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Abstract 
Motivation. Multi-center integrals are certainly the building blocks of quantum chemistry packages ranging 
from semi-empirical to the so-called ab-initio. The efficiency (accuracy and speed) of the numerical methods 
used for the computation of such integrals is therefore of extreme importance since millions of these need to be 
computed for molecules of practical interest. In this work, the Lanczos τ  method is applied to derive a 
polynomial approximate to the so-called one-center expansion of Slater Type Orbitals (STOs). The procedure is 
applied to the three-center nuclear attraction integrals, which are essential not only in quantum chemistry but 
also to model electron-molecule scattering.  
Method. Starting with a spherical Slater Type Orbital a differential equation governing such functions is 
elaborated. The application of the Lanczos τ  to the differential equation enables us to obtain a polynomial 
approximate, and more importantly the corresponding absolute error.  Such an approximate is afterwards used in 
the master formula allowing the computation of multi-center integrals over STOs. 
Results. Numerical values for three-center nuclear attraction integrals are reported. Comparison with previous 
work is performed. 
Conclusions. Multi-center integrals over STOs are still a challenging problem. The case of nuclear attraction 
integral is among the problems that can be tackled with various approaches including the one presented in this 
work. However for fully functional quantum chemistry software using STOs to be efficient it is necessary to 
combine the best of all methods by selecting the most appropriate tool for each case.   
Keywords. Slater Type Orbital, multi-center integrals, Lanczos τ  method, Three-center nuclear attraction 
integrals, Static potential. 

Abbreviations and notations 
STO, Slater Type Orbital  ODE, ordinary differential equation 
GTO, Gaussian Type Orbital LCAO, Linear Combination of Atomic Orbitals 

1 INTRODUCTION 

From the early days of quantum chemistry, it has been recognized that STOs are suitable 
functions to be used in the elaboration of the LCAO ansatz [1]. However, because of the difficulties 
inherent to the evaluation of multi-center integrals, such functions have never been used as part of 
an efficient package that could be used in an operational and routine framework. It is to be 
mentioned that over the past decades, attempts have continuously been made to solve the bottleneck 
of multi-center integrals ([2]-[26] and references therein). GTOs were proposed because they 
provided a “miraculous” solution to the problem of multi-center integrals [27]. As a consequence, 
GTOs became the very foundation of the most widely used ab-initio packages since they offered a 
cost efficient way to perform quantum chemistry investigation of large systems with few hundreds 
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atoms.  

Among the arsenal of methods proposed to tackle the problem of multi-center integrals over 
STOs is the so-called one-center expansion which dates as back as 1951 with the pioneering work 
of Barnett and Coulson [11]. Such an approach is essentially an addition theorem allowing a 
displaced STO to be expressed as an infinite series in which the electron variables and the 
geometrical parameters of the molecule are separated. 

In previous work [18], it has been established that the addition theorem of STO poses serious 
challenges since its convergence deteriorates when being close to the cusp. As a consequence, non-
linear sequence transformations emerge as a necessary tool to be applied in connection with the 
approach based on such an addition theorem [18]. Although convergence accelerators dramatically 
improve the efficiency of the summation procedure, starting with a well behaving expansion will 
definitely be beneficial since this will increase even more the overall efficiency of the numerical 
algorithms. Based on this remark, we address the possibility of deriving a polynomial approximate 
for a displaced STO.  

2 Mathematical Preliminaries 

A STO centered on the origin is usually defined as, 
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where the is the associated Legendre function and is defined as [29] (p. 174), )(cos|| θm
lP

( ) ( ) ( )









 −








−−=








−−=

+

!2
11)1()(1)1()(

2||
2/||2

||
2/||2||

l
z

zd
dzzP

zd
dzzP l

lml
ml

l

m
mmm

l  (3) 

Of course in the case of a molecular system using the LCAO approximation, the spherical 
symmetry can no longer be sufficient and STOs are generally centered on the nuclei defined by the 
some location vector with respect to some reference framework. In such a case, the definition in 
equation (1) is re-written as, 

ar
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rAs can be seen from equation (4), the electron variable r and the molecular geometrical parameter 
are inter-connected. The aim of an addition theorem is therefore to express the STO in such a way 

as the terms 
ar

rr and end up separated. One such theorem, which can easily be obtained by 
differentiating the Gegenbauer addition theorem, can be written as [29] (p. 107),  
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where  represents the Lengdre polynomial of degree l  and the terms are defined 
recursively as, 
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in which the terms and stand for the modified Bessel functions [30] (p. 80) and )(2/1 zI l+ )(2/1 zKl+

<ρ and >ρ for and respectively. Here it should be mentioned that variations of 
the above formulation were used as a starting point for numerical procedures geared towards an 
efficient evaluation of multi-center integrals. In the work of Jones and co-workers [15] many 
analytical forms, based on the so-called C matrix method, were derived for selected integrals. In 
such formulas the expansion coefficients were rational numbers, which made them suitable for 
benchmarking using symbolic algebra systems. In the following, for sake of simplicity but without 
loss of generality, emphasis will be put on the radial part of a STO as given by the left hand side of 
equation (5).  

), ramin( ), ramax(

2.1 Polynomial Approximation of STO Addition Theorem 
The addition theorem as given by equation (5) is analytically attractive since it is expressed as a 

series in terms of Legendre polynomials. The coefficients  can be computed using 

some special routines usually based on the 3-term recurrence relations satisfied by Bessel functions 
[30] (p. 80) or some other form including their integral representations [31]. For numerical work it 
was shown [18] that the convergence of the series (5) poses challenging problems since it 
deteriorates when 

),,(2/1 raAn
l ς+

r gets closer to a . Indeed for ar = the convergence of the series in (5) becomes 
logarithmic hence leaving no choice but to turn to convergence acceleration techniques based on 
non-linear sequence transformations. The polynomial approximation aims at deriving a finite 
approximate to the left hand side of equation (5) along with the corresponding error due to the 
truncation of the series representation. In doing so, the error is known hence allowing to assess the 
accuracy of the results. In the rest of this section we describe the procedure to be used in order to 
derive a polynomial approximate to the addition theorem in (5) using the Lanczos τ method [32]. 
Historically Lanczos approximation method was applied from the earliest days of automatic 
computing to derive polynomial approximates to transcendental functions [33] and Clenshaw’s 
procedure ([33], [35]), referred to as economization of infinite series, is certainly its widely used 
form. To apply the τ  method we first need to derive the ODE satisfied by the radial part of STO. 
Writing such a radial term as, 
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some algebra the ODE satisfied by the right hand side of equation (7), 
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Before going any further, it is of importance to notice that because the parameter  involved in z
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equation (7) appears in the ODE (8) with an even power, the same ODE should be satisfied by, 
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or any linear combination of the above. To apply the Lanczos τ method, we first assume a 
polynomial expansion for . However, because is now approximated, equation (8) is no 

longer valid. Instead, its right hand side must be replaced by an error term, which in a way is a 
measure of the accuracy of the assumed approximation. This yields a linear system the solution of 
which yields the polynomial coefficients 
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where 1  and 1−≤≤ Np { }N
N

NN CCC ,,, 10 L  are the coefficients of the Chebyshev polynomial of the 
first kind T  [30]. As for the )(zn τ parameter, which represents the accuracy of the approximate, it is 

determined by some initial condition. Because, the solution of the ODE in (8) is a linear 
combination of the terms in (9), the regular solution at infinity is determined by the following, 
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2.2 Nuclear Attraction Integrals 
Nuclear attraction integrals are quantities defined as, 
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Using the Laplace representation of the Coulombic interaction potential, 
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In combination with the polynomial approximate as derived using the Lanczos τ method (c.f. 
equation 10), one ends up with an infinite series of the form, 
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As for the computation of the above series, the radial terms are evaluated using a combination of 
Gauss-Legendre and Gauss-Laguerre quadratures. In proceeding this way we ensure that the partial 
sums of the above series are computed accurately [18]. Regarding the angular terms, these are first 
expressed as combinations of the well-known Gaunt coefficients for which computer code is 
already available in the literature [34]. To increase the efficiency of the procedure handling the 
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summation of the series (14) Wynn’s [36]ε algorithm is applied. The choice of such an accelerator 
is based on our previous investigation [18] of the nuclear attraction integral in which a theoretical 
argument was presented to explain why the ε  algorithm performs better than the Levin 

transformation [37]. u

3 RESULTS AND DISCUSSION 

Two major results are provided in this work. First, applying the Lanczos τ method allows one to 
obtain a polynomial approximate of the addition theorem of STOs. To illustrate the advantage of 
using Lanczos τ method, we have listed in table (1) the coefficients of the polynomial approximate 
obtained for a 1s STO, |)0.3|,5.1(0

0,1 kr
rr

−χ , located on the z-axis. On the cusp, i.e. ar = , the series 

expansion (5) is known to be logarithmically convergent [18], hence requiring thousands of terms to 
be summed in order to achieve convergence. On the contrary a polynomial approximate of degree 
20 computed by means of Lanczos τ  method allows one to evaluate the same series (5) with a high 
degree of accuracy (error in the order of 10-20) and extremely fast. 

Table 1 Lanczos τ method coefficients corresponding to a 1s STO with the parameters, 5.1=ς , 3=a  and 
ar = (on the cusp). Numbers in brackets denote powers of 10. 

n  na  na  na  

0  2.90270214243746[ 2]    2.90271536375708[ 2]  2.90271536375693[ 2]  
1 -9.23628692089880[ 2]   -9.23632891847663[ 2] -9.23632891847618[ 2]  
2  1.23858592263836[ 3]    1.23859142994010[ 3]  1.23859142994004[ 3]  
3 -9.39330456582493[ 2]   -9.39334790022894[ 2] -9.39334790022834[ 2]  
4  4.57974203096526[ 2]    4.57977275247655[ 2]  4.57977275247641[ 2]  
5 -1.54954101477319[ 2]   -1.54954144775564[ 2] -1.54954144775711[ 2]  
6  3.83543454867823[ 1]    3.83517218144107[ 1]  3.83517218142957[ 1]  
7 -7.21944943795341[ 0]   -7.22152133365157[ 0] -7.22152133291221[ 0]  
8  1.06335790093702[ 0]    1.06664219088861[ 0]  1.06664219146854[ 0]  
9 -1.29103493098012[-1]   -1.26657942734321[-1] -1.26657944550326[-1]  
10  1.37597143959723[-2]    1.23379951507955[-2]  1.23379936724341[-2]  
11   -1.00275048939097[-3] -1.00274808809830[-3]  
12    6.89736316450617[-5]  6.89756193791877[-5]  
13   -4.06367837942569[-6] -4.06531357479104[-6]  
14    2.08847712909750[-7]  2.07498298267557[-7]  
15   -9.72222111821248[-9] -9.25772177233801[-9]  
16    3.64024254574633[-10] 
17   -1.27074184206376[-11] 
18    3.96351573618861[-13] 
19   -1.11458064883464[-14] 
20   2.89362283832071[-16] 
τ  -1.08841490827515[-3] 2.40325900444095[-11] -2.23525476364114[-20] 

 

Second, nuclear attraction integrals appearing as part of the potential energy matrix in molecular 
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structure calculations were calculated using the scheme described above. It was found that the 
present values are in good agreement with those previously published in the literature. Indeed, using 
HCN and H2O as case studies, cf. table (3) and (4), it can be seen that a good agreement is obtained 
when comparing the values generated with the method described above with those of other 
approaches.  

Table 2 Atomic orbital parameter describing the ground state of the HCN molecule 

Atom Atomic orbital and 
screening constant 

H 1s 1.24 
1s 5.67 
2s 1.61 
2p(z) 1.56 C 

2p(x, y) 1.54 
1s 6.66 
2s 1.94 
2p(z) 1.92 N 

2p(x, y) 1.80 
 
Table 3 Selected three-center nuclear attraction integrals and comparisons with previous work. Numbers in 
parenthesis denote powers of 10. 

Integral This work Reference[18] Alchemy[39] DTest* 
)(1|)(1 CsHs  2.945496054(-1) 2.945496054(-1) 2.945496054(-2) 2.945494454(-2)

)(2|)(1 CsH  1.606646078(-1) 1.606646078(-1) 1.606646041(-1) 1.606645937(-1)
)(2|)(1 CpzH  -1.163866018(-1) -1.163866018(-1) -1.163866018(-1) -1.163865846(-1)

)(1|)(1 NsCs  3.710041454(-5) 3.710041454(-5) 3.710041454(-5) 3.710152495(-5)
)(2|)(1 NsCs  2.695528880(-2) 2.695528880(-2) 2.695528880(-2) 2.695532230(-2)

)(2|)(1 NpzCs  -4.621491513(-2) -4.621491513(-2) -4.621491513(-2) -4.621497451(-2)
)(1|)(2 NsCs  1.408177370(-2) 1.408177370(-2) 1.408177370(-2) 1.408441969(-2)
)(2|)(2 NsCs  1.467233406(-1) 1.467233406(-1) 1.467233406(-1) 1.467232649(-1)

)(2|)(2 NpzCs  -1.530415963(-1) -1.530415963(-1) -1.530415963(-1) -1.530415938(-1)
)(2|)(2 NpxCpx  1.009914329(-1) 1.009914329(-1) 1.00914329(-1) 1.009914330(-1)

* Values computed with the code based on the Legendre-Mobius quadrature [38] for which the controlling parameter are 
LRM 90| 30, 20; 1(-6) | 20, 16; 1(-7) | 10, 10; 1(-8) 

 
Table 4 Three-center nuclear integrals over STOs. The values were generated for H2O defined in spherical 
coordinates as, O(0,0,0), H1(1.81, 52.5°, 0.0), H2(1.81, 52.5°, 180°) 

Integral 1ς  2ς  This work* DS † 
)(1|)(1 1HsOs  7.67 1.21 0.3067870371(-1) 0.3067870402(-1)  
)(1|)(2 1HsOs  2.09 1.21 0.2313538733 0.2313538730 

)(1|)(2 1HsOpz  1.50 1.21 0.1710199941 0.1710199961  

 

5 
BioChem  Press http://www.biochempress.com 
 



Internet Electronic Journal of Molecular Design 
 

)(1|)(2 1HsOpz  3.50 1.21 0.7740274814 0.7740274802(-1)  
)(1|)(2 11 HsOp  1.50 1.21 0.7699878531(-1) 0.7699898494(-1)  
)(1|)(2 11 HsOp  3.50 1.21 0.2997862984(-1) 0.2997862979(-1)  
)(1|)(2 11 HsOp−  1.50 1.21 -0.7699878531(-1) -0.7699898494(-1)  
)(1|)(2 11 HsOp−  3.50 1.21 -0.2997862984(-1) -0.2997862979(-1)  

)(1|)(1 1HsOs  7.67 1.25 0.3000060089(-1) 0.3000060106(-1) 
)(1|)(2 1HsOs  2.09 1.25 0.2269676906 0.2269676902  

)(1|)(2 1HsOpz  1.50 1.25 0.1700603512 0.1700603538  
)(1|)(2 1HsOpz  3.50 1.25 0.7739215284(-1) 0.7739215272(-1)  
)(1|)(2 11 HsOp  1.50 1.25 0.7936141395(-1) 0.7936139417(-1)  
)(1|)(2 11 HsOp  3.50 1.25 0.3124157383(-1) 0.3124157378(-1) 
)(1|)(2 11 HsOp−  1.50 1.25 -0.7936141395(-1) -0.7936139417(-1)  
)(1|)(2 11 HsOp−  3.50 1.25 -0.3124157383(-1) -0.3124157378(-1)  

*The abbreviations 2  and refer to STOs defined by the quantum numbers, (n=2, l=1, 
m=1) and (n=2, l=1, m=-1). 

1p 12 −p

†Values computed using the method based on the DS  approach, cf. refs [23] and [24] 
Beyond the numerical values of isolated integrals, it is to mentioned that nuclear attraction 

integrals are of prime importance in the field of electron/positron – molecule scattering. Indeed, in 
the framework of perturbation theory the first order correction of the energy is given by, 

)(
||

)()( 00 x
sx

qxsV
i i

s
r

rr
rr

Ψ
−

Ψ= ∑  (5) 

where )(0 xrΨ  stands for the wave function of the isolated target in which  represents the 

coordinates of bound electrons (collectively) while 

xr

sr is the location of the incoming projectile 
whose charge is . This clearly illustrates the importance of having an accurate scheme for the 

evaluation of nuclear attraction integrals.   

q

 4 Conclusion 

Perhaps the major difficulty in using the one-center expansion method (5) is the elaboration of an 
efficient summation procedure enabling a fast computation of multi-center integrals occurring in 
quantum chemistry. This work constitutes a first step towards eliminating/reducing the convergence 
difficulties inherent to the addition theorem (5). However, it has to be mentioned that an efficient 
procedure is yet to be elaborated since the computation of the coefficients of Lanczos polynomial 
approximate, as described by equation (10), requires solving a linear system which for each value of 
the integration variable r . This clearly introduces undesirable overhead, which slows the numerical 
procedure. On the bright side of things, this work provides a proof of concept that molecular 
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integrals over STOs can benefit from such a technique as the Lanczos τ method.  
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