms in the molecule, and which is resulting from these 3D representations were used for the calculation of the molecular descriptors [4] using the Dragon 1.1 software of Todeschini et al. [5] (http://www.disat.unimib.it/chm/Dragon.htm)
- A selection of the molecular descriptors was made, in a way that only OD, 1D, 2D and experimental descriptors were used, derived from the above-mentioned representation. The following groups of descriptors, as defined in Dragon 1.1, were calculated: 56 constitutional descriptors, 69 topological descriptors, 20 molecular walk counts, 21 Galvez topological charge indices, 96 2D autocorrelations and 3 empirical descriptors.
- Additional log P values were obtained from Detroyer et al. using LOGKOW [6] (http://esc.syrres.com/interkow/kowdemo.htm)

Methodology

Data

83 basic drugs <u>Chromatographic retention</u>: $\log k_w$ on Unisphere PBD column (polybutadiene-coated alumina) at pH 11.7 using isocratic elutions [4]

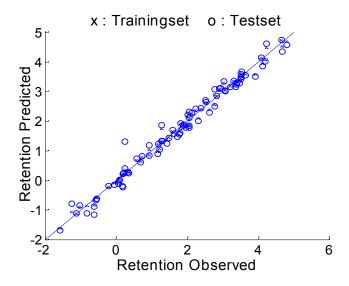
266 molecular descriptors [5]:

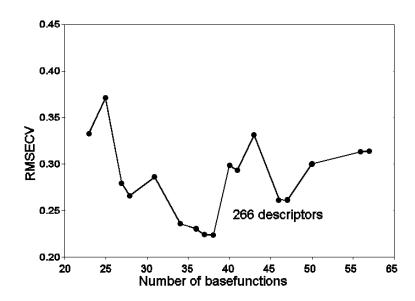
- log P values : LOGKOW (Detroyer et al.) [6]
- by Dragon 1.1 [7] based on 3D representations optimized in Hyperchem 6.03 (MM+, Polak-Ribière)
- CART: decision trees were build using the TreePlus module [8] for S+2000
 - MARS: an in-house algorithm based on the original MARS method was used in the Matlab 5.3 environment. (Pruning: GCV was alternated with 20-fold CV)
 - Model selection using leave-one-out CV (default) and Monte Carlo CV (MCCV)

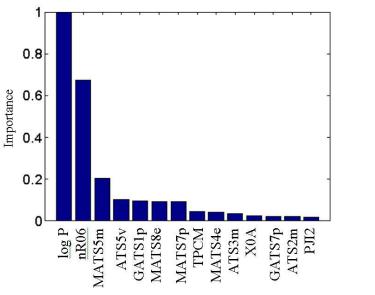
MCCV 1) randomly data (n) Testset (
$$n_v$$
)

[9] 2) calculate RMSECV

Calibration set (n_c)

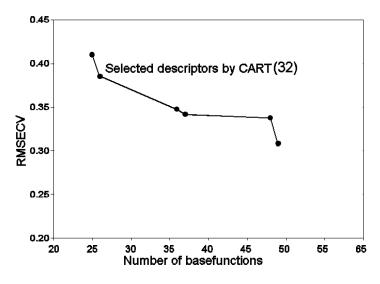

$$PRESS = \sum (y_{predicted} - y_{observed})^2$$
3) repeat this N times (N=n²)

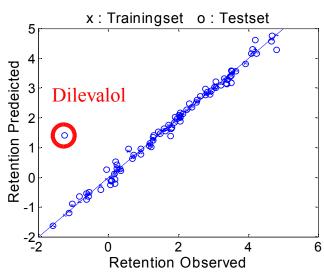

Results & Discussion [10,11]

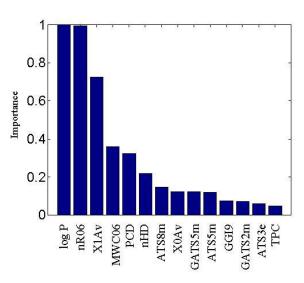

MARS leave-1-out CV

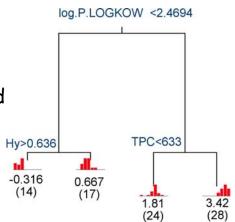
Optimal model :

- 34 basis functions
- RMSE $CV_{(leave-1-out)} = 0.2358$


Results & Discussion


CART + MARS leave-1-out CV

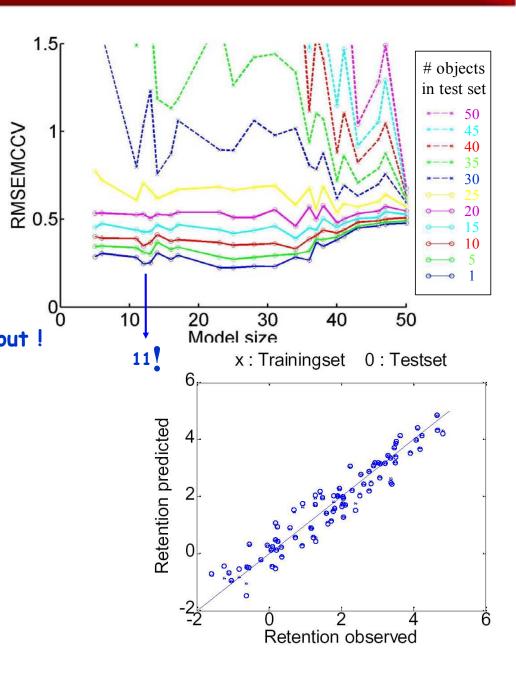

- CART: model with 4 leaves -- 3 splits -- 32 molecular descriptors selected
 (3 + primary + surrogate splits)
- Optimal (?!) MARS model:
 - 49 basis functions (very complex)
 - RMSECV = 0.3373 (leave-1-out CV)
 - !! Dilevalol : very bad prediction


OVERFITTING??

=> Investigate with MCCV

Results & Discussion

MARS Monte Carlo CV


Influence of the CV test set size:

Conclusions:

- Default testset size (50% of objects)
 (~42 objects) may be too large!
- Optimal model size = 11<<< Leave-1-out!

- 11 basis functions
- RMSECV_{leave-1-out CV} = 0.4766

Conclusions

- The MARS methodology shows potential in a QSRR context
 - overall good predictions
 - molecular descriptors used in the model are interpretable

leave-1-out CV may lead to overfitted MARS models

CART can be used for feature selection prior to MARS

- [1] R. Kaliszan, Quantitative Structure-Chromatographic Retention Relationships. Wiley-Interscience, New York, NY, 1987.
- [2] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression trees, Monterey, 1984
- [3] J. H. Friedman, Multivariate adaptive regression splines, Annals of Statistics 19 (1991) 1-141
- [4] A. Nasal, A. Bucinski, L. Bober, R. Kaliszan, Int. J. Pharm. 159 (1997) 43-55
- [5] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000
- [6] A. Detroyer, V. Schoonjans, F. Questier, Y. Vander Heyden, A.P. Borosy, Q. Guo, D.L. Massart, J. Chromatogr. A, 897 (2000) 23-36
- [7] R. Todeschini, V. Consonni, Dragon software version 1.1, http://www.disat.unimib.it/chm/Dragon.htm
- [8] G. De'Ath. New statistical methods for modeling species-environment relationships, Ph.D. Thesis. James Cook University, Townsville, Australia, 1999
- [9] Picard, R. R.; Cook, R. D. J. Amer. Statist. Assoc. 1984, 79, 575-583
- [10] R. Put , C. Perrin , F. Questier , D. Coomans , D.L. Massart , Y. Vander Heyden, J . Chromatogr . A 988 (2003) 261–276
- [11] Multivariate adaptive regression splines in chromatographic quantitative structure-retention studies, R. Put, Q.S. Xu, D.L. Massart and Y. Vander Heyden, In preparation