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Abstract 

Motivation. The discovery of drug leads is significantly accelerated by in silico screening of molecular libraries, 
that starts from a collection of chemical compounds with a high structural diversity and selects molecules 
according to their similarity toward specific collections of active compounds. In this process, the molecular 
similarity/diversity and the drug–like character are characterized with structural descriptors, such as structure 
keys, fingerprints, graph invariants and various topological indices computed from atomic connectivity or 
molecular matrices. 
Method. In this paper we present an efficient algorithm for the computation of the Ivanciuc–Balaban (IB)
structural descriptors for large combinatorial libraries using only molecular graph descriptors of the building 
blocks. The procedure is developed for vertex– and edge–weighted molecular graphs representing organic 
compounds containing heteroatoms and multiple bonds, and can be easily applied to any combinatorial library. 
Results. The new algorithm can be applied for IB topological indices derived from the distance D, resistance–
distance , and detour  matrices, and is significantly faster compared with the usual method for computing IB
topological indices. 
Conclusions. The proposed algorithm is efficient in computing IB structural descriptors in combinatorial 
libraries without actually generating the compounds, because only graph invariants of the building blocks are 
needed to generate the topological indices of any compound assembled from building blocks. 
Keywords. Combinatorial library; drug design; structural descriptor; topological index; virtual screening. 

1 INTRODUCTION 

In the drug discovery process combinatorial libraries (CL) and high–throughput screening (HTS) 
are efficiently used to identify biologically active molecules more rapidly than with the 
conventional approaches [1–4]. An efficient way to reduce the number of compounds that enter the 
HTS process is the in silico screening of CL, a process applied both to diverse and focused libraries 
with the aim to select for HTS the compounds with potential ‘drug–like’ characteristics and 
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sufficient diversity [5–8]. The process of virtual screening of combinatorial libraries (VSCL) starts 
from a wide selection of reactants that are used to generate in silico a huge number of chemical 
compounds. Then, the structural descriptors relevant for the investigated biological target are 
identified and computed for all compounds in the virtual library. Finally, the compounds for 
chemical synthesis and HTS are selected with a statistical algorithm that implements a similarity, 
diversity, or drug–like paradigm. 

In VSCL the chemical structure is translated into a numerical form with the aid of various 
structural descriptors, many of them traditionally used in QSPR and QSAR. To be efficient, the in 
silico compound screening uses descriptors that require small computational resources, such as 
counts of atom types, counts of functional groups, fingerprints, constitutional descriptors, graph 
invariants and topological indices. A recent VSCL method proposes to compute the structural 
descriptors of reaction products without actually assembling the molecules from the building blocks 
[9]; this algorithm can be applied to additive or nearly additive descriptors, or for descriptors that 
can be generated with a simple algorithm from the corresponding descriptors of reactants or 
building blocks and a proper representation of the chemical reaction that takes place. Considering 
the high importance of topological indices as structural descriptors used to measure the similarity, 
diversity, and drug–like character of chemical libraries, we have introduced several algorithms for 
the computation of the Wiener–type indices of combinatorial molecules, using only distance 
invariants of the corresponding building blocks [10,11]. 

In the present paper we extend the building block computation of topological indices for the 
Ivanciuc–Balaban operator and other descriptors based on the vertex sum and computed from the 
distance D, resistance–distance , and detour  matrices. 

2 MOLECULAR GRAPHS AND TOPOLOGICAL INDICES 

In the chemical graph theory [12], an organic compound containing heteroatoms and multiple 
bonds can be represented as a vertex– and edge–weighted molecular graph [13–16] in which the 
atom i is represented by the vertex vi and the covalent bond between atoms i and j corresponds to 
the edge eij from the molecular graph. A vertex– and edge–weighted (VEW) molecular graph G
consists of a vertex set V = V(G), an edge set E = E(G), a set of chemical symbols of the vertices Sy
= Sy(G), a set of topological bond orders of the edges Bo = Bo(G), a vertex weight set Vw(w) = 
Vw(w,G), and an edge weight set Ew(w) = Ew(G). The number of vertices in the graph G is 
|V(G)|.The elements of the vertex and edge weight sets are computed with the weighting scheme w.
Usually, hydrogen atoms are not considered in the molecular graph, and in a VEW graph the weight 
of a vertex corresponding to a carbon atom is 0, while the weight of an edge corresponding to a 
carbon–carbon single bond is 1. Also, the topological bond order Boij of an edge eij takes the value 1 
for single bonds, 2 for double bonds, 3 for triple bonds and 1.5 for aromatic bonds. 
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2.1 The Balaban Index J 
The Balaban index J = J(G) of the molecular graph G is defined by the formula [17,18]: 
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where DSi and DSj denote the distance sums of the vertices vi and vj that form the edge eij in the 
molecular graph G, M is the number of edges in the molecular graph,  is the cyclomatic number 
(the number of cycles in G,  = M – N + 1, where N is the number of atoms in the molecular graph), 
and the summation goes over the whole set of edges E(G) in the molecular graph. We recall here 
the distance sum of the vertex vi, DSi, defined as the sum of the topological distances between 
vertex vi and every vertex in the molecular graph, i.e. the sum over row i or column i in the distance 
matrix D [12,19]: 
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The Balaban index J was extended for molecular graphs containing heteroatoms and multiple 
bonds [20,21], and used with success in structure–property and structure–activity studies [13,19] 
and for the in silico screening of combinatorial libraries [8]. 

2.2 The Ivanciuc–Balaban Operator 
The Ivanciuc–Balaban operator IB represents an extension of the index J that can be computed 

with vertex invariants derived from any symmetric molecular matrix [14]: 
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where VSi(M,w,G) and VSj(M,w,G) denote the vertex sums of the two adjacent vertices vi and vj

that are incident with an edge eij in the molecular graph G, the summation goes over all edges from 
the edge set E(G), and w is the weighting scheme. The vertex sum for the atom i, VSi(M,w,G), is 
the sum of the matrix elements Mij(w,G) between vertex vi and every vertex in the molecular graph, 
i.e. the sum over row i or column i in the molecular matrix M [13]: 
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The Ivanciuc–Balaban operator can be applied to any symmetric molecular matrix [22], such as 
the adjacency A, distance D, reciprocal distance RD [23], resistance–distance  [24], path Szeged 
Szp [25], detour  [26], distance–valency Dval [27], distance–delta D  [28], or distance–path Dp

[28] matrices. When M is the distance matrix, VS represents the distance sum DS, and G is the 
molecular graph of a hydrocarbon the IB operator is identical with the J index. 
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3 FAST ALGORITHM FOR THE IVANCIUC–BALABAN OPERATOR 

The scope of the present investigation is to develop a fast and efficient algorithm for computing 
IB topological indices derived from the distance D, resistance–distance , and detour  matrices, 
and therefore it is important to estimate the computational complexity for computing the IB indices 
with Eqs. (3) and (4). We start the computational complexity analysis by considering the distance 
matrix D. For a molecular graph consisting of N atoms and M bonds, and starting from an N×N
matrix with all elements equal to zero, the connection table is translated into the adjacency matrix A
in O(M) computer operations. Because organic compounds have the maximum degree four, M
could not be larger than 2N, and we can approximate that the adjacency matrix A is obtained in 
O(N) operations. For each molecule the computation of the distance matrix D from the adjacency 
matrix A is performed in O(N3) operations (i.e. the computer time is proportional to N3) indicating 
that when N increases this part of the algorithm will consume the largest fraction of the 
computational resources. The computation of the vertex sums VS from D for all N atoms with Eq. 
(4) requires O(N2) steps, and O(M) computer operations are needed in Eq. (3) to obtain the IB
index. A comparison of the computational cost for obtaining the IB indices clearly indicates the 
most expensive step is the generation of the distance matrix D from the adjacency matrix A.
Because the computation of the resistance–distance matrix  is performed in O(N3) operations [11], 
the above analysis holds true also for IB( ), showing that the computation of the molecular matrix 
M is the most expensive step in obtaining IB(M). The computation of the detour  matrix is made 
by generating all weighted paths in the molecular graph, indicating that this step is the most 
demanding for obtaining IB( ). Our algorithm for the fast computation of IB(M,G) indices for 
combinatorial libraries eliminates the generation of the matrix M by computing the vertex sum 
vector VS(M,G) from graph invariants of the building blocks that form the molecular graph G.

We present now a formula for computing the vertex sum vector VS for a graph G–H obtained 
from two subgraphs G and H; in Figure 1 we present the structure of the graph G–H. Both 
subgraphs and the resulting graph G–H are vertex– and edge–weighted graphs, representing organic 
compounds containing heteroatoms and multiple bonds. 

Theorem 1. Let egh be a cut edge between two subgraphs G and H of G–H such that g G and h
H (see Figure 1). The vertex (atom) and edge (bond) parameters are computed with the weighting 

scheme w, the vertex sum VS is obtained from the molecular matrix M (M can be the distance D,
resistance–distance , or detour  matrix), and the matrix element between vertices g and h is 
mgh(w). Then the vertex sum VS for the vertex k, k G, in the graph G–H computed from the 
molecular matrix M, VSk(M,w,G–H), is 

),,()(),()(),,(),,( HwwmGwHVGwHGw hghkgkk MVSMMVSMVS (5)

Proof. Consider a vertex k from the subgraph G, k G, and the corresponding vertex sum 
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VSk(M,w,G–H) computed from the molecular matrix M. The vertex descriptor VSk(M,w,G–H) is 
the sum of two types of matrix elements from M(w,G–H), namely between k and all vertices from 
G, including k, as one can see from Eq. (4), and between k and all vertices from H. When the 
molecular matrix M is the distance D, resistance–distance , or detour  matrix, the matrix element 
Mkj between the vertex k from G and another vertex j from H can be partitioned into three 
contributions: Mkg, between vertex k and the cut vertex g; Mgh = mgh, between cut vertices g and h;
Mhj, between cut vertex h and the vertex j from H. The substitution of Eq. (4) in Eq. (6) completes 
the demonstration of Theorem 1: 
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Figure 1. The molecular graph G–H with a cut edge between the subgraphs G and H; the matrix 
element of the edge egh, computed with the weighting scheme w and the molecular matrix M, is mgh(w). 

The practical importance of Eq. (5) comes from the possibility to compute the vertex sum vector 
VS(M,w,G–H), and the corresponding IB indices, without generating the molecular matrix for the 
composed graph G–H; instead, VS(M,w,G–H) is obtained from the molecular matrices M and 
vertex sum vectors VS of the subgraphs G and H. The great saving in computer time comes from 
the much smaller dimension of the matrices M(w,G) and M(w,H), compared with M(w,G–H). 
Therefore, Eq. (5) is the core of an efficient algorithm for the fast computation of the IB indices for 
compounds from combinatorial libraries. Besides the IB indices, this procedure can be applied to 
speed–up the computation of any other structural descriptors obtained from the vertex sum vector. 
However, the method presented above can be applied only to the distance D, resistance–distance ,
or detour  matrices; with small modifications, the algorithm can be extended to other molecular 
matrices. 

The description of the fast algorithm for computing the Ivanciuc–Balaban indices from building 
blocks is presented for the general case when a chemical compound AB1…Bn is generated from a 
core structure A and n substituents B1, B2,…, Bn, as presented in Figure 2. 
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B2 B2
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Figure 2. Generation of combinatorial compounds from a core structure A and n substituents B1, B2,…, Bn.

Algorithm 1 

1. Consider a core structure A with n substitution atoms a1, a2,…, an and n substituents B1, B2,…,
Bn, each having one substitution atom b1, b2,…, bn, respectively. The final molecular graph is 
presented in Figure 2. 

2. Compute the matrix M (where M can be the distance D, resistance–distance , or detour 
matrix) with the weighting scheme w for the core structure A and the n substituents B1, B2,…, Bn,
i.e. M(w,A), M(w,B1), M(w,B2),…, M(w,Bn).

3. Compute the vertex sum vectors for all atoms in the molecular graphs A, B1, B2,…, Bn, i.e.
VS(M,w,A), VS(M,w,B1), VS(M,w,B2),…, VS(M,w,Bn).

4. Compute the edge elements )(wm
iiba  between all pairs of vertices {ai, bi}, for i from 1 to n.

5. For all atoms k from the core structure A, k V(A), compute the vertex sum vector in the final 
compound AB1…Bn:

n

i
ibbakaiknk BwwmAwBVAwBABw

iiii
1

1 ),,()(),()(),,(),,( MVSMMVSMVS (7)

6. For all atoms l from the substituent structure Bi, l V(Bi), compute the vertex sum in the final 
compound AB1…Bn:
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7. Use in Eq. (3) the vertex sum values computed in steps 5 and 6 to compute the corresponding 
IB index. 

We will now estimate the computational complexity of the Algorithm 1. The computational 
expenses of the above algorithm are shared between steps 1–4, in which the molecular matrices and 
vertex sum vectors for the building blocks A, B1, B2,…, Bn are computed, and a second phase (steps 
5 and 6) in which the vertex sum of the final compound AB1…Bn is obtained with Eqs. (7) and (8). 
Finally, in step 7, the IB index is computed from the VS vector. Similarly with the analysis of the 
standard procedure of computing the IB indices, we start the computational complexity estimation 
by considering the distance matrix D. The generation of the distance matrix D for the building 
blocks A, B1, B2,…, Bn, followed by the calculation of the vertex sum values for all atoms in the 
building blocks is the most computational demanding phase, because for a molecular graph G with 
|V(G)| vertices (atoms) the distance matrix D(G) is obtained in O(|V(G)|3) computer operations. 
However, we have to consider that the size of the building blocks is much smaller than that of the 
final compound AB1…Bn, and this computation is performed only once for the whole combinatorial 
library. We have to mention that for all building blocks A, B1, B2,…, Bn the molecular matrices 
M(w,A), M(w,B1), M(w,B2),…, M(w,Bn) and vertex sum vectors VS(M,w,A), VS(M,w,B1),
VS(M,w,B2),…, VS(M,w,Bn) must be stored in the memory during the computation of the IB
indices for a combinatorial library. The computation of the VS values for all atoms in the final 
compound AB1…Bn is performed in steps 5 and 6, in which Eq. (7) is computed for all atoms in A
and Eq. (8) is applied for all atoms in the substituens B1, B2,…, Bn; if we denote with N the total 
number of vertices in the final molecular graph AB1…Bn, this step has a computational complexity 
of O(nN), where n, in general, is not larger than 5. Finally, the computation of the IB index in step 7 
is performed in O(N) operations. It is now clear that the usual algorithm for computing the IB(D)
index with Eqs. (3) and (4), which involves O(N3) operations per compound, is much less efficient 
than the algorithm that uses Eqs. (7) and (8) to obtain the vertex sum values and involves O(nN)
operations per compound. Also, the larger is the combinatorial library the greater the relative 
efficiency of our algorithm that uses Eqs. (7) and (8) compared with the standard one. The above 
complexity analysis holds true also for computation of the IB index from  and  matrices. 

4 CONCLUSIONS 

Graph decomposition algorithms represent an efficient method for generating molecular graph 
invariants, which can be applied to speed-up the calculation of graph descriptors for the virtual 
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screening of combinatorial libraries. Using a graph algorithm for decomposing the Wiener index W
in additive contributions of the building blocks that form a molecular graph, we have proposed a 
very efficient method for obtaining W for combinatorial libraries [10,11]. In this paper we have 
extended the building block computation of topological indices for the Ivanciuc–Balaban operator 
IB computed from the distance D, resistance–distance , and detour  matrices. The procedure is 
developed for vertex– and edge–weighted molecular graphs representing organic compounds 
containing heteroatoms and multiple bonds, and can be easily applied to any combinatorial library. 
Also, the algorithm can be adapted for computing other descriptors based on the vertex sum vector, 
such as the Chi operator Chi(VS,M,w,G) [29], and for other molecular matrices, such as the 
even/odd molecular matrices [30,31]. 
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