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Abstract

A quantitative structure–activity study for the carcinogenic activity of methylated polycyclic aromatic
hydrocarbons is made on the basis of topological molecular descriptors derived from distance matrices and
optimized correlation weights of local graph invariants. The multilinear regression equations allow us to predict
correctly the carcinogenic activity of this set of compounds. Comparison with results derived from other
theoretical studies show a quite satisfactory behavior of the present method. Some possible future extensions are 
pointed out.
Keywords. Methylated polycyclic aromatic hydrocarbons; topological index; quantitative structure–activity
relationships; QSAR; distance matrix; correlation weights of local graph invariants.

1 INTRODUCTION

The biological responses to aromatic hydrocarbons are characterized by a high degree of
selectivity. A simple feeding of a massive but tolerable amount of some of the polynuclear aromatic 
hydrocarbons (PAHs) to rats yields pathological lesions representing cancer and necrosis. While
certain cells become malignant and massive areas of cellular death are found in other organs, the 
generality of the cells of the body are uninvolved and emerge quite uninjured from their encounter
with the conjugated hydrocarbons [1]. The possibility that carcinogenic aromatic hydrocarbons 
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might function at the molecular level by the formation of a charge transfer complex as a crucial
event was first considered by Pullman and Pullman [2]. They concluded that there was no general 
relationship between charge transfer capability and carcinogenesis, although some rough
correlations were observed in certain limited series of molecules.

PAHs represent a very interesting molecular set since they have a widely variable carcinogenic
power, encompassing very strong carcinogens to rather inactive ones [3–5]. Reasons why some of
these particularly resembling molecules possess carcinogenic activity while others do not have 
aroused a deep interest of the researchers and motivated intense efforts since the pioneering work of 
Cook [4]. During the last fifty years many theoretical approaches have been employed to test 
whether a given PAH possess or not carcinogenic activity [5]. In fact, theories using electronic and 
structural properties, statistical analysis, artificial intelligence, neural networks, and electronic 
indices methods were proposed and applied for this QSAR studies. Notwithstanding, practically all 
of them present some well define deficiencies and cannot describe the carcinogenic properties in 
satisfactory agreement with the available experimental data. One of the latest and more successful
methodologies to group and identify PAHs carcinogenic activity is formulated in terms of very 
simple rules based on the concept of electronic local density of states ever specific molecular
regions [5–8]. The authors have studied 81 methylated and non–methylated PAHs and their studies 
shoved that with the use of electronic indices with principal component analysis and artificial neural 
networks, it is possible to predict correctly the carcinogenic activity with a relative high accuracy, 
around 80%. 

The aim of this study is to explore the possibility to ameliorate those predictions through the 
employment of suitable topological descriptors based on the detour matrix and correlation 
weighting of local graph invariants. This proposal arises from several previous results obtained in 
our laboratory that demonstrated improvements over predictions obtained from the usual distance 
matrices and rigid topological descriptors [9–17]. 

2 MATERIALS AND METHODS 

2.1 Basic Definitions 
A recent trend in mathematical chemistry, chemical graph theory, QSAR/QSPR studies as well 

as predictive toxicology is the employment of graph theoretical invariants for the characterization of 
structure and prediction of properties. Graph theoretic indices have been used for isomer
discrimination and description of molecular frameworks [18–20], ordering of physicochemical
properties, biomedical, and toxicological properties [21–31]. In order to judge the value of this sort 
of studies and the need to resort to results derived from graph theoretical invariants, one can 
mention, for example, that in environmental toxicology the Toxic Substances Control Act Inventory 
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has more than seventy six thousands entries and most of these chemicals do not have the 
experimental data necessary for their hazard assessment [32,33]. Besides, more than 15 million
distinct chemical entities have been registered with the Chemical Abstract Service and the list is 
growing by nearly 775,000 per year. About 1,000 of these chemicals enter into use every year [34]. 
Few of these chemicals have the empirical data needed of risk assessment.

The Randi  connectivity index, the higher order indices defined by Kier and Hall, and the 
Balaban index J are derived from the adjacency and distance matrices of molecular graphs [19,20]. 
Two types of graphs, namely hydrogen–suppressed graphs and hydrogen–filled graphs, are often 
used to model molecular structure in chemistry. While in the former only the non–hydrogen atoms 
are considered, in the latter all atoms are represented by graph vertices. We show in Figure 1 the 
hydrogen–filled graph and hydrogen–suppressed graphs (G1 and G2, respectively) of 2–
methylbutane.

C C C C

C

H H H H

H

HH

H

HH

H

H

G1 G2
Figure 1. Hydrogen–suppressed and hydrogen–filled graph of methylbutane.

A graph G is a set of vertices (points or atoms, V) and edges (lines or bonds, E), which in terms
of the mathematical language is written as 

EVGG , (1)

G can be represented either by a geometrical or algebraic object, i.e. a matrix. The adjacency
matrix A associated with a given graph G is: 

jvandivverticesofpairadjacentanfor
otherwiseij

1
0A (2)

In Figure 2 we represent the adjacency matrix A corresponding to methylbutane.

1 2

3

4
5

01010
10010
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01101
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A

Figure 2. Adjacency matrix for methylbutane.

Two important molecular graph matrices are the distance matrix D and the detour matrix
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[35,36]. Another closely related distance matrix is that proposed by Rücker and Rücker [37]. They 
argued that the detour matrix has zeros as the diagonal elements without a convincing reason. So, it 
is more logical to define the diagonal elements as the length of the longest path from vertex i to 
itself (i.e. the size of the longest cycle containing the vertex i). We present below examples for these
three matrices for methyl–cyclopropane.

1

2
3 4

0112
1012
1101
2210

D

0223
2023
2201
3310

3223
2323
2231
3310

*

The term topological index was proposed by Hosoya [38] for characterizing the topological 
nature of a graph. It is an integer quite easily obtained from a graph by the specified recipe. As 
pointed out before, there have been proposed more than one hundred different topological indices 
for chemical graphs [39–72]. Among them let us introduce here only those chosen in the present
study.

2.1.1 The Wiener IndexW

The Wiener index W(w) = W(w,G) of a vertex– and edge–weighted graph G with N vertices is 
[60]:

N

i

N

ij
ijGwGwW

1
)],([=),( D (3)

where the distance matrix D(w) is computed with the weighting scheme w.

2.1.2 The Harary Index H

The reciprocal distance matrix RD(w) = RD(w,G) of a vertex– and edge–weighted molecular
graph G with N vertices is the square N×N symmetric matrix with real elements defined with the 
equation [58,59]: 

jiGw
jiGw

Gw
ii

ij
ij if)],([

if)],(/[1
)],([

D
D

RD (4)

where [D(w)]ij is the graph distance between vertices vi and vj, [D(w)]ii is the diagonal element
corresponding to vertex vi, and w is the weighting scheme used to compute the parameters Vw and
Ew. The Harary index is the sum of the diagonal and upper–triangle elements from the reciprocal 
distance matrix [59,61]: 

N

i

N

ij
ijGwH

1
)],([

2
1 RD (5)
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2.1.3 The Balaban Index J

The Balaban index (also called the average distance sum connectivity index) is a sort of Randi –
type formula [62] applied to distance sums [63]: 

)(

2/1

1+ GE
ji

MJ DSDS (6)

where DSi and DSj denote the distance sums of the vertices vi and vj of an edge eij in the molecular
graph G, M is the number of edges in the molecular graph,  is the cyclomatic number, and the
summation goes over all edges in the molecular graph, E(G). The distance sum of the vertex vi, DSi,
is defined as the sum of the topological distances between vertex vi and every vertex in the
molecular graph, i.e. the sum over row i or column i in the D matrix:

N

j
ji

N

j
iji

11
][][ DDDS (7)

2.1.4 The Molecular-topological Schultz index MTI

This index is defined as [64–66]: 
N

i
iaMTI

1
(8)

where ai are elements of the row matrix

naaaDAv ,...,, 21 (9)

with v the valence row matrix, i.e. the vector of all the vertex degrees of a given graph. Thus, the 2–
methylbutane valence row matrix is (see Figure 2) v = (1, 3, 1, 2, 1). As a natural extension of the 
definitions (3), (5), (6) and (8) based upon matrix D, we can define the associated indices Wi( ),
Wi(R ), J( ) and MTI( ) on the basis of the detour matrix and Wi( *), Wi(R *), J( *) and
MTI( *) indices computed from the Rücker matrix.

2.2 Variable Topological Descriptors 
Previous results [72] show clearly that simple regression involving a single descriptor restricts 

regression analysis considerably. Many correlations, particularly when involving molecules of 
different size, need not be linear. But even if we have molecules of the same or similar size, a 
quadratic regression may result in a better description of the relationship than a simple linear model
[73–83]. In general, one should test single or multiple regression analysis for quadratic dependence 
and, if warranted, for higher order polynomial relationships or other functional dependence. 

Flexible topological descriptors based on the optimization of correlation weights of local graph
invariants (OCWLGI) represent a valuable set of descriptors to use in QSAR/QSPR studies [9–17]. 
The inherent flexibility of these descriptors seems to be rather suitable to obtain satisfactory
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predictions of the properties and activities under study. The basic outline of the optimization
procedure is as follows [84,85]. The primary units of analysis are the atoms with their 
corresponding vertex degrees. Then, the graph invariants are formulated in the general form:

ii VDCWaCWfMD , (10)

where MD is the molecular descriptor,

itojoinedj
iji aa (11)

VD(i) is the extended connectivity value of the i–th vertex, defined as 

itojoinedj
i faVD (12)

CW(ai) and CW(VDi) are the correlation weights corresponding to atom i. CW descriptors are
calculated by means of an optimization procedure, i.e. they are determined in such a way to give the 
best correlation coefficient for the relationship under consideration by way of a trial an error
procedure.

MDFP (13)

where P stands for the physical chemistry property or biological activity. There is complete
freedom to choose the algebraic form of f and F functions. The most general polynomial form of the 
F function is 

NnPAF
k

k
k ,

0
(14)

while there are several possibilities to choose f. Some of the most simple equations for MD are 

edge
ii VDCWaCWMD (15)

edge
ii VDCWaCWMD (16)

edge
ii VDCWaCWMD (17)

edge
ii VDCWaCWMD (18)

GEjiVDCWaCWVDCWaCWMD
ji

jjii ,,
, (19)

After computing CW values, one resort to relationship (13) to calculate the final correlation
formula through a least squares procedure (i.e. to determine the optimum coefficients Ak for a 
molecular training set. Finally, the predictive capability of the method is tested with a different 
molecular set, i.e. the test set. In this study, OCW is based on hydrogen–filled chemical graphs, i.e.
G1 in Figure 1. As local graph invariants for calculations we have chosen the following ones: 
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jiofnumberiVD ,0 (20)

ji
jVDiVD

,
01 (21)

ji
jVDiVD

,
12 (22)

ji
jVDiVD

,
23 (23)

where (i,j) is an edge. We can see that VDX (X = 1, 2, 3) is a modified version of the Morgan vertex 
degree, i.e. extended connectivity [86]. Another group of local graph invariants used to define the 
DCW descriptor are the following ones: 

kjiofnumbeript ,,20 (24)

where j and k represent non–hydrogen vertices and (i,j) and (j,k) are edges.

ji
jptpt

,
20121 (25)

ji
jptpt

,
21122 (26)

An example for computing these descriptors is presented for 6,12-dimethylanthanthrene (Figure 
3) in Tables 1 and 2. 
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Figure 3. Molecular graph of 6,12-dimethylanthanthrene.

2.3 Carcinogenic Activity of Methylated PAHs
It is well know that PAHs are a class of molecules that can induce chemical carcinogenesis. In 

order to apply our approach based on topological molecular descriptors derived from the distance 
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and detour matrices and OCWLGI (optimized correlation weights of local graph invariants) to
identify carcinogenic activity in methylated PAHs, we have chosen a set of 49 molecules studied by 
Galvão [5–8] to apply several methodologies in structure–activity studies of PAHs compounds.

Table 1. CW(LGI) and CW(LGI)´s Values for LGI = VD2, pt21
VD2 pt21 VD2 CW(VD2) pt21 CW(pt21)

ai CW(ai) ai CW(ai) 15 0.469 10 0.287
C –0.637 C –0.613 16 0.616 11 –0.100
H –0.812 H –0.725 17 1.147 12 1.315

VD2 CW(VD2) pt21 CW(pt21) 18 2.083 13 1.169
5 –0.941 2 0.037 19 –0.497 14 2.798
6 0.375 3 0.363 20 –0.063 15 2.726
7 0.400 4 0.710 21 0.955 16 2.004
8 0.381 5 2.671 22 1.062 17 1.688
9 0.413 6 2.988 23 2.467

10 0.836 7 3.007 24 2.407
13 2.549 8 0.662 25 1.402
14 0.025 9 0.500 26 1.963

Table 2. DCW Descriptors Calculated for 6,12-Dimethylanthanthrene
Number VD0 VD1 VD2 VD3 pt20 pt21 pt22 CW(ai) to VD2 CW(VD2) CW(ai) to pt21 CW(pt21)

C1 3 9 26 72 6 17 45 –0.637 1.963 –0.613 1.688
C2 3 8 22 61 5 13 36 –0.637 1.062 –0.613 1.169
C3 3 7 22 54 4 12 33 –0.637 1.062 –0.613 1.315
C4 2 6 15 42 3 9 24 –0.637 0.469 –0.613 0.500
C5 2 5 14 34 2 8 19 –0.637 0.025 –0.613 0.662
C6 2 6 14 41 3 8 23 –0.637 0.025 –0.613 0.662
H7 1 2 6 15 2 3 9 –0.812 0.375 –0.725 0.363
H8 1 2 5 14 2 2 8 –0.812 –0.941 –0.725 0.037
H9 1 2 6 14 2 3 8 –0.812 0.375 –0.725 0.363
C10 3 8 22 61 5 13 36 –0.637 1.062 –0.613 1.169
C11 3 9 26 72 6 17 45 –0.637 1.963 –0.613 1.688
C12 3 7 22 54 4 12 33 –0.637 1.062 –0.613 1.315
C13 3 8 22 64 5 13 39 –0.637 1.062 –0.613 1.169
C14 3 9 24 69 6 15 42 –0.637 2.407 –0.613 2.726
C15 2 6 15 43 3 9 25 –0.637 0.469 –0.613 0.500
C16 2 6 16 43 3 10 25 –0.637 0.616 –0.613 0.287
H17 1 2 6 15 2 3 9 –0.812 0.375 –0.725 0.363
H18 1 2 6 16 2 3 10 –0.812 0.375 –0.725 0.363
C19 3 7 21 53 4 12 32 –0.637 0.955 –0.613 1.315
C20 2 6 15 42 3 9 24 –0.637 0.469 –0.613 0.500
C21 2 5 14 34 2 8 19 –0.637 0.025 –0.613 0.662
C22 2 6 14 41 3 8 23 –0.637 0.025 –0.613 0.662
H23 1 2 6 15 2 3 9 –0.812 0.375 –0.725 0.363
H24 1 2 5 14 2 2 8 –0.812 –0.941 –0.725 0.037
H25 1 2 6 14 2 3 8 –0.812 0.375 –0.725 0.363
C26 2 6 15 43 3 9 25 –0.637 0.469 –0.613 0.500
C27 3 7 21 53 4 12 32 –0.637 0.955 –0.613 1.315
C28 3 9 24 69 6 15 42 –0.637 2.407 –0.613 2.726
C29 3 8 22 64 5 13 39 –0.637 1.062 –0.613 1.169
C30 2 6 16 43 3 10 25 –0.637 0.616 –0.613 0.287
H31 1 2 6 15 2 3 9 –0.812 0.375 –0.725 0.363

122
BioChem Press http://www.biochempress.com



D. J. G. Marino, P. J. Peruzzo, E. A. Castro, and A. A. Toropov
Internet Electronic Journal of Molecular Design 2002, 1, 115–133

Table 2. (Continued)
Number VD0 VD1 VD2 VD3 pt20 pt21 pt22 CW(ai) to VD2 CW(VD2) CW(ai) to pt21 CW(pt21)

H32 1 2 6 16 2 3 10 –0.812 0.375 –0.725 0.363
C33 1 6 10 40 2 7 18 –0.637 0.836 –0.613 3.007
H34 1 1 6 10 1 2 7 –0.812 0.375 –0.725 0.037
H35 1 1 6 10 1 2 7 –0.812 0.375 –0.725 0.037
H36 1 1 6 10 1 2 7 –0.812 0.375 –0.725 0.037
C37 1 6 10 40 2 7 18 –0.637 0.836 –0.613 3.007
H38 1 1 6 10 1 2 7 –0.812 0.375 –0.725 0.037
H39 1 1 6 10 1 2 7 –0.812 0.375 –0.725 0.037
H40 1 1 6 10 1 2 7 –0.812 0.375 –0.725 0.037
CW –28.028 25.270 –26.312 33.200

MD ecuation (15) DCW(VD2)= –3.010 DCW(pt21)= 6.888

Table 3. Carcinogenic Activity CA from Ref. [87] for 49 Methylated Polycyclic Aromatic Hydrocarbonsa

Molecule CA Molecule CA]

(1) 7,12–Dimethylbenz[a]anthracene A (26) 3–Methylbenzo[c]phenanthrene I
(2) 6,12–Dimethylbenz[a]anthracene A (27) 6–Methylbenzo[c]phenanthrene I
(3) 6,8,12–Trimethylbenz[a]anthracene A (28) 6–Methylbenz[a]anthracene I
(4) 2–Methylbenz[a]pyrene A (29) 12–Methylbenz[a]anthracene I
(5) 4–Methylbenzo[a]pyrene A (30) 6-Methylanthanthrene I
(6) 11–Methylbenzo[a]pyrene A (31) 6,12-Dimethylanthanthrene I
(7) 12–Methylbenzo[a]pyrene A (32) 1–Methylbenzo[c]phenanthrene I
(8) 1–Methylbenzo[a]pyrene A (33) 2–Methylbenzo[c]phenanthrene I
(9) 4,5–Dimethylbenzo[a]pyrene A (34) 10–Methylbenzo[a]pyrene I
(10) 3–Methylbenzo[a]pyrene A (35) 6–Methylchrysene I
(11) 1,2–Dimethylbenzo[a]pyrene A (36) 3–Methylbenz[a]anthracene I
(12) 2,3–Dimethylbenzo[a]pyrene A (37) 1–Methylbenz[a]anthracene I
(13) 3,12–Dimethylbenzo[a]pyrene A (38) 11–Methylbenz[a]anthracene I
(14) 1,3–Dimethylbenzo[a]pyrene A (39) 9–Methylbenz[a]anthracene I
(15) 1,4–Dimethylbenzo[a]pyrene A (40) 2–Methylbenz[a]anthracene I
(16) 5–Methylbenzo[c]phenanthrene A (41) 5–Methylbenz[a]anthracene I
(17) 5–Methylchrysene A (42) 8–Methylbenz[a]anthracene I
(18) 6,8–Dimethylbenz[a]anthracene A (43) 2–Methylpyrene I
(19) 7–Methylbenz[a]anthracene A (44) 4–Methylpyrene I
(20) 5–Methylbenzo[a]pyrene A (45) 1–Methylpyrene I
(21) 7–Methylbenzo[a]pyrene A (46) 7,10–Dimethylbenzo[a]pyrene I
(22) 6–Methylbenzo[a]pyrene A (47) 6,10–Dimethylbenzo[a]pyrene NA
(23) 1,6–Dimethylbenzo[a]pyrene A (48) 8–Methylbenzo[a]pyrene NA
(24) 3,6–Dimethylbenzo[a]pyrene A (49) 9–Methylbenzo[a]pyrene NA
(25) 4–Methylbenzo[c]phenanthrene I

a See Figure 4 for the molecular structures. The carcinogenic activity data are adapted from Cavaliere [87]. A and I 
refer to active and inactive, respectively. The carcinogenic activity of the last three molecules is not available (NA). 

This particular choice is due to three main reasons: (a) this set is a suitable group of
representative PAHs molecules; (b) there are experimental data available for 46 molecules and for 
the remaining three molecules there are not any data on carcinogenic activity, so that they make up 
an interesting enough subset to make predictions; (c) we can perform a direct comparison between
our results, those derived by Galvão [5–8] and the experimental available data. Since there are some
intriguing discrepancies between previous theoretical results and experimental data, they constitute 
a severe test conditions for our predictions. We display in Figure 4 the molecular structures of the 
46 methylated PAHs and in Table 3 we list their IUPAC names together with the carcinogenic 

123
BioChem Press http://www.biochempress.com



QSAR Carcinogenic Study of Methylated Polycyclic Aromatic Hydrocarbons
Internet Electronic Journal of Molecular Design 2002, 1, 115–133

activity, adapted from Cavaliere [87].
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Figure 4. Molecular structures of 49 methylated polycyclic aromatic hydrocarbon (PAH) molecules.
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We have tried several partitions of the whole set of 49 molecules into a training set and a test set 
and we have found that final results do not depend significantly the specific way to choose the 
members of each subset. Here we report results for the following choice. Training set: (1), (5), (9)–
(15), (20)–(28), (31)–(33), (35), (37), (38), (41)–(46). Test set: (2)–(4), (6)–(8), (16)–(19), (29),
(30), (34), (36), (39), (40). The carcinogenic activity scale proposed be Cavalieri [87] is as follows: 
extremely active, (+++++); very active, (++++); active, (+++); moderately active, (++); weakly
active, (+); very weakly active, (+–); inactive, (–). In order to obtain a numerical scale for the
carcinogenic activity of the methylated PAHs and thus to obtain true QSAR models, we propose the 
scale: extremely active, 5; very active, 4; active, 3; moderately active, 2; weakly active, 1; very
weakly active, 0; inactive, –1. 

3 RESULTS 

The elements of both detour matrix and Rücker matrix have been computed with the algorithm
presented by Toropov [88]. This procedure is based on the Monte Carlo technique and results are 
defined on the number of random walks starting from a given vertex i and arriving to another vertex
j. We give in Table 4 the results of three running probes of the algorithm as a function of the 
number of random walks. Numerical data shows that the minimum number of random walks to 
yield stable values for the topological descriptors under consideration is 1500. 

Table 4. Calculation of the Detour Matrix Descriptors of 6,12-Dimethylanthanthrene for 1500, 1000, 500, 100, and 50
Random Walks

Number of Walks W( ) H( ) J( ) MTI( ) W( *) H( *) J( *) MTI( *)
5226 16.449 0.556 25262 5446 16.999 1.270 26382
5226 16.449 0.556 25262 5446 16.999 1.270 263821500
5226 16.449 0.556 25262 5446 16.999 1.270 26382
5226 16.449 0.556 25262 5446 16.999 1.270 26382
5226 16.449 0.556 25262 5445 17.002 1.271 263761000
5226 16.449 0.556 25262 5445 17.002 1.271 26376
5218 16.474 0.557 25216 5438 17.024 1.272 26336
5220 16.467 0.556 25230 5440 17.017 1.272 26350500
5224 16.454 0.556 25250 5444 17.004 1.271 26370
5088 16.888 0.571 24584 5295 17.475 1.307 25642
5052 16.992 0.574 24428 5260 17.575 1.315 25488100
5084 16.912 0.571 24564 5290 17.502 1.308 25612
4936 17.438 0.590 23802 5134 18.055 1.348 24812
4896 17.568 0.593 23688 5100 18.166 1.357 2472050
4926 17.426 0.590 23782 5117 18.078 1.352 24756

An illustrative calculation of the descriptors for 6,12-dimethylanthanthrene with the detour
matrix on the basis of the 1500 random walks are given in Table 5, while the corresponding 
hydrogen–suppressed chemical graph is displayed in Figure 5. 

Previous QSAR results have shown that there are three major outliers: 7,10–
dimethylbenzo[a]pyrene (training set), 7–methybenz[a]anthracene (test set) and 10–methylbenzo–
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[a]pyrene (test set). 

Table 5. The Detour Matrix on 6,12-Dimethylanthanthrene
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 DSi( ) DSi( *)

1 0 18 19 20 19 20 17 19 20 19 19 19 18 16 19 18 19 20 17 20 18 19 20 21 434 454
2 18 0 19 18 17 18 17 17 18 17 19 19 18 16 19 18 17 18 15 18 18 17 20 19 410 430
3 19 19 0 19 20 21 18 20 21 20 20 20 19 17 20 19 20 19 18 21 19 20 1 22 432 452
4 20 18 19 0 19 18 19 19 20 19 21 21 20 18 21 20 19 20 17 20 18 19 20 21 446 466
5 19 17 20 19 0 19 18 18 19 18 20 20 19 17 20 19 20 19 18 19 19 18 21 20 436 456
6 20 18 21 18 19 0 17 19 20 19 21 19 20 18 19 20 21 18 19 20 20 19 22 21 448 468
7 17 17 18 19 18 17 0 18 19 18 18 18 17 15 18 17 18 19 16 19 17 18 19 20 410 430
8 19 17 20 19 18 19 18 0 19 18 20 20 19 17 20 19 20 19 16 19 19 18 21 20 434 454
9 20 18 21 20 19 20 19 19 0 19 21 19 20 18 19 20 21 20 17 20 20 19 22 1 432 452
10 19 17 20 19 18 19 18 18 19 0 20 18 19 17 18 19 20 19 16 19 19 18 21 20 430 450
11 19 19 20 21 20 21 18 20 21 20 0 20 19 17 20 19 20 21 18 19 19 20 21 22 454 474
12 19 19 20 21 20 19 18 20 19 18 20 0 19 19 20 19 18 21 18 21 19 20 21 20 448 468
13 18 18 19 20 19 20 17 19 20 19 19 19 0 18 19 18 19 20 17 20 18 19 20 21 436 456
14 16 16 17 18 17 18 15 17 18 17 17 19 18 0 17 18 19 18 15 18 16 17 18 19 398 418
15 19 19 20 21 20 19 18 20 19 18 20 20 19 17 0 19 18 21 18 21 19 20 21 20 446 466
16 18 18 19 20 19 20 17 19 20 19 19 19 18 18 19 0 19 20 17 20 18 19 20 21 436 456
17 19 17 20 19 20 21 18 20 21 20 20 18 19 19 18 19 0 19 18 21 19 20 21 22 448 468
18 20 18 19 20 19 18 19 19 20 19 21 21 20 18 21 20 19 0 19 20 18 19 20 21 448 468
19 17 15 18 17 18 19 16 16 17 16 18 18 17 15 18 17 18 19 0 17 17 18 19 18 398 418
20 20 18 21 20 19 20 19 19 20 19 19 21 20 18 21 20 21 20 17 0 20 19 22 21 454 474
21 19 18 19 18 19 20 17 19 20 19 19 19 18 16 19 18 19 18 17 20 0 19 20 21 430 450
22 19 17 20 19 18 19 18 18 19 18 20 20 19 17 20 19 20 19 18 19 19 0 21 20 436 456
23 20 20 1 20 21 22 19 21 22 21 21 21 20 18 21 20 21 20 19 22 20 21 0 23 454 454
24 21 19 22 21 20 21 20 20 1 20 22 20 21 19 20 21 22 21 18 21 21 20 23 0 454 454
ai( ) = (1038 981 1060 1084 1057 1090 981 1038 1060 1029 1084 1090 1058 948 1084 1057 10901090 948 1084 1029
1058 1112 1112) MTI( ) = 25262
ai( *) = (1098 1041 1120 1124 1097 1130 1041 1098 1120 1089 1144 1130 1098 1008 1124 1097 1130 1130 1008
1144 1089 1098 1112 1112) MTI( *) = 26382
Wi( ) = 5226 Wi( *) = 5446 J( ) = 0.5555 J( *) = 1.2703
where  is the detour matrix, * is the Rücker matrix, DSi( ), ai( ), MTI( ), W( ), J( ) are the distance sums, elements
of the row matrix, Schultz index, Wiener index and Balaban index, respectively, on the basis of the detour matrix, and
DSi( *), ai( *), MTI( *), W( *) and J( *) are the same indices computed from the Rücker matrix.
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Figure 5. Labeling of vertices in the hydrogen-suppressed graph of 6,12-dimethylanthanthrene.

We have made a complete analysis of one, two, …, five–variables multivariate regression
equations based on Wiener, Harary, Balaban and Schulz indices computed from the distance 
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matrices and the best linear fitting equation is: 

32674.162193.5034.0036.0701.393372.1 *HWMTIJWCA (27)
N r s F

Training set 30 0.8097 1.2109 23
Test set 16 0.8232 1.0749 15

In Table 6 we present the predicted results, the experimental data and the Galvão predictions.

Table 6. Several Results for Carcinogenic Activity
Chemical name CAa CAcalc

b CAc

6,12–Dimethylbenz[a]anthracene 4.0 2.5 A
6,8,12–Trimethylbenz[a]anthracene 4.0 2.5 A
2–Methylbenzo[a]pyrene 4.0 2.8 A
11–Methylbenzo[a]pyrene 4.0 3.2 A
12–Methylbenzo[a]pyrene 4.0 2.9 A
1–Methylbenzo[a]pyrene 4.0 2.8 A
5–Methylbenzo[c]phenantrene 3.0 2.0 A
5–Methylchrysene 3.0 1.5 A
6,8–Dimethylbenz[a]anthracene 3.0 1.0 A
7–Methylbenz[a]anthracene 3.0 0.6 A
12–Methylbenz[a]anthracene 2.0 1.1 I
6–Methylanthanthrene 2.0 2.6 I
10–Methylbenzo[a]pyrene 1.0 3.0 I
3–Methylbenz[a]anthracene –1.0 –1.2 I
9–Methylbenz[a]anthracene –1.0 –1.2 I
2–Methylbenz[a]anthracene –1.0 –0.9 I
6,10–Dimethylbenzo[a]pyrene 3.8 NA
8–Methylbenzo[a]pyrene 2.9 NA
9–Methylbenzo[a]pyrene 2.9 NA
a Carcinogenic activity scale proposed in this paper
b Carcinogenic activity calculated with equation (27)
c Carcinogenic activity adapted from Cavaliere [87]

The second half of our analysis was performed with the aid of the flexible descriptors defined
before. We calculated three sets of OCWLGI for each molecular set (i.e. training and test sets) and 
made a complete computation of regression equations for one, and two variables fitting formulae at 
fist, second and third orders, as well as some fractional powers (i.e. 1/2 and 1/3). Some results are 
presented in Tables 7–10. 

Table 7. Linear Regression CA = aD + b
Training set Test set

Probe D a b n r s F n r s F
1 pt21 0.794 –3.487 30 0.9439 0.682 229 16 0.9618 0.584 173
2 pt21 0.813 –4.919 30 0.9425 0.689 223 16 0.9616 0.594 172
3 pt21 0.718 –3.863 30 0.9435 0.684 227 16 0.9616 0.587 172

Table 8. Quadratic regression CA = a + bD + cD2

Training set Test set
Probe D n a b c r s F n r s F

1 pt21 30 –4.5972 1.0868 –0.0227 0.9455 0.6963 236 16 0.9623 0.5597 188
2 pt21 30 –6.8333 1.3291 –0.0319 0.9454 0.6969 236 16 0.9633 0.5673 193
3 pt21 30 –4.8945 1.0240 –0.0199 0.9454 0.6969 236 16 0.9628 0.5629 190

127
BioChem Press http://www.biochempress.com



QSAR Carcinogenic Study of Methylated Polycyclic Aromatic Hydrocarbons
Internet Electronic Journal of Molecular Design 2002, 1, 115–133

In order to make a direct comparison with other theoretical results, we have adapted the
carcinogenic activity data from the Cavaliere scale [87], in a similar fashion as done by Galvão [5].

Table 9. Cubic Regression CA = a + bD + cD2 + dD3

Training set Test set
Probe D n a b c d r s F n r s F

1 pt21 30 0.8571 –1.8504 0.4741 –0.0257 0.9546 0.65 287 16 0.9748 0.44 264
2 pt21 30 5.0514 –3.5746 0.6033 –0.0261 0.9533 0.66 279 16 0.9742 0.43 279
3 pt21 30 1.7229 –2.0381 0.4094 –0.0187 0.9541 0.65 284 16 0.9732 0.44 269

Table 10. Multilinear Regression CA = a VD2.probe1 + b pt21.probex + c, Where
VD2.probe1 Denotes Probe 1 for VD2 and pt21.probrex Denotes Probex for pt21

Training set Test set
probex n a b c r s F n r s F
1 30 0.3841 0.4834 –0.1952 0.9472 0.6618 118 16 0.9671 0.48 101
2 30 0.4210 0.4637 –0.6939 0.9465 0.6657 116 16 0.9682 0.47 105
3 30 0.3910 0.4317 –0.3608 0.9469 0.6632 117 16 0.9674 0.48 102

Table 11. Theoretical and Experimental Carcinogenic Activity CA Results
Chemical name CAa CAb CAc CAd CAe

6,12–Dimethylbenz[a]anthracene A 4.0 3.6 3.8 6.8
6,8,12–Trimethylbenz[a]anthracene A 4.0 5.6 3.3 4.7
2–Methylbenzo[a]pyrene A 4.0 4.0 4.0 4.0
11–Methylbenzo[a]pyrene A 4.0 4.3 4.3 3.5
12–Methylbenzo[a]pyrene A 4.0 3.5 3.8 3.5
1–Methylbenzo[a]pyrene A 4.0 3.6 3.8 3.8
5–Methylbenzo[c]phenantrene A 3.0 2.1 2.3 3.2
5–Methylchrysene A 3.0 3.6 3.8 3.1
6,8–Dimethylbenz[a]anthracene A 3.0 4.6 4.0 3.0
7–Methylbenz[a]anthracene A 3.0 2.3 2.6 2.2
12–Methylbenz[a]anthracene I 2.0 1.2 1.2 1.4
6–Methylanthanthrene I 2.0 1.5 1.6 1.4
10–Methylbenzo[a]pyrene I 1.0 1.6 1.7 1.8
3–Methylbenzo[a]anthracene I –1.0 –0.9 –1.0 –0.9
9–Methylbenzo[a]anthracene I –1.0 –0.8 –1.0 –0.8
2–Methylbenzo[a]anthracene I –1.0 –2.1 –1.0 –1.2
6,10–Dimethylbenzo[a]pyrene NA NA 2.4 2.7 3.0
8–Methylbenzo[a]pyrene NA NA 4.1 4.0 3.7
9–Methylbenzo[a]pyrene NA NA 2.3 2.6 2.3

a Carcinogenic activity adapted from Cavaliere [87]
b Carcinogenic activity scale proposed in this study
c Carcinogenic activity computed with the linear equation from Table 7 for probe 1
d Carcinogenic activity computed with the cubic equation from Table 9 for probe 1 
d Carcinogenic activity computed with the multilinear equation from Table 10 for probe 1

4 DISCUSSION 

The first point deserving a comment is the quite satisfactory agreement on the capabilities of 
both sets of topological descriptors. In fact, in general we can state that distance matrices and 
OCWLGI based descriptors yield very good regression equations and encouraging predictions. 
However, flexible descriptors are better than rigid ones. As a matter of fact, quite superior results 
are obtained from two–variables lineal relationships based on flexible descriptors than five–
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variables linear regression equations based upon rigid topological descriptors. 

Furthermore, the best Galvão results [5–8] obtained with the neural networks technique are quite 
similar to our predictions derived from the multilinear regression analysis and third–order
equations. However, in order to judge in an appropriate manner these results, one must consider that 
our technique is a relatively simple and direct procedure to obtain final results, while previous
methods are rather elaborate and not so direct. For the purpose to highlight the relative merits of the 
present approach, let us to discuss briefly 10 problematic molecules, among which we include the 
last three in Table 3 lacking experimental data on their carcinogenic activity. The main results are 
given in Table 12. 

Table 12. Comparative Analysis Regarding the Results Reported by Galvão [5–8]
Chemical name CAa CAb CAc CAd CAe

4,5–dimethylbenzo[a]pyrene A A I 3.9 4.1
5–methylbenzo[c]phenanthrene A A I 2.3 3.2
5–methylchrysene A A I 3.8 3.1
6,8–dimethylbenz[a]antracene A A I 4.0 3.0
6–methylanthanthrene I I A 1.6 1.4
6,12–dimethylanthanthrene I A I 2.2 2.0
7,10–dimethylbenzo[a]pyrene I A I –0.3 0.01
6,10–dimethylbenzo[a]pyrene NA A A 2.7 3.0
8–methylbenzo[a]pyrene NA A I 4.0 3.7
9–methylbenzo[a]pyrene NA A A 2.6 2.3
a Carcinogenic activity adapted from Cavaliere [87]
b ANN results from Galvão
c ANN results from Galvão
d Carcinogenic activity computed with the cubic equation from Table 9 for probe 1 
d Carcinogenic activity computed with the multilinear equation from Table 10 for probe 1 

Our predictions based on OCWLGI agree with experimental data and for those molecules
without available experimental activities, our predictions are positive. These last predictions are in 
line with the Galvão overall analysis on their corresponding carcinogenic properties. However, 
Galvão methods based on neural networks and principal component analysis present some
disagreements between theoretical predictions and experimental information.

5 CONCLUSIONS 

The application of a quantitative structure–activity model based on topological descriptors
derived from distance matrices and optimized correlation weights of local graph invariants to study 
the carcinogenic activity of PAHs allows us to obtain very good results when comparing available 
experimental data and theoretical predictions. The procedure is relatively straightforward and the
quality of results is similar to those derived from more elaborate methods.

The suitable normalization of our numerical results leads to the definition of precise intervals of
carcinogenic activities and it opens the possibility to extend the application to other molecular sets 
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presenting this sort of activity. This proposal is based on the quite satisfactory predictions for a 
particularly troublesome set of 10 PAHs and the agreement with previous theoretical results
obtained from other methodologies grounded on quite different basis, such as electronic density of 
states over specific molecular regions.
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