
Internet Electronic Journal of Molecular Design 2003, 2, 000–000
BioChem Press http://www.biochempress.com

Copyright © 2003 BioChem Press

An Ant Colony Optimization Classifier System for Bacterial
Growth

P.S. Shelokar, V. K. Jayaraman, B.D. Kulkarni*
Chemical Engineering & Process Development Division, National Chemical Laboratory, Pune

411008, India.

Received xxx; Preprint published xxx; Accepted xxx ; Published xxx

Internet Electron. J. Mol. Des. 2003, 1, 000–000
Abstract

Motivation. Ant colony optimization is one of the most recent nature-inspired metaheuristics. The algorithm
mimics cooperative foraging behavior of real life ants, has already exhibited superior performance in solving
combinatorial optimization problems. In this work, we have explored the searching capabilities of this
metaheuristic for learning classification rules in bacterial growth/no growth data pertaining to pathogenic
Escherichia coli R31.
Method. The algorithm iteratively discovers a set of classification rules for a given dataset. At any iteration
level, each one of the software ants develops trial rules and a rule with highest value of quality measure is
denoted as a discovered rule, which represents information extracted from the training set. The cases correctly
covered by the discovered rule are removed from the training dataset, and another iteration is started. Guided by
the modified pheromone matrix, the agents build improved rules and the process is repeated for as many
iterations as necessary to find rules covering almost all cases in the training set.
Results. The capability of the ACO algorithm is gauged by considering two real world datasets. The
performance of ACO algorithm is compared with the performance of tree based C4.5 algorithm with respect to
the predictive accuracy and the simplicity of discovered rules. In both these performance indices ACO algorithm
compares very well with C 4.5.
Conclusions. The results obtained on two real life data sets indicate that the algorithm is competitive and can be
considered a very useful tool for knowledge discovery in a given database.
Keywords. ACO, Metaheuristic, Optimization, Classification, Escherichia coli, C4.5.

Abbreviations and notations
ACO, Ant colony optimization
FEBANN, Feedforward error backpropagation artificial neural
network

LLR, Linear logistic regression
NLLR, Nonlinear logistic regression
PNN, Probabilistic neural network

1 INTRODUCTION

Classification tasks form an important set of problems in many fields including chemistry [1, 2],
microbiology [3,4], molecular biology [5], process engineering [6] etc. and a number of methods
such as decision tree based [7], neural networks [8] and rule based [1, 6, 9] techniques have been
applied to tackle these types of problems.

The present paper describes the application of an ant colony optimization metaheuristic as a rule
based machine learning technique to discover classification rules in bacterial growth/no growth data
pertaining to pathogenic Escherichia coli R31. Recently Dorigo and coworkers developed a

* Correspondence author; phone: 91-020-589-3095; fax: 91-020-589-3041; E-mail: bdk@ems.ncl.res.in

Internet Electronic Journal of Molecular Design 2003, 2, 000–000

1
BioChem Press http://www.biochempress.com

metaheuristic known as ant colony optimization to solve combinatorial optimization problems [10].
The ant algorithms mimic the techniques employed by real ants to rapidly establish the shortest
route from food source to their nest and vice-versa. Ants start searching the area surrounding their
nest in a random manner. When an isolated ant comes across some food source in its random
sojourn, it deposits certain quantity of pheromone on that location. Other randomly moving ants in
the neighborhood can detect this marked pheromone trail. Further, they follow this trail with a very
high degree of probability and simultaneously enhance the trail by depositing their own pheromone.
It is this auto catalytic process characterized by positive feedback mechanism that helps the ants to
establish the shortest route.

The proposed ACO algorithm for generation of classification rules is also based on the indirect
communication capabilities of the ants. Software ants are deputed to generate rules by using
heuristic information and by using the principle of indirect pheromone communication capabilities
for iterative improvement of rules. At every iteration, the algorithm obtains rules constructed by all
ants and a rule with highest prediction quality is denoted as a discovered rule, which represents
information extracted from the database. The cases (objects) correctly covered by the discovered
rule are removed from the training set, and another iteration is started. This process is repeated for
as many iterations as necessary to find rules covering almost all cases in the training set. At this
point, the procedure discovers several rules that can be applied to future problems or can become a
part of an expert system.

To evaluate the performance of the ACO algorithm, it is implemented on the two real world
datasets, viz, bacterial growth/no growth data pertaining to pathogenic Escherichia coli R31, and
promoter gene sequences (DNA) of a bacteria with associated imperfect domain theory pertaining
to the Escherichia coli. The performance of the ACO algorithm is compared with the performance
of tree based C4.5 algorithm with respect to the predictive accuracy and the simplicity of discovered
rules.

2 MATERIALS AND METHODS

2.1 Method
The present ACO algorithm handles categorical attributes to learn rules hence continuous

attributes need to be discretized. This can be readily done by using any of the several discretization
methods available in the literature [11]. The simplest discretization technique is to divide each
attribute into equal length. We have used the C4.5-Disc discretization algorithm given in Kohavi
and Sahami [12]. This algorithm uses the C4.5 algorithm for discretizing continuous attributes. To
explain the algorithm details, a sample training dataset is considered as an illustrative example. It is
given both in continuous and discretized form as shown in Table 1.

Internet Electronic Journal of Molecular Design 2002, 1, 000–000

2
BioChem Press http://www.biochempress.com

Table 1. Illustrative training dataset to describe steps in the ACO algorithm for rules discovery.

 Dataset (cases, N=11; attributes, n=2)

Case No 1 2 3 4 5 6 7 8 9 10 11

A1 85 80 70 65 64 70 69 75 75 71 68

C
on

tin
uo

us

da
ta

A2 85 90 96 83 65 95 70 79 70 80 79

A1 D12 D12 D11 D11 D11 D11 D11 D12 D12 D12 D11

D
is

cr
et

iz
ed

da

ta

A2 D22 D22 D22 D22 D21 D22 D21 D21 D21 D22 D21

Class 1 1 2 1 2 1 2 2 2 1 2

For discretizing the continuous attributes of the training set, the ranges of the domains of each
attribute were obtained as: for attribute, A1: {D11 = A1 ≤ 70, D12 = A1>70} and for attribute A2: {D21
= A2 ≤ 79, D22 = A2 >79}.

The ACO algorithm for discovery of an optimal set of classification rules in a given dataset is
based on a pheromone meditated cooperative search capabilities of ants. Solutions generated by the
software ants or agents are in the form of rules. The structure of the rule is: IF <antecedent> THEN
<consequent>. The <antecedent> part of the rule contains the terms Tij using the logical operator,
AND. The term Tij is of the form Ai=Dij, where Ai is the ith attribute and Dij is the jth value of the
domain of Ai. The <consequent> part of the rule is the predicted class that maximizes the quality of
rule. For example, consider one of the rules given in Table 2 as: IF A1=D12 AND A2=D22 THEN C1.

Table 2. A set of classification rules discovered by the ACO algorithm for illustrative dataset given
in Table 1.

Rule: IF <antecedent> THEN <consequent>

Rule no. Antecedent consequent (predicted class)

α1 A1 = D12 AND A2 = D22 C1

α2 A2 = D21 AND A1 = D11 C2

α3 A1 = D11 AND A2 = D22 C1

α4 Default Rule C2

Internet Electronic Journal of Molecular Design 2003, 2, 000–000

3
BioChem Press http://www.biochempress.com

The algorithm considers R agents to build rules. An agent starts with an empty rule i.e. rule with no
term in its antecedent, and generates an antecedent of the rule by adding one term at a time in its
current partial rule. For illustration, consider an antecedent part of the first rule α1 shown in Table 2
as:

antecedent : A1=D12 AND A2=D22

This current partial rule covers three cases (1,2 and 10) in the dataset shown in Table 1. To
construct a rule, the agent uses a problem dependent information and pheromone trail
communication matrix. At the start of the algorithm, the pheromone matrix τ is initialized to some
small value, 0τ . The trail value, ijτ at location (i, j) represents the pheromone concentration of
term, Tij. The pheromone trail matrix evolves as we iterate. At any iteration level, each one of the
agents or software ants develops such trial rules and a rule with highest value of quality measure is
denoted as a discovered rule, which represents information extracted from the training set. The
cases correctly covered by the discovered rule are removed from the training dataset, and another
iteration is started. Guided by the modified pheromone matrix, the agents build improved rules and
the process is repeated for as many iterations as necessary to find rules covering almost all cases in
the training set.

2.1.1 Algorithm details

As explained earlier, ants start with empty rules and in the first iteration, the elements of the
pheromone matrix are initialized to the same values. With the progress of iterations, the pheromone
matrix is updated depending upon the quality of rules produced. Let us consider for the purpose of
illustration, a training dataset containing N=11 cases defined by n=2 attributes as shown in Table 1.
To generate a set of classification rules, R=10 agents are deputed. We now proceed to describe the
progress of current iteration, t with a view to providing a clear picture of the algorithm details. The
agents build their rules by applying the information provided by the pheromone matrix updated at
the end of iteration, t-1 and available heuristic information. To construct a current partial rule, the
agent selects term Tij with certain probability given as:

()

()
Ii,

.t

.t
P

n

k

d

l
klkl

ijij
ij k

∈∀=

∑∑
= =1 1

ητ

ητ

(1)

where, Pij is a normalized probability of choosing term Tij. n is the number of attributes defining an
example in a dataset. di is the number of values on the domain of attribute Ai. I is the list of
attributes not yet used by the agent. ijη is the value of problem dependent heuristic function for term
Tij. ijη is a measure of the predictive power of term Tij. The higher value of ijη for the term Tij
indicates its high relevance of being part of the classification rule and hence likely to be selected
with greater probability. The heuristic function considered in this study can be given as [13]:

Internet Electronic Journal of Molecular Design 2002, 1, 000–000

4
BioChem Press http://www.biochempress.com

()() ()()()∑
=

=•=−=
C

c
ijiijiij DA|cPDA|cPT

1
2loginfo (2)

where, infoTij is a measure of the quality of term Tij with respect to its ability to improve the
predictive accuracy of rule. c is the class attribute. C is the number of classes. P(cAi = Dij) is the
empirical probability of observing class c conditional on having observed Ai = Dij. The amount of
information obtained by equation (2) is normalized in the range 0 ≤ infoTij ≤ log2(C) to facilitate the
use of equation (1). The equation used to normalize infoTij is given as follows:

()

()∑∑
= =

−

−
=

n

i

d

j
ij

ij
ij i

TC

TC

1 1
2

2

infolog

infolog
η

(3)

Consider the calculation of ijη value for term T22 i.e. A2=D22. It covers total six cases (five belong to
class one and one is from class two) in the dataset shown Table 1. The value of infoTij measure for
term T22 using the equation (2) is 0.6500. Similarly, for other values of the domain of attributes,
infoTij can be given as:

 infoTij

i/j 1 2

1 0.9183 0.971

2 0.0 0.6500

Using the equation (3) heuristic information ijη for all the terms can be computed as:

 ijη

i/j 1 2

1 0.0559 0.0199

2 0.6846 0.2396

Let us consider the pheromone trail matrix at the start of current iteration t as:

 τij

i/j 1 2

1 0.0148 0.0153

2 0.0199 0.0120

From the estimates of predictive power ijη and the current values of the pheromone trail τij the
normalized probability of a term Tij can be computed by using equation (1). To illustrate how an
agent chooses a term to add in the current partial rule by equation (1), consider the agent has started
with empty rule and is developing the antecedent of rule same as the rule α2 shown in Table 2. To

Internet Electronic Journal of Molecular Design 2003, 2, 000–000

5
BioChem Press http://www.biochempress.com

select a term, normalized probabilities for all the terms Tij can be computed using the above values
of ijη and τij by equation (1) as: 0.0454, 0.0170, 0.7714, and 0.1645. Draw a random number r in
the range (0,1) using uniform distribution. Thus, if r is less than 0.0454 then the term T11 is chosen.
If r lies between 0.0454-0.0624 then term T12 is preferred. If it is in the range 0.0624-0.7884 then
term T21 is selected and if it is greater than 0.7884 then term T22 is chosen. Suppose the random
number generated is r=0.4546. It lies in the range 0.0624-0.7884 hence term T21 i.e. A2=D21 is
chosen. The algorithm can add the chosen term (say, T21) in the current partial rule if the following
conditions are satisfied: (i) it covers the minimum number of cases in the training set defined a
priori, min_cover_cases (for illustrative example, min_cover_cases =3), and (ii) the attribute (say,
A2) is not already been used by the agent. Similarly, the agent selects the term T11 and checks its
feasibility with the two above-mentioned conditions. Both the terms T21 and T11 as individual and
when combined (T21 AND T11) cover the number of cases in the training dataset greater than or
equal to min_cover_cases. The developed antecedent part by an agent using the above formalism is
depicted in the current partial rule α2 in Table 2. The ACO algorithm chooses the consequent (i.e.
predicted class) for the antecedent of the rule α2 that maximizes the quality of the rule. This is done
by assigning to the rule consequent the majority class among the cases covered by the antecedent of
the rule. Consider the antecedent of the rule α2, and it is clear from Table 1 that it covers the cases
5,7, and 11. All these covered cases belong to class two hence, the rule consequent of the rule α2 is
class two, C2. The quality of the constructed rule is calculated as [14]:

TNFP
TNx

FNTP
TPQ

++
= (4)

where, TP is the number of cases covered by the rule that have the class predicted by the rule. FP is
the number of cases covered by the rule that have a class different from the class predicted by the
rule. TN is the number of cases that are not covered by the rule and that do not have the class
predicted by the rule. FN is the number of cases that are not covered by the rule but that have the
class predicted by the rule. As soon as the agent develop its rule, pheromone trail is updated locally
as [15]:

() 01 τρτρτ .. ijij +−= (5)

Thus, pheromone trails related to terms T21 and T11 are updated corresponding to the rule α2.
Similarly, remaining nine agents will develop their rules in current iteration t. The process of rule
development by the R agents can be terminated earlier if a rule constructed by the current agent is
same as the rule developed by the previous (no_rules_converged –1) agents, where
no_rules_converged is an algorithm parameter used to test the convergence of the software ants.
This criterion of terminating the rules construction process in the current iteration in a way reflects
the establishment of the shortest path in real-life ant colony.

The rule of highest quality among the rules constructed by all the agents is considered as a (best)
discovered rule. It is stored in the special set of discovered rules in the order of its discovery. The

Internet Electronic Journal of Molecular Design 2002, 1, 000–000

6
BioChem Press http://www.biochempress.com

pheromone trail matrix is updated globally using the quality measure of the best rule discovered. It
is called global pheromone trail updating [15] and is given as:

() Q.. ijij ρτρτ +−= 1 (6)

Suppose the best rule among the rules constructed by ten agents at current iteration is rule α2 ;
the pheromone trails related to terms T21 and T11 (found in the antecedent part of α2) would be
updated by the global pheromone trail updating process. This completes one iteration of the ACO
algorithm.

The cases covered by the discovered rule are removed from the training dataset and in the next
iteration agents will work on the reduced dataset. The algorithm works for as many iterations as
necessary to find rules covering almost all the examples in a dataset or leaving uncovered examples
in the training dataset less than a predefined number max_cases_uncovered. This terminates the
iteration process of the ACO algorithm. At this stage, the algorithm has developed several rules. A
default rule is added at the bottom of the set of discovered rules. The default rule has the empty
antecedent and its rule consequent is the majority class that predicts among the cases in the training
dataset not covered by any of the discovered rules.

The set of discovered rules thus developed by the ACO algorithm can be applied on the new test
cases, unseen during the training process. The rules are tried in the ordered list on a new test case. If
the first rule is applied on the new case and the attributes of the test case satisfy antecedent part of
this rule, then it assigns its consequent to the test case. The system will apply default rule on the test
case if any of the rules from the list of discovered rules is not able to classify the test case.

2.2 Data Sets
To analyze the performance of the ACO machine learning algorithm to discover classification rules,
it is implemented on two data sets namely: bacterial growth/no growth data pertaining to pathogenic
Escherichia coli R31, and promoter gene sequences (DNA) of a bacteria with associated imperfect
domain theory pertaining to the Escherichia coli. The description of these datasets is given as:

2.2.1 E. coli growth/no-growth data

This dataset is given by Salter et al. [3]. The dataset pertaining to growth/no-growth of an E. coli
strain R31 as affected by temperature and water activity is used for learning the classification rules.
The data consist of experimental testing of a large number of combinations of temperature in the
range 7.7-37.0 and water activity in the range 0.943-0.987. All samples were observed daily, and a
sample was scored positive (i.e. growth occurred) if it showed an increase in turbidity or deposit in
the base of the tube. If after 50 days there was neither turbidity nor deposit, a loopful of culture was
streaked onto plate count agar to determine if any growth is present. For any temperature and water
activity combination, growth was recorded as one if it occurred and zero if it did not. The total 179
samples were observed with 99 as growth cases and 80 no-growth cases.

Internet Electronic Journal of Molecular Design 2003, 2, 000–000

7
BioChem Press http://www.biochempress.com

2.2.2. E. coli promoter gene sequences (DNA)

This dataset is obtained from the UCI data repository [16]. It involves the task of recognizing
biological concepts in deoxyribonucleic acid (DNA) sequences of the E. coli bacteria. The dataset
consists of total 106 patterns of 57 bases of DNA out of which 53 as promoters while remaining as
non-promoters [17].

3 RESULTS AND DISCUSSION

The proposed ACO machine learning algorithm for classification rule discovery is implemented
on two data sets namely: bacterial growth/no growth data pertaining to pathogenic Escherichia coli
R31, and promoter gene sequences (DNA) of a bacteria with associated imperfect domain theory
pertaining to the Escherichia coli. The ACO classifier system is executed in C++ compiler on
Pentium 533MHz PC. We evaluated the performance of the proposed classifier system with the
decision tree based C4.5 algorithm. The C4.5 is a well-known induction algorithm developed by
Quinlan [18]. It converts input data into a decision tree, which can be used to classify a test case by
starting from the root of the tree and continuing down the branches until a terminating leaf is
encountered. C4.5 applies information theory to the training samples with an information
maximization process to generate a decision tree. Detailed description of C4.5 algorithm can be
found elsewhere [18]. The comparison is based on the predictive power of discovered rules on
testing examples and the simplicity of rules discovered. A ten-fold cross validation procedure is
used to measure the predictive accuracy of the algorithm. The data set is divided arbitrarily into ten
partitions. During each run, a different partition is kept aside as test set while the remaining nine
partitions are used as training set. The average of rate of correct classification of the ten runs is
reported as the predictive accuracy rate of the discovered rule set. The results comparing the
average predictive accuracy of rule set discovered by ant classifier and C4.5 are given in Table 3
while the results comparing the simplicity of discovered rule set are given in Table 4.

Table 3. Average predictive accuracy rate of discovered rules learned by the algorithms.

Sr. No. Average predictive accuracy on test set (%)

Data set

ACO C4.5

1 Ecoli_growth 98.89 93.33

2 Ecoli_promoter 94.00 75.00

Internet Electronic Journal of Molecular Design 2002, 1, 000–000

8
BioChem Press http://www.biochempress.com

Table 4. Measure of simplicity of rule sets discovered by the algorithms

Average number of rules Average number of terms
Sr. No. Data set

ACO C4.5 ACO C4.5

1 Ecoli_growth 12.1 10.4 22.1 47.3

2 Ecoli_promoter 8.0 16.9 11.8 39.2

The average predictive accuracy of discovered rules obtained by the ACO algorithm in the
classification of the bacterial growth/no growth data pertaining to pathogenic Escherichia coli R31
is higher than that obtained by the C4.5 algorithm as can be seen from Table 3. The accuracy rate of
the learned rules by the ACO algorithm is 98.89 while that of C4.5 is 93.33. The average number of
rules obtained by the ACO algorithm on the ten training sets is 12.1 as compared to 10.4 obtained
by C4.5 (Table 4). The average number of rules discovered by the ACO algorithm is slightly on
higher side as compared to that obtained by the C4.5, but the average number of terms considered in
the rule set discovered by the ACO is quite less than the number of terms used by the rule set
obtained by the C4.5. As can be seen in Table 4, the average number of terms considered by the rule
set learned by the ACO is 22.1 while that of 47.3 in the rule set obtained by the C4.5. Hajmeer and
Basheer [4] also used logistic regression and artificial neural networks as classifiers for this
bacterial growth data and compared them using analysis of the receiver operating characteristic
curves as well as a number of scalar performance measures pertaining to the classification
contingency matrices. The scalar performance measures for binary classification considered by
Hajmeer and Basheer [4] are given as:

N
TNTP+

=FC ,
FPTN

FP
+

=FAR ,
TPFN

TP
+

=POD (7)

To check the performance of the rules learned by the ACO algorithm with other classifiers studied
by the Hameer and Basheer [4], we have used the measure fraction correct, FC. FC is nothing but a
fraction of correct classification. Considering all the cases (combined training and testing set) in the
Ecoli_growth dataset, a set of rules discovered by the ACO algorithm is applied to calculate the
performance measure, FC. The value of FC obtained by the discovered rules is 0.949. The best
value of the performance measure FC reported for various classifiers in [4] is given in the following
Table 5.

Table 5. Performance measure using complete (179 cases) Ecoli_growth dataset for the developed

Internet Electronic Journal of Molecular Design 2003, 2, 000–000

9
BioChem Press http://www.biochempress.com

classifiers.

Classifier type Performance measure (FC)

ACO (present study) 0.949
LLR 0.782
NLLR 0.905
FEBANN 0.939
PNN 1.0

As can be seen from Table 5, the developed ACO classifier for bacteria growth has higher FC
value than other three algorithms namely, LLR, NLLR and FEBANN. The discovered rule set
corresponding to FC =0.949 misclassified 9 cases out of 179. The number cases misclassified in the
Ecoli_growth dataset by LLR, NLLR, FEBANN are 39, 17, and 11 respectively [4]. The discovered
rule set for the bacteria growth dataset obtained by the ACO algorithm is given in Table 6.

Table 6. A set of classification rules discovered by the ACO algorithm for Ecoli_growth dataset.

Sr. No. Rules

1 IF TEMP ≤ 10.6 AND WAT > 0.977 THEN GROW

2 IF TEMP > 22.2 AND 0.961< WAT ≤ 0.977 THEN GROW

3 IF 15.0 < TEMP ≤ 22.2 AND 0.961< WAT ≤ 0.977 THEN GROW

4 IF 10.6 < TEMP ≤ 15.0 AND 0.961< WAT ≤ 0.977 THEN GROW

5 IF TEMP ≤ 10.6 AND 0.961< WAT ≤ 0.977 THEN NOGROW

6 IF TEMP > 10.6 AND 0.951< WAT ≤ 0.961 THEN GROW

7 IF 15.0 < TEMP ≤ 22.2 AND 0.951< WAT ≤ 0.961 THEN GROW

8 IF 10.6 < TEMP ≤ 15.0 AND 0.951< WAT ≤ 0.961 THEN NOGROW

9 IF TEMP ≤ 10.6 AND 0.951< WAT ≤ 0.961 THEN NOGROW

10 IF TEMP > 22.2 AND 0.949< WAT ≤ 0.951 THEN GROW

11 IF 0.949< WAT ≤ 0.951 THEN NOGROW

12 IF TEMP > 22.2 AND 0.948< WAT ≤ 0.949 THEN GROW

13 IF WAT ≤ 0.948 THEN NOGROW

14 DEFAULT RULE IS GROW
TEMP: temperature, WAT: water activity, GROW: E. coli bacteria growth, NOGROW: E.coli bacteria no-growth.

The second dataset is the promoter gene sequences (DNA) of bacteria with associated imperfect

Internet Electronic Journal of Molecular Design 2002, 1, 000–000

10
BioChem Press http://www.biochempress.com

domain theory pertaining to the Escherichia coli. From Table 3, the predictive accuracy rate
obtained by the ACO algorithm is 94.0, which is higher than that of 75.0 obtained by the C4.5.
Similarly, the number of rules discovered by the ACO algorithm is 8.0 and that discovered by the
C4.5 is 16.9 (Table 4). In this case, the greater simplicity of the rule set discovered by the ACO
algorithm is achieved without unduly sacrificing accuracy rate.

We can summarize the results of our experiments taking into account both the accuracy rate and the
rule set simplicity criteria. For both datasets, namely Ecoli_growth and Ecoli_promoter, ACO
discovered a rule set that is simpler and more accurate than the rule set discovered by C4.5. Also,
the total number of terms of the rules discovered by ACO algorithm was smaller than that of the
rules discovered by C4.5.

4 CONCLUSIONS

Ant colony metaheuristic originally developed for solving combinatorial optimization problems is
formulated as a rule based machine learning method. The results with two real life data sets indicate
that the algorithm is competitive and can be a very useful tool for knowledge discovery in a
database.

Acknowledgment

The financial assistance received from the Department of Science and Technology, the Government of India, New
Delhi is gratefully acknowledged. The author P.S. thanks the Council of Scientific and Industrial Research (CSIR), the
Government of India, New Delhi, for a Senior Research Fellowship.

5 REFERENCES

[1] A.H.C. van Kampen, Z. Ramadan, M. Mulholland, D.B. Hibbert, and L.M.C. Buydens, Learning classification
rules from an ion chromatography database using a genetic based classifier system, Analytica Chimica Acta, 1997,
344, 1-15.

[2] R. Burbidge, M. Trotter, B. Buxton, S. Holden, Drug design by machine learning: support vector machines for
pharmaceutical data analysis, Computers & Chemistry,2001, 26 5–14.

[3] M.A. Salter, D.A. Ratkowsky, T. Ross, T.A. McMeekin, Modelling the combined temperature and salt (NaCl)
limits for growth of a pathogenic E. coli strain using nonlinear logistic regression, Int. J. Food Microbiol. 2000,
61, 159-167.

[4] M. Hajmeer and I. Basheer, Comparison of logistic regression and neural network classifiers for bacterial growth,
Food Microbiol. 2003, 20, 43-55.

[5] M. Ankerst, G. Kastenmüller, H.P. Kriegel, and T. Seidl, Nearest neighbour classification in 3D protein
databases; in: Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology
(ISMB’99), AAAI Press, 1999.

[6] B. Özyurt, A.K. Sunol, M.C. Çamrudan, P. Mogili, and L.O. Hall, Chemical plant fault diagnosis through a hybrid
symbolic-connectionist machine learning approach. Computers & Chemical Engineering, 1998, 22, 299-321.

[7] S.-Y. Chang, C.-R. Lin, and C.T. Chang, A fuzzy diagnosis approach using dynamic fault trees, Chemical
Engineering Science, 2002, 57, 2971-2985.

[8] V. Venkatasubramanian, R. Vaidyanathan, and Y. Yamamoto, Process fault detection and diagnosis using neural
networks-I. Steady-state processes, Computers & Chemical Engineering, 1990, 14, 699-712.

[9] R.S. Parpinelli, H.S. Lopes, and A.A. Freitas, An ant colony algorithm for classification rule discovery. in:
Datamining: a heuristic approach, Eds. H. Abbas, R. Sarker, C. Newton, Idea Group Publishing, London, 2002,

Internet Electronic Journal of Molecular Design 2003, 2, 000–000

11
BioChem Press http://www.biochempress.com

pp. 191-208.
[10] M. Dorigo, G. Di Caro, and L.M. Gambardella, Ant algorithms for discrete optimization, Artificial Life, 1999, 5,

137-172.
[11] J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of continuous features; in:

Proceedings of the 12th international conference Machine Learning, Eds. A. Prieditis and S. Russell, Morgan
Kaufmann, San Francisco, 1995.

[12] R. Kohavi and M. Sahami, Error-based and entropy-based discretization of continuous features; in: Proceedings of
2nd international conference on knowledge discovery in databases, Eds. E. Simondis, J. Han, and U. Fayyad,
AAAI Press, 1996, vol. 36, pp. 114-119.

[13] T.M. Cover and J.A. Thomas, Elements of Information Theory, John Wiley & Sons, New York, 1991.
[14] H.S. Lopes, M.S. Coutinho, and W.C. Lima, An evolutionary approach to simulate cognitive feedback learning in

medical domain; in: Genetic algorithms and fuzzy logic systems: soft computing perspectives, Word Scientific,
Singapore, 1998, pp. 193-207.

[15] M. Dorigo and L.M. Gambardella, Ant colonies for the traveling salesman problem, BioSystems, 1997, 43, 73-81.
[16] UCI Machine Learning Data Repository: http://www.ics.uci.edu/~mlearn/MLrepository.html
[17] C. Harley and R. Reynolds, Analysis of E. Coli promoter sequences, Nucleic Acids Research, 1987, 15, 2343-

2361.
[18] J.R. Quinlan, C4.5: Programs forMachine Learning, Morgan Kaufmann, San Francisco, CA, 1993.

Biographies

P. S. Shelokar is a petro-chemical engineer and working as a senior research fellow in Chemical Engineering
Division of National Chemical Laboratory, Pune, India. His research interests are in conventional and non-traditional
optimization algorithms and their applications in the field of Chemical Engineering.

V. K. Jayaraman is a senior Scientist in the Chemical Engineering Division of National Chemical Laboratory,
Pune, India. He obtained his Bachelor's and Master's degrees in Chemical Engineering from the University of Madras
and his Ph.D. while working at NCL, Pune. His research interests include Chemical and Bio-reaction Engineering, Non-
linear dynamics, Control and Process Optimization. Dr. Jayaraman has been a visiting faculty to many Indian
Universities and has given many core Chemical Engineering courses to graduate students. He has more than 80
international publications.

B. D. Kulkarni is a senior Scientist and leads the Chemical Engineering Division at the National Chemical
Laboratory, Pune, India. He obtained his Bachelor's, Master's and Ph.D. degrees from Nagpur University, Nagpur,
India. His research interests are mathematical modeling chemical reactions and reactors. Dr. Kulkarni has received
numerous awards for his work, including the Bhatnagar Prize for Science and Technology. He has published 4 books
and over 200 technical papers in prestigious international journals.

http://www.ics.uci.edu/~mlearn/MLrepository.html

	Internet Electron. J. Mol. Des. 2003, 1, 000–000
	Abstract
	1 INTRODUCTION
	2 MATERIALS AND METHODS
	2.1 Method
	2.2 Data Sets

	3 RESULTS AND DISCUSSION
	4 CONCLUSIONS
	
	
	Acknowledgment

	5 REFERENCES
	
	
	Biographies

