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Abstract: The characteristic sequences of a DNA sequence are a group of (0,1) sequences. Each of 
them is a reduced representation of the given DNA sequence, and two of them can uniquely 
reconstruct the sequence. Based on the numerical description of the characteristic sequences, a 
protein coding gene finding algorithm specific for the yeast genome at better 95% accuracy was 
suggested. Based on this, it is found that the total number of protein coding genes in the yeast 
genome is 5897, coincident with 5800-6000, which is widely accepted. The names of putative 
non-coding ORFs are listed here in detail. 
 
INTRODUCTION 
  Most gene-finding algorithms are based on the differences of statistical properties between DNA 
sequences in coding and non-coding regions [1-7,13-21]. The phases in one strand of a DNA 
double helix are heterogeneous in the coding regions, whereas homogeneous in the non-coding 
regions. This fact constitutes the basis of almost all gene-finding algorithms [1,2]. The prediction 
of coding sequences has garnered a lot of attention during the last decade [1-7,13-21]. We can 
distinguish two kinds of methods, one relies on training with sets of example and counter-example 
sequences, and the other exploits the intrinsic properties of the DNA sequences to be analyzed. 

Currently, the most popular approach is to consider a set of candidate exons weighted by some 
statistical parameters and then construct the optimal gene, defined as a consistent chain of exons 
using dynamic programming [3,4,5]. The recognition of coding sequences is usually approached by 
measuring the positional and compositional biases imposed by the genetic code on the DNA 
sequences in protein-coding regions [6]. Recent developments in the prediction of coding 
sequences require computation of discriminant functions with parameters that are estimated with a 
training set composed of examples and counter-examples (coding and non-coding sequences) [6, 7]. 
For example, Zhang1, et al. [1,2] suggested a gene finding algorithm based on the YZ score index. 
In their algorithm, a graphical approach was used to explore the difference between coding and 
non-coding sequences. 

An ORF is a DNA stretches that potentially encode protein. They always have a start codon 
(ATG) at one end and a translation-terminating stop codon at the other end, and with at least 
300bases in between. In Human DNA sequences, almost no ORFs representation an actual 
gene—the may contain pieces of a gene. As a result, locating ORFs in human genome will not 
accomplish much in terms of gene recognition. However, in bacterial DNA sequences, practically 
all ORFs are coding sequences, which make the gene recognition easy.  

In a previous paper [8], the characteristic sequences were introduced to represent a DNA 



sequence and make comparisons of the similarity and dissimilarity of DNA sequences [also see 17]. 
Based on the ideas of the characteristic sequences and the Euclid distance discriminant method, we 
propose, in this paper, an algorithm for the recognition of coding ORFs and non-coding ORFs 
sequences in the yeast Saccharomyces cerevisiae genome. 
 
MATERIALS AND METHODS 
 
The Database 
 

The budding yeast Saccharomyces cerevisiae is an important model organism for the Human 
Genome Project. In this paper, we adopt the S. cerevisiae genome DNA sequences. The S. 
cerevisiae genome DNA sequences can be obtained from the Munich Information Center for 
Protein Sequences (MIPS), released in 1997[9, 11]. The data for classification of ORFs in the yeast 
genome were downloaded from http://mips.gsf.de, release, October 10, 2001. In the MIPS database, 
all the ORFs are classified into six classes, which correspond to known proteins, no similarity, 
questionable ORFs, similarity or weak similarity to known proteins, similarity to unknown proteins 
and strong similarity to known proteins, respectively. The 1st, 2nd, 3rd, 4th, 5th and 6th classes 
include 3410(18), 516, 471(8), 820(2), 1003 and 229, entries, respectively, where the figures in the 
parentheses indicate the numbers of ORFs in the mitochondrial genome. The mitochondrial ORFs 
are excluded here since the samples are too few to have statistical significance. So in each of the six 
classes, 3392, 516, 463, 818, 1003 and 229 ORFs are contained, respectively. 

 
The characteristic sequences and their numerical characterization  
 

Mathematically, a homomorphism in algebra represents and emphasizes a partial mirror of an 
algebraic system. With this idea in the mind, we introduce the concept of characteristic sequences 
of a DNA sequence as follows. 

According to their chemical structures, there are two ways to divide the four bases A, C, G, T  
into two classes: purine R={A,G} and pyrimidine Y={C, T}; amino group M={A, C } and keto 
group K={G, T}. Besides these, the division can also be made according to the strength of the 
hydrogen bond, i.e., weak H-bonds W={A, T} and strong H-bonds S={G, C}. 
  By the three divisions we reduce a DNA sequence into three (0,1) sequences, which is stated in 

mathematical terms as follows. Given a DNA sequence L321 aaaG = , we define three 

homomorphic maps 3,2,1, =iiφ by ( ) ( ) ( ) ,21 LLaaG iii φφφ = where  
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The ( ) 2,1, =iGiφ and 3 , are called (R, Y)-, (M, K)-, and (W, S)-characteristic sequences, 

respectively. 



Given a (0,1)-sequence L321 aaaS = , we define its normalized height function )( phs  (or 

)( ph  for short) to be  p⁄q , which denotes the frequency of 1's occurring in the prefix of length p 

of S, that is, q is the number of 1's in a1a2…ap. Let k be a fixed positive integer. If S has length n, 
then we can divide it into k segments and consider their normalized height functions h([n/k]), 
h([2n/k]), ……, h([n]), where [n/k] denotes the biggest integer less than or equal to n/k. 

From a DNA sequence and the above operation we construct its characteristic sequences. We 
obtain hR([in/k]), hM([in/k]) and hW([in/k]), i=1,2,…, k, where R, M and W denote (R,Y)-, (M,K)- 
and (W,S)-characteristic sequences, respectively. By comparing these values, we can obtain some 
information of the DNA sequence.  

 
The gene-finding algorithm 
 
In this section, we suggest a gene-finding algorithm based on the different statistical properties at 

the three codon positions between protein coding ORFs and non-coding ones. The subsequence in 
an ORF with bases at positions 3i+1 (i=0,1,2 …) forms a phase-specific sequence, we call it the 
1-subsequence. Similarly, we can also define 2-, 3-subsequence with bases at positions 3i+j, 
i=0,1,2 … and j=2 or 3 in the ORF. 

For each phase-specific subsequence, regarded as an ordinary DNA sequence, there are three 
characteristic sequences. For each of them, taking k=2 and considering its normalized height 
function, we obtain a 6-dimensional real vector for the phase-specific subsequence. We denote the 
six components of the i-subsequence by R1

ni, R2
ni, M1

ni, M2
ni, W1

ni, W2
ni, i=1,2,3. Making a union 

of the three 6-dimensional vectors, we can describe each ORF (or an intergenic DNA sequence) by 
a point in a 18-dimensional real space. 

To complete the algorithm in a computer, we need two groups of samples. Let P denote the group 
of the positive samples consisting of true protein coding genes, and N the group of negative 
samples composed of non-coding DNA sequences. The two groups of samples form the training set 
used in the protein coding gene-finding algorithm. Let n approximate the number of samples in 
each group. In the positive samples the k-th true coding ORF is described by a vector (uP

k1, uP
k2, …, 

uP
k18)T, where uP

ki 's are the i-component of the vector (i=1, 2, …, 18), and ``T'' denotes the 
ordinary transpose operator of matrix. Similarly, in the negative samples the k-th non-coding DNA 
sequence is described by a vector (uN

k1, uN
k2, …, uN

k18)T. 
We adopt the convention used by Zhang, et al.[1]. By ŪP and ŪN we denote the geometric centers 

of the positive and negative samples in the 18-dimensional space, where 
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By an 18-dimensional vector (u1, u2,…, u18)T we denote a query ORF. We calculate the Euclid 
distances d(U, ŪP) between U and ŪP, and d(U, ŪN) between U and ŪN to judge whether or not this 
ORF is a true protein coding gene. Here  
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A coding index ∆ is defined as ∆=d(U, ŪP)-d(U, ŪN)+c  (4), where  c is a constant determined 
by making the false positive rate and false negative rate identical in the training set. If ∆>0, the 
query ORF is recognized as a true protein coding gene, otherwise, the ORF or DNA  sequence is 
recognized as a non-coding sequence. 
 
EVALUATION AND APPLICATION 
 
Definitions of sensitivity, specificity and accuracy 
 

Sensitivity and specificity measures are widely used to characterize the accuracy of an algorithm 
or a recognition function. Here, we adopt the definitions and notations in Burset and Guigo [10]. 

Let TP denote the number of coding ORFs that have been correctly predicted as coding, and FN 
the number of coding ORFs that have been predicted as non-coding. Then we define the sensitivity 
Sn as,  

Sn = TP⁄(TP+FN)    (5).  
That is, Sn is the proportion of coding ORFs that have been correctly predicted as coding. Similarly, 
denoted by TN the number of intergenic sequences that have been correctly predicted as 
non-coding, and denoted by FP the number of intergenic sequences that have been predicted as 
coding, we define the specificity Sp as,  
Sp= TN⁄(TN+FP)  (6).  
That is, Sp is the proportion of intergenic sequences that have been correctly predicted as 
non-coding. In addition to, we define the accuracy T as the average of the sensitivity and specificity, 
that is  
T=1/2 (Sn+Sp)   (7). 
 
Self-consistency and cross-validation tests 
 
 Usually, the re-substitution and cross-validation tests are efficient methods to evaluate the 
algorithm. The former reflects the self-consistency, and the latter reflects the extrapolating 
effectiveness of the algorithm. In the references [1, 2], the authors used the first class in the MIPS 
database, and regarded them as the positive samples.  From the 16 yeast chromosomes, they 
randomly selected about 6000 intergenic sequences with length longer than 300 bp, starting with 
ATG and ending with one of the stop codons, and then, from the 6000 intergenic sequences, they 
randomly selected 2958 sequences as the negative samples and randomly divided each sample into 
two samples: training set and test set. Using them, their algorithms were evaluated. 
 Following Zhang's methodology, in this paper, we still use the MIPS database to evaluate our 
algorithm. The first class includes 3392 known genes in the 16 yeast chromosomes in the MIPS 
database. There are some differences between our data and that in Zhang's [1] paper. Data used in 
treatment was of more recent origin than that used in the Zhang’s work.  

In the MIPS database released in 2001, the first class included 3392 known genes. We randomly 
divide the 3392 genes into two parts, one of which includes 2000 genes and the other 1392 genes. 
The former is regarded as a training set and the latter is regarded as a test set. Using Zhang's [1] 
method, we randomly select 7691 intergenic sequences (non-coding sequence) from S. cerevisiae 
genome, and randomly select 2000 and 1392 sequences from the above 7691 sequences, which 



form the training and test sets of the negative samples, respectively. In summary, the training set 
includes 2000 positive samples (true genes) and 2000 negative samples (intergenic sequences), and 
the test set includes 1392 positive samples (true genes) and 1392 negative samples (intergenic 
sequences). 

Using the sequences in the training set, the average vectors ŪP, ŪN and the parameter  c (see Eq. 
(2) and (4)) are determined. Using these quantities, the accuracy of the gene-finding algorithm in 
the training and test sets is calculated. Repeating the above random division procedure six times, 
we perform six re-substitution and cross-validation tests. The results of the cross-validation tests 
are listed in Table 1. As we will see from Table 1, the accuracy in each cross-validation test is 
always greater than 95%. 
 

Table 1 The accuracy of the algorithm for three different tests 
 Test1 Test2 Test3 Test4 Test5 Test6 
Sensitivity(%) 95.9 94.6 96.6 95.9 95.7 94.4 
Specificity(%) 94.8 95.8 94.3 95.0 95.5 96.4 
Accuracy(%) 95.35 95.2 95.45 95.45 95.6 95.4 

 
Application of the algorithm to find genes in the ORFs of the 2nd-6th classes 
 

In this section, we recognize genes in the ORFs of the 2nd-6th classes in the MIPS database 
using the algorithm.  

Firstly, we merge the training set and test set of the positive samples into a new training positive 
set, and randomly select 3392 sequences from the 7691 intergenic sequences as mentioned above to 
form a new training negative set. In order to counter the particularity of the selected samples, we 
repeat this process ten times, and every time we calculate the average vectors Ūi

P, Ūi
N and the 

parameter ci, so we obtain ten triples (Ūi
P, Ūi

N, ci) i=1,2,…,10. 
Secondly, by taking the average of the ten triples we obtain a new triple as follows:  

UP=(0.62111, 0.62825, 0.54748 0.54638, 0.49741,0.49147, 0.48988, 0.49839, 0.62634, 0.63190, 
0.57953, 0.57735, 0.47751, 0.47784, 0.60762, 0.60980, 0.48249, 0.48755),       (11) 
UN=(0.50238,0.49925, 0.64094, 0.64316, 0.50307, 0.49982, 0.50059, 0.50398, 0.64064, 0.64235, 
0.49962, 0.50252, 0.50898,0.50913, 0.63127, 0.63606, 0.49709, 0.50002),       (12) 
and  c=0.015360   (13) 

Thirdly, we judge each sequence in the ORFs of the 2nd-6th classes in the MIPS database based 
on the vectors UP, UN and the parameter c listed in (11), (12) and (13), respectively. For each ORF, 
we calculate the vector U =(u1, u2 ,…, u18 )T , where ui are defined in (5). Based on the vectors U, 
UP, UN and the parameter c, we calculate each coding-ness index ∆ using (7). If ∆>0, the query 
ORF is recognized as a coding gene, otherwise, non-coding. In each class, the ORFs recognized as 
non-coding ORFs are listed in Tables 2-6 corresponding to the 2nd-6th classes in the yeast genome, 
respectively. 

Furthermore, we re-estimate the number of protein coding genes in the 16 yeast chromosomes 
based on the above results. For example, the total number of the 2nd class ORFs is 516, in which 
126 are recognized as non-coding. Suppose both the sensitivity and specificity of our algorithm are 
95%, we can obtain a system of four linear equations as follows:  
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0.95FP)TN/(TN
0.95FN)TP/(TP

 ,  

from which we obtain that FP ≈ 6, FN ≈20, TP ≈ 384, TN ≈106. The number of the real coding 
sequences of the 2nd class should be equal to TP+FN=384+20=404. For the 3rd-6th classes, we can 
treat them in the same way. For the 6th-class, however, the above system has negative solutions. 
The reason is that the number recognized as non-coding sequences is too small, which is only 5. In 
this case, taking FP=FN=0, we have TP=224 and TN=5. Then, we list the values of TP, FP, TN, and 
FN in the 2nd-6th class ORFs in Table 7. 

Thus, the total number of protein coding genes should be equal to 5897, the sum of the number 
of the 1st class (3410) and the number of those in the 2nd-6th classes recognized by the present 
algorithm (3410+404+159+797+903+224, see Table 7).  Note that the accuracy is actually greater 
than 95%, so, this sum should be an upper bound of the number of the genes in the yeast genome. 
The above estimate of protein coding genes in the yeast genome is coincident with 5800-6000, 
which is widely accepted [9,11,12]. The above estimate is based on error analysis, i.e. we have 
considered the false positive and false negative events in the prediction for each class. So, it should 
be statistically reliable. 

CONCLUDING REMARKS 
In this paper, we propose an algorithm for distinguish coding ORFs and non-coding ORFs in the 

yeast genome. For complete the algorithm, we take the first class ORFs (known protein) as coding 
gene sequences and intergenic DNA sequence as non-coding sequences. Using them, we 
distinguish coding ORFs and non-coding ORFs for 2nd-6th classes ORFs in the yeast genome and 
obtain the number of coding ORFs in the 2nd-6th classes are at most 404,159, 797, 903 and 224, 
respectively. As a result, the total number of coding ORFs is estimated to be less than to 5897 in the 
16 yeast chromosomes. Besides, we can also observe that the percentage of non-coding ORFs is 
17.9% in 2nd-6th classes from Table 7, that is most ORFs are indeed genes. However, the 
percentages in the 2nd and 3rd classes are higher than others, 21.7% and 65.7%, respectively. 
According to classification of ORFs in the MIPS database, some of these ORFs neither their 
function nor homology is known. So, their high percentage is no wonder. With the increase in 
known genes, the number and percentage should be decrease.  

As we mentioned, the idea of characteristic sequences comes from algebra, which is a kind of 
reduced representation for a complicated objects. This idea is applied not only to DNA sequences, 
but also to protein sequences and others. In practice, we can also concentrate on a single 
characteristic sequence.  For example, in gene-finding algorithm of this paper, we can replace the 
18-dimensional real space by a 6-dimensional real space: R1

ni, R1
ni, i=1,2,3, according to the 

purine-pyrimidine classification. Using the 6-dimensional space, we can perform the same 
algorithm on the yeast genome to research the biological function of purine-pyrimidine. Similarly, 
we can also take M1

ni, M2
ni or W1

ni, W2
ni, i=1,2,3, to research the biological functions of amino-keto 

groups and weak-strong H-bonds. This might provide a possibility to reveal the biological 
functions of purine-pyrimidine, amino-keto groups and weak-strong H-bonds, respectively. 
 



Acknowledgment 
This work is supported in part by the National Natural Science Foundation of China and Shanghai 
Postdoctoral Science Foundation. 
 
REFERENCES AND NOTES 
 
[1]  Zhang,C. T.; Wang, J. Nucleic Acids Res. 2000, 28, 2804-2814. 
[2]  Zhang, C. T.; Wang, J.; Zhang, R. Computers & Chem. 2002, 26, 195-206. 
[3]  Guigo, R. J. Comput. biol. 1998, 5, 681-702.  
[4]  Guigo, R. Bishop M. J. (ed.), 1999, 54-80. Lodon: Academic press. 
[5]  Roytberg, M. A.; Astakhova, T. V.; Gelfand, M. S. Computers & Chem. 1997, 21, 229-235.  
[6]  Quentin, Y.; Voiblet, C.; Martin, F.; Fichant, G. Computers & Chem. 1999, 23, 209-217. 
[7]  Guigo, R. Computers Chem. 1997, 21, 215-222.  
[8]  He, P. A.; Wang, J.  J. Chem. Inf. Comput. Sci. 2002, 42, 1080-1085. 
[9]  Goffeau, A.; Barrel, B. G.; Bussey, H.; Davis, R. W.; Dujon, B.; Feldmann, H.; Galibert, F.; 
Hoheisel, J. D.; Jacq, C.; Johnston, M.; Louis, E. J.; Mewes, H. W.; Murakami, Y.; Philippsen, P.; 
Tettlin, H.; Oliver, S. G.  Science. 1996, 274, 546.  
[10]  Burset, M.; Guigo, R.  Genomics. 1996, 34, 353-367. 
[11]  Mewes, H. W.; Albermann, K.; Bahr, M.; Frishman, D.; Gleissner, A.; Hani, J.; Heumann, K.; 
Kleine, K.; Maierl, A.; Oliver, S. G.; Pfeiffer, F.; Zollner, A. Nature (Suppl.). 1997, 387, 7-8. 
[12]  Winzeler, E. A.; Davis, R. W.  Curr. Opin. Genet. Dev. 1997, 7, 771-776. 
[13]  Chiusano, M. L.; Alvarez-Valin, F.; Giulio, M. D.; D'Onofrio, G.; Ammirato, G.; Colonna, G.; 
Bernardi, G. Gene. 2000, 261, 63-69. 
[14]  Fickett, J. W.  Trends Genet. 1996, 12, 316-320.  
[15] Gelfand, M. S. J. Computational Biol. 1995, 2, 87-115. 
[16]  Mackiewicz, P.; Kowalczuk, M.; Gierlik, A.; Dudek, M. R.; Cebrat, S. Nucleic Acids Res. 
1999, 27, 3503-3509.  
[17]  Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Matsa, M. E.; Peng, C. K.; 
Simons, M.; Stanley, H. E. Phys. Rev. E. 1995, 51(5), 5084-5091. 
[18]  Salamov, A.; Solovyev, V. Genome Research. 2000, 10, 516-522. 
[19]  Shepherd,J. C. W. Proc. Natl. Acad. Sci. USA. 1981, 78, 1596-1600.  
[20]  Siemion, I. Z.; Siemion, P. J. Biosystems. 1994, 33, 39-48.  
[21]  Solovyev, V. V. BioSystems. 1993, 30, 137-160.  
[22]  Thomas, A.; Skolnick, M. IMAJ. Math. Appl. Med. Biol. 1994, 11, 149-160. 
[23]  Zhang, M. Q. Proc. Natl. Acad. Sci. USA. 1997, 94, 565-568.  
 
Table 2 The 126 ORFs of the 2nd class (no similarity)in the MIPS database, which are recognized 
as non-coding 
yal037c-a yal064w   yar030c  yar047c  yar053w   yar070c   ybl048w  ybl071c  
ybr027c   ybr056w-a ybr209w  ybr292c  ycl056c   ycl058c   ycr022c  ycr025c  
ycr085w   ydl176w   ydl196w  ydr015c  ydr024w   ydr029w   ydr042c  ydr065w  
ydr102c   ydr179w-a ydr274c  ydr278c  ydr344c   ydr350c   ydr396w  ydr524w-a  
ydr535c   yel010w   yel014c  yel059w  yer066c-a yer091c-a yer135c  yer172c-a  
yfl019c   yfl021c-a yfr042w  ygl006w-a ygl138c ygl188c   ygr026w  ygr168c  



ygr226c   ygr290w   ygr291c  yhl005c  yhl037c   yhr078w   yhr095w  yhr139c-a  
yhr173c   yil012w   yil027c  yil071c  yir020c   yir020c-b yjl027c  yjl028w  
yjl064w   yjl077c   yjl136w-a yjl215c yjr023c   yjr157w   ykl044w  ykl158w  
ykl162c   ykr032w   ykr073c  yll007c  yll030c   yll059c   ylr111w  ylr112w 
ylr122c   ylr124w   ylr145w  ylr264c-a ylr265c  ylr366w   ylr381w  ylr400w  
ylr404w   yml084w   yml090w  ymr003w  ymr057c  ymr082c   ymr141c  ymr148w  
ymr151w   ymr163c   ymr187c  ymr252c  ymr254c   ymr320w   ynl122c  ynl143c  
ynl146w   ynl150w   ynl174w  ynl179c  ynl211c   ynl303w   ynl324w  yol159c  
yol160w   yor024w   yor029w  yor097c  yor152c   yor248w   yor255w  yor364w  
yor392w   ypl041c   ypl200w  ypr012w  ypr153w   ypr170w-a 
 
Table 3 The 297 ORFs of the 3rd class (questionable ORFs) in the MIPS database, which are 
recognized as non-coding 
yal026c-a  yal031w-a  yal059c-a ybl053w   ybl062w   ybl065w   ybl070c    
ybl073w    ybl077w    ybl094c   ybl107w-a ybr051w   ybr064w   ybr089w    
ybr090c    ybr109w-a  ybr116c   ybr178w   ybr206w   ybr224w   ybr226c    
ybr266c    ybr277c    ycl041c   ycr018c-a ycr041w   ycr064c   ycr087w    
ydl009c    ydl016c    ydl026w   ydl032w   ydl050c   ydl062w   ydl068w      
ydl094c    ydl151c    ydl152w   ydl158c   ydl172c   ydl187c   ydl221w      
ydr008c    ydr034c-a  ydr048c   ydr053w   ydr112w   ydr114c   ydr133c      
ydr136c    ydr149c    ydr154c   ydr157w   ydr199w   ydr203w   ydr220c    
ydr230w    ydr241w    ydr269c   ydr271c   ydr290w   ydr355c   ydr360w    
ydr401w    ydr417c    ydr426c   ydr431w   ydr445c   ydr467c   ydr509w    
ydr521w    ydr526c    yel009c-a yel018c-a yel075w-a yer046w-a yer067c-a  
yer076w-a  yer084w    yer084w-a yer087c-a yer133w-a yer137w-a yer138w-a  
yer145c-a  yer148w-a  yer165c-a yer181c   yfl012w-a yfl013w-a yfl015w-a  
yfl032w    yfr036w-a  yfr052c-a yfr056c   ygl024w   ygl042c   ygl052w    
ygl072c    ygl074c    ygl088w   ygl109w   ygl118c   ygl132w   ygl149w    
ygl152c    ygl165c    ygl168w   ygl177w   ygl182c   ygl193c   ygl204c    
ygl214w    ygl217c    ygl218w   ygr011w   ygr018c   ygr039w   ygr050c    
ygr051c    ygr069w    ygr073c   ygr107w   ygr114c   ygr115c   ygr122c-a  
ygr139w    ygr151c    ygr176w   ygr182c   ygr219w   ygr228w   ygr259c    
ygr265w    yhl002c-a  yhl006w-a yhl019w-a yhl030w-a yhl046w-a yhr028w-a  
yhr049c-a  yhr063w-a  yhr071c-a yhr125w   yhr145c   yhr193c-a yil020c-a  
yil029w-a  yil030w-a  yil047c-a yil060w   yil066w-a yil068w-a yil071w-a  
yil100c-a  yil163c    yir017w-a yir023c-a yjl009w   yjl015c   yjl022w    
yjl032w    yjl075c    yjl086c   yjl120w   yjl135w   yjl142c   yjl150w    
yjl175w    yjl182c    yjl202c   yjr018w   yjr038c   yjr071w   yjr087w    
ykl030w    ykl036c    ykl053w   ykl076c   ykl083w   ykl115c   ykl118w    
ykl131w    ykl136w    ykl147c   ykl202w   ykr033c   ykr047w   yll020c    
ylr101c    ylr123c    ylr140w   ylr169w   ylr171w   ylr198c   ylr202c    
ylr230w    ylr252w    ylr261c   ylr269c   ylr279w   ylr282c   ylr294c    
ylr302c    ylr317w    ylr322w   ylr334c   ylr358c   ylr428c   ylr434c    
ylr444c    ylr458w    ylr465c   yml009c-a yml012c-a yml047w-a yml094c-a  



yml116w-a  ymr046w-a  ymr052c-a ymr075c-a ymr086c-a ymr135w-a ymr153c-a  
ymr158c-a  ymr158w-b  ymr172c-a ymr193c-a ymr290w-a ymr304c-a ymr306c-a  
ymr316c-a  ynl013c    ynl028w   ynl089c   ynl105w   ynl114c   ynl120c    
ynl170w    ynl171c    ynl184c   ynl198c   ynl205c   ynl226w   ynl228w    
ynl235c    ynl266w    ynl276c   ynl319w   ynr005c   ynr025c   yol013w-b  
yol035c    yol099c    yol134c   yol150c   yor041c   yor082c   yor102w    
yor121c    yor146w    yor169c   yor170w   yor199w   yor200w   yor225w    
yor235w    yor263c    yor277c   yor282w   yor300w   yor309c   yor325w    
yor331c    yor345c    yor379c   ypl034w   ypl035c   ypl044c   ypl073c    
ypl102c    ypl114w    ypl185w   ypl205c   ypl238c   ypl261c   ypr039w    
ypr050c    ypr053c    ypr077c   ypr087w   ypr099c   ypr136c   ypr142c    
ypr146c    ypr150w    ypr177c    
  
Table 4 The 60 ORFs of the 4th class (similarity or weak similarity to known proteins)in the MIPS 
database, which are recognized as non-coding 
 
yal066w   ybl089w  ybr293w   ycr001w   ydl073w   ydl119c   ydl199c  ydl206w    
ydr100w   ydr115w  ydr205w   ydr249c   ydr307w   ydr319c   ydr366c  ydr413c    
ydr524c   yel045c  yer097w   yfl040w   yfr057w   ygl104c   ygl160w  ygr101w    
ygr284c   yhl035c  yhr035w   yhr130c   yhr181w   yil025c   yil040w  yil088c   
yjl091c   yjl170c  yjl193w   ykr030w   ykr103w   yll005c   yll037w  ylr050c   
ylr064w   ylr184w  ylr283w   ylr311c   ylr365w   yml023c   ymr088c  ymr245w   
ymr306w   ynl109w  ynl176c   ynr059w   yol079w   yol107w   yol152w  yol163w   
yor053w   yor080w  yor286w   yor350c 
 
Table 5 The 140 ORFs of the 5th class (similarity to unknown proteins)in the MIPS database, 
which are recognized as non-coding 
 
yal018c  yar029w  yar060c   yar068w    ybl029c-a  ybl049w   ybl108w   ybl109w   
ybr004c  ybr096w  ybr099c   ybr103c-a  ybr147w    ybr168w   ybr191w-a ybr300c   
ybr302c  ycl002c  ycl005w   ycl065w    ycr038w-a  ycr097w-a ycr102w-a ydl027c   
ydl054c  ydl089w  ydl114w-a ydl123w    ydl159w-a  ydl185c-a ydl240c-a ydl247w-a 
ydl248w  ydr018c  ydr066c   ydr084c    ydr105c    ydr126w   ydr131c   ydr210w   
ydr275w  ydr367w  ydr437w   ydr438w    ydr459c    ydr492w   ydr504c   ydr525w-a 
yel033w  yel053w-ayel067c   yer074w-a  yer079c-a  yer140w   yfl015c   yfl062w   
yfl068w  yfr012w  ygl010w   ygl041c    ygl084c    ygl260w   ygl263w   ygr004w   
ygr016w  ygr149w  ygr295c   yhl034w-a  yhl041w    yhl042w   yhl044w   yhl045w   
yhr067w  yhr069c-a yhr212c  yhr214w-a  yil029c    yil089w   yil090w   yil174w   
yil175w  yir030w-a yir040c  yjl003w    yjl052c-a  yjl097w   yjr013w   yjr044c   
yjr054w  yjr161c  yjr162c   ykl018c-a  ykl106c-a  ykl165c-a ykl219w   ykl223w   
ykl225w  ykr051w  ykr106w   yll065w    ylr036c    ylr047c   ylr149c-a ylr368w   
ylr408c  ylr463c  yml007c-a yml047c    yml132w    ymr010w   ymr013w-a ymr071c   
ymr119w  ymr326c  ynl008c   ynl067w-a  ynl162w-a  ynl326c   ynl336w   ynr061c   
ynr062c  yol002c  yol003c   yol047c    yol048c    yol101c   yol159c-a yol162w   



yor044w  yor147w  yor175c   yor365c    ypl162c    ypl165c   ypl246c   ypl264c   
ypr016w-a ypr071w ypr074w-a ypr114w   
 
Table 6  The 5 ORFs of the 6th class (strong similarity to known proteins)in the MIPS database, 
which are recognized as non-coding 
 

ybr210w   yel004w   yll051c   ylr046c   ymr040w    
 
Table 7  The numbers of predicted coding and non-coding ORFs of the 2nd–6th classes 
 

Class 2 3 4 5 6 Total 
Total number of ORFs 516 463 818 1003 229 3029 
TP 384 151 757 858 224 2374 
FN 20 8 40 45 0 113 
TN 106 289 20 95 5 515 
FP 6 15 1 5 0 27 
Total number of coding ORFs 404 159 797 903 224 2487 
Total number of noncoding ORFs 112 304 21 100 5 542 
Percentage of noncoding ORFs 21.7% 65.7% 2.6% 10% 2.2% 17.9% 


