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Abstract

Motivation. The protein product of the human ether-a-go-go gene (hERG) is a potassium channel that when
inhibited may lead to cardiac arrhythmia. At present various in vivo and in vitro models for QT prolongation and 
subsequent arrhythmia exist but they may not be entirely predictive for humans. Consequently a fast and reliable
in silico screen for the prediction of hERG affinity values would increase the screening rate and would also
lower the cost compared to experimental assay methods.

Method. In this communication different approaches were employed to predict hERG K+ channel affinities.
First of all different QSAR models were developed employing various molecular descriptors. Then independent
software were used to predict hERG activity values: Qikprop and PASS. The software QikProp (Schrödinger,
L.L.C) allows to predict pharmaceutically relevant properties for organic molecules, starting from their 3D 
structures and employing calculated physically significant descriptors. In addition to cell permeability, logP,
solubility, blood/brain barrier permeability, the program can also predict hERG K+ channel affinity values.  As 
an independent approach, the program PASS - Prediction of Activity Spectra for Substances - (V. Poroikov, D.
Filimonov & Associates) that can predict several hundreds biological activity probability values, such as 
pharmacological effects, mechanisms of action, toxicity and metabolism reactions, was trained to predict the
probability of hERG activity.

Conclusions. The availability of different and independent methods and models able to predict hERG activity 
allow the application of a consensus criterion to be used as a filter in the discovery process.

Availability. DRAGON (Talete, srl,) www.telemacus.it - MODDE (Umetrics AB) www.umetrics.com - PASS 
www.ibmh.msk.su/PASS/ - QikProp (Schrödinger, L.L.C) www.schrodinger.com - SIMCA-P+ (Umetrics AB) 
www.umetrics.com  - Spartan’02 (Wavefunction, Inc) www.wavefun.com -
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1 INTRODUCTION 

Drug-induced QT interval prolongation, as measured on the human electrocardiogram, was once 

considered a trivial physiological finding. Now it is believed that drug-induced QT interval 

prolongation, that has been identified as a critical side effect for numerous drugs, might result in 

sudden cardiac death. As a consequence, a number of prescription medications associated with QT 

prolongation have been removed from the market. The normal quasiperiodic electrical activity of 

the heart is the result of the flow of ions through channels in the membranes of myocardial cells. 

Drugs affect ventricular repolarization by interfering with the opening and closing of these 

channels. The focus of many in vitro studies to date is the membrane-bound inward (rapid 

activating delayed) rectifier potassium channel (IKr) also known as the product of the human ether-

a-go-go gene (hERG). Drugs or their metabolites may block this channel, thereby prolonging the 

QT interval and in same cases leading to the potentially life-threatening ventricular arrhythmia that 

may degenerate into ventricular fibrillation and sudden death. At present blockade of hERG K+

channel is an unwanted side effect that must be detected as early as possible during drug 

development [1]. 

Since various in vivo and in vitro models for QT prolongation and subsequent arrhythmia exist 

but they may not be entirely predictive for humans, the availability of in silico methods in the early 

phase of drug development would dramatically increase the screening rate and would also lower the 

costs compared to experimental assay methods. The possibility of a computational hERG model to 

be used as a filter in the discovery process would add an extra dimension to lead optimization. Both 

a quantitative and a qualitative model would theoretically enable virtual selection of candidates with 

the lowest potential to cause hERG inhibition.

Recent studies on hERG K+ channels involve pharmacophore mapping and CoMFA study. Both 

approaches, however, are based on the assumption that different compounds bind to the same

binding site of the channel using similar binding modes. On the contrary, it is reasonable to assume

that the binding affinity of a given compound may vary as a function of the channel states 

(activated/inactivated), and that structurally diverse molecules may adopt different binding modes.

Such considerations are not compatible with a single pharmacophore model nor with a common

alignment criterion. 

In this study different and independent computational approaches are used to predict hERG K+

channel affinities in order to allow a consensus criterion in classify compounds as active or inactive 

towards hERG K+ channel. 
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2 MATERIALS AND METHODS 

2.1 Chemical Data 
Table 1 – pIC50 values of the data set. 

Primary ID No. pIC50
* pIC50

** pIC50
*** Primary ID No. pIC50

* pIC50
** pIC50

***

astemizole 1 9 - 8 imipramine 36 5.5 5.5 5.5
cisapride 2 8.2 8.2 7.4 granisetron 37 5.4 5.4 -
E-4031 3 8.1 7.7 7.7 flecainide 38 - - 5.4
ibutilide 4 - - 8 citalopram 39 - - 5.4

dofetilide 5 7.9 - 8 norclozapine 40 - - 5.4
sertindole 6 7.9 7.8 8 mefloquine 41 - - 5.3
pimozide 7 7.7 7.3 7.3 cocaina 42 5.2 - 5.1

haloperidol 8 7.6 7.6 7.5 dolasetron 43 5.2 4.9 4.9
norastemizole 9 7.6 - 7.6 perhexiline 44 5.1 5.1 5.1

droperidol 10 7.5 - 7.5 amitriptyline 45 - - 5
thioridazine 11 7.5 - 6.4 nitrendipine 46 - - 5
terfenadine 12 6.9 6.7 6.7 amiodarone 47 - - 5
verapamil 13 6.8 6.8 6.9 2-Hydroxymethyl

olanzapine
48 - 4.9 -

ziprasidone 14 6.8 6.9 6.9 carvediol 49 - - 4.9
domperidone 15 6.8 - - desmethyl

olanzepine
50 - 4.9

risperidone 16 6.8 6.8 6.8 diltiazem 51 4.8 4.8 4.8
loratadine 17 6.8 - 6.8 chlorpheniramine 52 - - 4.7
clozapine 18 6.7 6.5 6.5 fexofenadine 53 4.7 - -

halofantrine 19 6.7 6.7 6.7 sparfloxacin 54 4.6 - 4.7
olanzapine 20 - 6.6 6.7 diphenhydramine 55 - - 4.6
terikalant 21 - - 6.6 cetirizine 56 - - 4.5

mesoridazine 22 - 6.5 6.5 N-des
methylclozapine

57 - 4.5 -

quinidine 23 - - 6.5 A 56268 58 - - 4.5
mizolastine 24 6.5 - 6.4 nifedipine 59 - - 4.3

bepridil 25 6.3 - 6.3 glibenclamide 60 4.1 - -
azimilide 26 6.3 - 5.9 grepafloxacin 61 4.1 - 4.3

ondansetron 27 - 6.1 6.1 disopyramide 62 - - 4
vesnarinone 28 - 6 6 sildenafil 63 4 5.5 5.5

9-OH risperidone 29 - 5.9 - epinastine 64 - - 4
desipramine 30 - 5.9 5.9 moxifloxacin 65 3.9 - 3.9
mibefradil 31 5.8 - 5.8 gatifloxacin 66 3.9 - 3.9

chlorpromazine 32 5.8 5.8 5.8 trimethoprin 67 - - 3.6
fluoxetine 33 - - 5.8 nicotine 68 - 3.6 3.6

ketoconazole 34 - - 5.7 levofloxacin 69 - - 3
alosetron 35 - 5.5 5.5 ciprofloxacin 70 - - 3

*    Experimental data from [2a]    **  Experimental data from [2c]   *** Experimental data from [2b]
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Figure 1 – Structures of the data set
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The data set is formed by 70 compounds with experimental hERG IC50 values retrieved from the 

literature [2] (Table 1, Figure 1). 

2.2 Descriptors 

2.2.1 EVA descriptor 

The derivation of the EVA descriptor has previously been described elsewhere [3] and only a 

brief description of the technique will be given here. The descriptor is derived from IR- and Raman-

range molecular vibrational frequencies usually calculated through the application of a normal

coordinate analysis (NCA) to an energy minimized structure. For a compound with N atoms there 

are 3N – 6 (or 3N – 5 for a linear structure such as acetylene) normal modes of vibration. Thus, 

except in the special case where each structure has the same number of atoms, the number of 

frequencies will be different for each structure; that is, the property is in non-standard form. A 

technique has thus been developed in order to standardize the property such that each compound is 

characterized by an equivalent-length descriptor. The frequency set for a given structure is projected 

onto a linear bounded frequency scale (BFS) covering a range from 1 to 4000 cm-1. A Gaussian 

kernel of fixed standard deviation (s) is then placed over each and every eigenvalue. The BFS is 

then sampled at fixed increments of L cm-1 and the value of the resulting EVA descriptor at each 

sample point is the sum of the amplitudes of the overlaid kernels at that point. This procedure is 

repeated for each dataset compound and then combined to provide a matrix with M rows 

(compounds) and 4,000/L columns (descriptor variables). Typically, a descriptor set has been 

derived using a s of 10 cm-1 and an L of 5 cm-1 giving 800 descriptor variables. For a standard 

QSAR dataset the number of variables is thus much larger than M and Partial least square to Latent 

Structure (PLS) is hence used to provide a robust regression analysis.

2.2.1 DRAGON descriptors 

DRAGON descriptors are more than 1600 molecular descriptors listed in Table 2 divided into 20 

logical blocks [4]. 
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Table 2 – Molecular descriptors calculated by DRAGON 

Molecular Descriptors No. Molecular Descriptors No.

Constitutional descriptors 48 Randic molecular profiles 41

Topological descriptors 119 Geometrical descriptors 74

Walk and path counts 47 RDF descriptors 150

Connectivity indices 33 3D-MoRSE descriptors 160

Information indices 47 WHIM descriptors 99

2D autocorrelations 96 GETAWAY descriptors 197

Edge adjacency indices 107 Functional group counts 121

Burden eigenvalues 64 Atom-centred fragments 120

Topological charge indices 21 Charge descriptors 14

Eigenvalue-based indices 44 Molecular properties 28

2.3 Statistical analysis 

PLS modeling has been used to investigate likely correlations between EVA and experimental

pIC50 values and, respectively, descriptors generated by DRAGON and experimental pIC50 values. 

The optimal number of components in each PLS model was determined by SIMCA-P+ default 

cross-validation procedure. Different approaches were explored in order to obtain the best models in 

terms of stability and predictivity: (a) variables selection carried out with 2 different protocol: (a1) 

on the basis of VIP parameter and coefficient values and (a2) employing a genetic algorithm

implemented in GAVS (Computer Chemistry Lab., Bracco Imaging SpA); (b) SIMCA-P+ 

Orthogonal Signal Correction (OSC) algorithm, used to remove from X data matrices information

that is orthogonal to Y. 

All PLS models here reported were generated considering just the experimental values found in 

ref. 2(b). Initial models were generated using all 62 compounds - strong outliers were detected and 

then excluded employing PCA on each X data matrix. The best models were further validated 

considering half of the compounds as training set and the rest as external test set. Training and test 

sets were generated by means of Onion/D-Optimal Design. 

2.2.1 Software

EVA. Energy minimization and normal coordinate analysis needed to derive EVA descriptor 

were carried out by means of Spartan’02 (Wavefunction, Inc.) employing Merck Force Field. 

Calculation of EVA descriptor from vibrational frequencies was carried out using the proprietary 

program EVA-02 (S-IN). 

DRAGON is a software package for the calculation of molecular descriptors developed by 

Milano Chemometrics and QSAR Research Group. It allows calculation of more than 1600 
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molecular descriptors for thousands of molecules (Talete, srl). 

PASS (Prediction of Activity Spectra for Substances) (V. Poroikov, D. Filimonov & Associates) 

[5] predicts the probability for any given compound to be active (Pa) or inactive (Pi) for each one of 

over 1000 biological activities, including pharmacological effects, mechanisms of action, 

mutagenicity, carcinogenicity, teratogenicity, and embryotoxicity. Pa and Pi values vary from 0 to 1, 

and their sum may be different than 1. PASS predictions are based on the analysis of structure-

activity relationships for a training set including a great number of non-congeneric compounds with 

different biological activities, using the descriptor Multilevel Neighborhoods of Atoms (MNA). 

PASS training set consists of over 46,000 biologically active compounds: 16,000 are already 

launched drugs and 30,000 drug-candidates under clinical or advanced preclinical testing. 

QikProp (Schrödinger, L.L.C.) [6] has been developed by Prof. Bill Jorgensen at Yale 

University to rapidly predict ADMET properties of drug candidates. QikProp results have been 

fitted to datasets of drug-like molecules, based on 2-D and 3-D descriptors reflecting Monte Carlo 

simulation studies as well as experiment. QikProp predictions are calculation-based, as opposed to 

fragment based. Fragment-based methods can be problematic when they do not recognize parts of a 

structure or encounter unfamiliar fragment interactions, whereas QikProp will calculate properties 

based on the whole molecule. The advantage of this approach is that QikProp can be applied to new 

and unknown scaffolds.

Statistical analysis. PLS modeling and PCA were carried out with the software SIMCA-P+. 

MODDE was employed for the Onion/D-Optimal Design. 

3 RESULTS AND DISCUSSION 

3.1 QSAR models 

In order to have homogeneous biological data, QSAR analysis was conducted just on the 62 

compounds for which is available the experimental data found in ref. 2(b) (pIC50*** values in Table 

1). An initial PCA carried out on either EVA and DRAGON X matrix detected 3 outliers: 

compounds 44, 58 and 68 whose structure is quite different from all other compounds. These 3 

structures were not considered in further analysis. The remaining 59 compounds were divided into a 

training set and a test set 1 respectively formed by 29 and 30 compounds selected by means of a 

Onion/D-Optimal Design. Models were generated considering just the training set and their real 

predictive power was tested with the external test set. Results are reported in Table 3. SDEP values 

are calculated on the 30 compounds of the test set 1.

These models were also employed to classify molecules as active or inactive, considering 5.0 as 

threshold value of pIC50, predicted or experimental. A new test set was considered, test set 2 that 
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contains 38 compounds, formed by 30 structures of test set 1 and 8 structures whose biological data 

are from ref. 2a or 2c. According to experimental data, training set is formed by 21 molecules

classified as active, and 8 molecules classified as inactive; test set is formed by 26 molecules

classified as active, and 12 molecules classified as inactive. Fraction of compounds well classified 

according to predicted value of pIC50 are reported in Table 4. Consensus criterion assigns the 

activity class according to at least 3 of the 5 prediction available.

Table 3 – QSAR models results 
description X selection X PCs Obj. R2 Q2 SDEC SDEP

VIP, coef 320 2 29 0.843 0.736 0.591 0.932
DRAGON OSC 1421 1 29 0.995 0.979 0.092 0.980

GAVS 82 3 29 0.939 0.854 0.318 1.206
VIP, coef 112 3 29 0.915 0.649 0.374 1.023EVA

OSC 615 2 29 0.998 0.718 0.060 0.991

Table 4 – Fraction of compounds well classified 

Training set Test set 2 
Description X selection % active well

predicted
% inactive 

well predicted
% active well

predicted
% inactive 

well predicted
VIP, coef 86% 75% 88% 50%

DRAGON OSC 90% 88% 77% 58%
GAVS 95% 100% 73% 58%

VIP, coef 86% 88% 73% 67%
EVA

OSC 90% 100% 77% 67%

Consensus 1* 86% 100% 88% 67%
Consensus 2** 96% 67%

*   consensus according to QSAR models (5 predicted values) 
** consensus according to QSAR models, PASS and QikProp predictions (7 predicted values) 

3.2 PASS and QikProp predictions 

The program PASS was trained to predict the probability of hERG activity, using a set of

molecules with pIC50 values grater than or equal to 5.0. Preliminary studies choosing a PASS 

probability value (pa) of 0.3 show that 75% of active molecules and, respectively, 73% of inactive 

molecules are predicted correctly, leading to 12 false negative and 6 false positive.

Results of QikProp predictions: considering 5 as the pIC50 threshold value between active and 

inactive compounds, 2 molecules are predicted as false negatives and 12 as false positives, 

corresponding to 96% and 45% of active and inactive molecules well predicted. 

11

BioChem Press http://www.biochempress.com



Internet Electronic Journal of Molecular Design 2002, 1, 000–000 

12

BioChem Press http://www.biochempress.com 

Employing test set 2 it is possible to calculate the fraction of molecules well predicted as active 

or inactive according to a new consensus criterion (Table 4): assign the activity class according to at 

least 4 of the 7 prediction available.

4 CONCLUSIONS 

Employing different and independent approaches it is possible to obtain a consensus activity 

prediction able to well classify 96% of active molecules (1 false negative among 26 molecules) and 

67% of inactive molecules (4 false positives among 12 molecules) of a test set formed by 38 

compounds extracted from the literature.  
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