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Abstract: A secondary structure is a symbolic string composed of three kinds letters indicating the 
stack, external element and loop. A 2D graphical representation for this abstract symbolic sequence 
is proposed here. The curve is the unique representation for a given RNA secondary structure. 
Different geometrical properties of the curve are studies in details, which reflect the basic 
characteristics of the RNA secondary structure. Some characteristic matrices  are derived from the 
definition of RNA secondary structure. 
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1 INTRODUCTION 

Ribonucleic acid(RNA) is an important molecule which performs a wide range of functions in 
the biological system. In particular, it is RNA(not DNA) that contains genetic information of virus 
such as HIV and therefore regulates the functions of such virus. RNA has recently become the 
center of much attention because of its catalytic properties, leading to an increased interest in 
obtaining structural information.  

Almost all comparison of primary RNA structures are based on the comparison of strings. As is 
well-known, string comparisons are computer intensive, and despite the fact that practical schemes 
for sequence comparison have been outlined, there are a number of steeps in such approaches that 
involve arbitrary decisions e.g., decisions on the relative weights of different elementary string 
operations: deletion, insertions, substitution, and penalties for unacceptable alignments. The 
similarity between two structures have been formulated as problems of exact and approximate 
structure matching, finding a largest common substructure of the structures and computing optimal 
alignments under general scoring functions [1-8].  In order to find the numerical characterizations 
of structures, several author study the secondary structures using mathematical model 
approaches.[9-13] 

In this paper, based on the special representation of three kinds of letters indicating the stack, 
external element and loop, we shall propose a 2-D graphical representation. Each RNA secondary 
structure corresponds to a unique curve representation and vice versa. In other words, each can be 
uniquely determined given the other. Therefore, the curve contains all the information that the 
secondary structure contains. It is found that the format of the curve can be of some advantages. 
Based on the mathematical definition of RNA secondary structure, some characteristic matrices are 
derived. 

2 METHODS and RESULTS 
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2.1 Characteristic Matrices and the connectivity index 
Definition (Waterman [1]): A secondary structure is a vertex-labeled graph on n  vertices with 

an adjacency matrix A  fulfilling 
(i) 11      11, −≤≤=+ nifora ii  
(ii)  For each i there is at most a single 1,1 +−≠ iik  such that 1, =kia  
(iii) If  1,, == lkji aa and jki <<  then jli <<  

Let 1−= ADM , where A is the vertex-adjacency matrix, D is the diagonal matrix with the 
elements )( iii dd ==D  the number of vertex connecting i. Similar as D.J. Klein's approach[14], we 
introduce the following matrices: 

2/12/1

2/12/1
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MDDH
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Where I-H is what sometimes called the normalized Laplacian matrix, L is call combinatorial 
Lapcian matrix. The wiener index W is also defined as ∑

≠

=
0

/1
λ

λW ,where λ  is the eigenvalues of 

L. The connectivity index is defined as ∑
≠

=
ji

ijH
2
1χ . 

 For example,(i) a secondary structure of RNA 

 
Figure 1: Substructure of AlMV-3 

(ii) The adjacency matrix A and the diagonal matrix D(from 3' to 5') 
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2  0  0  0  0  0  0  0  0
0  3  0  0  0  0  0  0  0
0  0  3  0  0  0  0  0  0
0  0  0  2  0  0  0  0  0
0  0  0  0  2  0  0  0  0
0  0  0  0  0  2  0  0  0
0  0  0  0  0  0  3  0  0
0  0  0  0  0  0  0  3  0
0  0  0  0  0  0  0  0  2

  ,

0  1  0  0  0  0  0  0  1
1  0  1  0  0  0  0  1  0
0  1  0  1  0  0  1  0  0
0  0  1  0  1  0  0  0  0
0  0  0  1  0  1  0  0  0
0  0  0  0  1  0  1  0  0
0  0  1  0  0  1  0  1  0
0  1  0  0  0  0  1  0  1
1  0  0  0  0  0  0  1  0

DA  

(iii) Markov matrix M 
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0    3/1     0       0      0       0     0       0    2/1
2/1   0     3/1     0      0       0     0      3/1     0
0     3/1     0    2/1     0       0    3/1     0       0
0       0    3/1     0     2/1    0      0       0       0
0       0       0    2/1    0     2/1    0       0       0
0       0       0      0    2/1     0    3/1     0       0
0        0    3/1     0      0    2/1     0     3/1     0
0      3/1     0      0      0       0   3/1     0    2/1

1/2      0      0      0      0       0      0    1/3      0

M  

(iv) H matrix 
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2/1    0     3/1       0        0       0        0         3/1       0
0     3/1     0      61/     0       0       3/1       0          0

0       0    61/      0       2/1     0        0         0          0

0       0       0       2/1       0     2/1      0         0          0
0       0       0         0       2/1     0       3/1      0          0
0        0    3/1       0         0    61/     0       3/1        0

0      3/1     0        0         0       0       3/1     0    6/1

1/2      0      0        0         0       0       0     61/        0
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(v) The connectivity index 4663.4
2
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(vi) The normalized Laplacian matrix I-H 
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1    61/-      0          0           0       0         0            0         2/1

2/1-    1       3/1-       0           0       0         0          3/1-            0
0       3/1 -      1      61/-       0       0       3/1-         0               0

0         0      61/-      1        2/1 -    0          0            0               0

0         0          0       2/1-       1      2/1-      0            0               0
0         0          0         0        2/1-     1       3/1-         0               0
0         0       3/1-       0         0     61/-     1          3/1 -            0

0       3/1 -      0          0         0        0       3/1-         1      6/1

1/2-      0         0          0         0        0         0       61/-             1

HI  

(vii) The combinatorial Laplacian matrix L 
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2    1-   0    0    0    0    0    0     1
1-   3    1-   0    0    0    0     1-     0
0    1-   3    1-   0    0    1-   0       0
0    0    1-   2    1-   0    0    0       0
0    0    0    1-   2    1-   0    0       0
0    0    0    0    1-   2    1-   0       0
0    0    1-   0    0    1-   3     1-     0
0    1-   0    0    0    0    1-    3    1
1-    0    0    0    0    0    0     1-     2

L  

(viii) The Wiener number index 8827.41
0

== ∑
≠λ λ

W  

2.2   2-D  graphical representation of RNA secondary structures  
Lemma [10]   Any secondary structure ψ  can be uniquely decomposed into stacks, loops, and external elements. 
     Consider the RNA secondary structure with n residues first. Usually the sequence has the form 

LSEESLLSE , where S, L, and E denote the stacks , loops, and external elements, respectively. 
Suppose that the cumulative numbers of stacks, loops, and external elements occurring in this 
sequence from the first residue to the nth residue are denoted by nn βα ,  and nγ , respectively. 
Obviously, nnnn =++ γβα . 

 
Figure 2 

The three integers nn βα ,  and nγ  can be mapped onto a point within the following regular 
triangle: considering the regular triangle ABC ∆  with the height equal to n, as shown in Figure 2, 
we find that the sum of the three sides is equal exactly to n. The point P to the sides BC, AC, and 
AB be equal to nn βα ,  and nγ , respectively, as shown in Figure 2. The point P constitutes a 
mapping of the secondary structure content of the RNA concerned. This is a mapping of the one-to-
one correspondence. A Cartesian coordinates system is set up as shown in Figure 2. The coordinates 
of the point ),( yxPn  may be expressed in terms of nn βα ,  and nγ  as follows: 

( )

( )






−=+−=
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                              (1) 
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There are A, B, and C vertices in the triangle ABC ∆ . For convenience, the vector pointing to 
the A vertex from the origin O is said to be of an A direction. Any vector parallel to the A direction 
is said to be of the A direction, too. The definition of the B and C directions are completely similar. 
The vector pointing to the point nP  from the origin O is denoted by nr . The component of ir ,i.e. 

nx and ny  are calculated by Eq.(1). Let 1−−=∆ nnn rrr , then we have Property 1. 
Property 1 For any Nn ,,2,1 L= , here N is the length of the studied DNA sequence, the vector 

nr∆  has only three possible direction, i.e., either the  direction or the B or the C direction, 
depending on the n-th residue being either S or L or E, in the RNA secondary structure inspected. 
Furthermore, the length of nr∆ ,i.e., nr∆  , is always equal to nm +2 , for any Nn ,,2,1 L= .  
Proof: Actually, the components of nr∆ ,i.e., nx∆  and ny∆  can be calculated for each possible 
residue (S�L and E) at the n-th position of the DNA sequence by using Eq.(1). For example, when 

the n-th residue is S, we find  
3

1
−=∆ nx  and 

3
1

−=∆ ny . This result is independent of the 

conformation state of the (n-1)-th residue. The two numbers 
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3
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3
1  are called the direction of 

nr∆ . The direction number and the length of nr∆  for each possible residue type at the n-th position 
are summarized as follows. 
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Property 2  For any positive integers n, m and n>m, the vector equation mn rr =  is valid if 
only if 

(2) 
3

LLL
mn

mnmnmn
−

=== −−− γβα  

Where mnmn −− βα , , and mn−γ  are the cumulative numbers of the residues S,L, and E occurring in the 
subsequence from the m-th to the nth residue in the sequence inspected. 
Proof: Obviously, mn rr =  implies 0=− mn rr  that or 
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This leads to Eq.(2) immediately. Eq.(2) describes the loop property of the 2D graphical 
representation of RNA secondary structure. 
Property 3  The 2D representation possesses the reflection symmetry.  
Proof: Usually the sequence is expressed in the order from 5' to 3'. Suppose that the 2D 
representation for DNA sequence is described by ( ) Nnyx nn ,,2,1,0,, L= . Suppose again 
that the 2D representation for the reverse sequence, i.e, the same sequence but from 3' to 5' is 
described by ( )nn yx ˆ,ˆ , I find 
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for Nn ,,2,1,0 L= . 

3 CONCLUSIONS 

We have presented a 2D graphical representation for the abstract symbolic sequence of RNA 
secondary structure. The curve is the unique representation for a given RNA secondary structure. 
Different geometrical properties of the curve are studies in details, which reflect the basic 
characteristics of the RNA secondary structure. Some characteristic matrices  are derived from the 
definition of RNA secondary structure. Different structures have different characteristic matrices 
and different graphical representation . We also can  apply these numerical characterizations to 
make comparisons between RNA secondary structures. 
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