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Abstract

Motivation. Dendrimers represent a novel class of hyperbranched supramolecular structures, that promoted
novel fundamental and applicative research. Applications of dendrimers include simulation of enzymatic
reactions, artificial vaccines, gene carriers and homogeneous catalysis. The polynomial description of molecular
structures is one of the most essential and elegant procedure of encoding topological properties and providing
valuable descriptors, such as polynomial roots and coefficients.
Method. From the mathematical point of view, dendrimers represent a generalized recursive class of graphs. The
block construction of dendrimers is simulated with block polynomials, which allow the study of their roots, i.e.,
their spectrum of eigenvalues.
Results. The study of the block polynomial behavior envisaged the transmittance of hereditary spectral
properties along a recursive series of dendrimers.
Conclusions. A novel description of supramolecular dendritic molecules is given. The obtained results can be
used to design molecular structures with tailored electronic and photonic properties.
Keywords. Block polynomials; spectrum of eigenvalues; hereditary properties; dendrimers.

Abbreviations and notations
A–polynomial, articulation node polynomial F–polynomial, Farrell’s polynomial
B–polynomial, block polynomial

1 INTRODUCTION

Recent years have witnessed a dramatic growth of interdisciplinary research activity involving
materials that exhibit special electronic and photonic properties. Increasing interest has been shown 
in a new type of oligomeric molecular architectures that are called dendrimers [1–6]. These three–
dimensional globular structures possessing a cactus–like skeleton have found practical use in many
areas [1–6], including modern electronics [3–6]. 

Graphically, the molecular dendrimers generalize the arborescent patterns that are known for 
regular branching processes. Currently, the practical results suggest intensive graph–theoretical 
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studies of the generalized recursive class of dendritic graphs bearing the same collective name [7–
9]. This paper continues the study of the common spectral features of these graphs, from our 
previous work [9]. 

The block polynomial B(G;x) of a graph G (or the B–polynomial, for short) was introduced by 
Farrell and Rosenfeld [9] in the study of spectral properties of graphs with articulation points (in 
particular, dendrimers). The B–spectrum of the eigenvalues of G is a collection of all the roots of an
individual B–polynomial B(G;x). An intriguing area of investigation is the transmittance of
hereditary spectral properties [9] along a recursive dendrimer series, wherein each next dendrimer
inherits some or all eigenvalues of its predecessors. In particular, this trend seems to be valuable in
electronics [3–6]. In order to satisfy the needs of the experimentalist, one has to take into account 
the general case of arbitrary weighted digraphs which is necessary for correctly finding the energy
levels of dendritic matter.

A further mathematical direction may be investigation of all possible types of graph polynomials
of dendrimers (and respective spectra thereof), which eventually can be useful in predicting 
thermodynamic properties of dendritic materials [10–11]. The literature on graph polynomials is 
quite extensive [9,12–17] and papers like [13] are of great importance in this context. Rigorous 
theorems about dendrimers may underlie the theoretical basis for calculating all the above 
polynomials while contacts with the nonmathematical researcher, if any, supplement analytical 
findings with interesting applications as well [18–22,25]. 

2 THE F– AND B–POLYNOMIALS OF A GRAPH 

The graphs considered here are finite, may be directed, weighted and may contain self–loops 
(i.e., finite directed or undirected weighted pseudographs). A general class of graph polynomials 
was introduced by Farrell [12]. These are called F–polynomials and are defined as follows. Let G
be a graph and F a family of connected subgraphs of G. An F–cover of G is a spanning subgraph of
G, in which every component is a member of F. Let us associate with each member  of F a weight
w . The weight of a cover G denoted by w(G), is the product of the weights of its components. Then 
the F–polynomial is 

)();( GwGF w (1)

where the summation is taken over all the F–covers of G, and w is a vector of the weights w .

Throughout this paper, we denote the vertex (or node) set of G by V(G) and assume that |V(G)| = 
p, unless otherwise specified. Also, if G is labeled, we associate with the i–th vertex of G the special
weight xi + bi (1 i p), where xi is an indeterminate and bi is the sum of weights of all loops, if
any, lying on a vertex i [16,17]. We use the notation F(G;x) for F(G;w) when all the variables,
except the xi's are replaced by l's. If we replace all xi's in F(G;x), with the single variable x, then the 
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resulting polynomial in x will be denoted by F(G;x), and called the simple F–polynomial of G.

If every non–node member of F consists of exactly one block, then we call the corresponding 
class of F–polynomials, block polynomials, or B–polynomials, for short. We then write B(G;w) for 
F(G;w) in order to indicate this property of the members of F. Note that if we take F to be a family
of cycles, then every non–node member of F is a block. This is also true when F is the family of 
cliques. Therefore both the circuit (or cycle) polynomial and clique polynomial [9] are examples of 
block polynomials. We therefore classify all the special circuit polynomials, for example the 
matching, characteristic and permanental polynomials [9,14–23] as B–polynomials.

Observe that the families that give rise to B–polynomials consist of graphs characterized by the 
number of vertices. Therefore, when general weights are assigned to the members of F, it is 
sufficient to associate to each member of F (having n vertices) the weight wn. The resulting B–
polynomial would therefore contain monomials that totally describe the covers. In this general F–
polynomial, the vector of weights is w = (w1, w2, …, wp). Note that if F is the family of stars or
paths the number of nodes characterizes every member of F. However, stars and paths are not 
blocks and so do not give rise to B–polynomials.

The stimulus to investigate the B–polynomials stems from the fact that they are often 
encountered in many problems in mathematics, as well as in various other applications. It is 
interesting to know about mutual and hereditary relations among different graph polynomials. For 
instance, the matching polynomial is a generalization of the acyclic polynomial, which was defined 
independently [9]. The same matching polynomial yields, under certain substitutions, the chromatic
polynomial for certain classes of graphs and a whole group of its relatives [9]. The classical rook 
polynomial [9] is yet another relative of the matching polynomial.

Note that the most general F–polynomial is the subgraph polynomial [9], since it enables us to 
derive, in principle, any other F–polynomial. However, the subgraph polynomial is not a B–
polynomial. There exist other classes of F–polynomials of interest, e.g., the articulation node
polynomials or A–polynomials [9]. At this point, we need to consider some kinds of operations on 
graphs.

3 SOME PRODUCTS OF GRAPHS 

Let (G, u) and (H, v) be two graphs rooted at node u and v, respectively. We attach G to H (or H
to G) by identifying node u of G with node v of H. Nodes u and v are called nodes of attachment.
The node formed by identification is called the coalescence node. The resulting graph G o H is 
called the coalescence of G and H.

Now consider a family {(U1, u1), (U2, u2), … , (Ut, ut)} of not necessary distinct graphs with roots 
u1, u2, …, ut, respectively. We term a connected graph U1 U2  … Ut the multiple coalescence
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of U1, U2, …, Ut provided that nodes u1, u2, …, ut are identified to reform the coalescence node r.
We shall use U |q| to denote a q–uple coalescence of q isomorphic copies of a graph U; in the same
way, we shall use G o H |s| to denote the multiple coalescence of G and s copies of H, wherein all 
coalesced graphs have just one cut node r in common. Some graphs and their operations will herein 
be illustrated.

r1

r2
r3

U = U1 G = U2 H = U3

r

r

r

U1 U2 U3 U |3| G U |2|

The above operation o is associative; in other words, it can be met as a generating operation in 
some semigroups of graphs. As a case in point, pick the set U  of all unicomponental 
graphs; obviously, a pair (U; ) is an infinite commutative monoid of graphs, wherein the unity is 
represented by a one–vertex graph K

1)}{ jjU

1.

G(H) H(G) G (  );  = {U1, U1, U2, U3}

Let G be a graph, consisting of n nodes and  = {H1, H2, …, Hn} a family of rooted graphs. Then 
the graph formed by attaching Hk to the k–th (1 k p) node of G is called the generalized rooted
product [9] and is denoted by G(  ); G itself is called the core of G(  ). If each member of  is
isomorphic to the rooted graph H, then the graph G(  ) is denoted by G(H) [15,23]. Furthermore, if 
H is a wedge (a twig), then the resulting graph is called a thistle or equible graph [9]. An interesting
generalization of the rooted product are the F–graphs [13], which are consecutively iterated rooted
products defined as: F 0 = K1, F 1 = G, F 2 = G(H ), …, F s + 1 = F s(H ), s  1. 
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F 0 F 1 F 2 F 3

A family of dendrimers D k (k  0) is just a rooted product [9] defined as: D 0 = K1, D 1 = G, D 2 is 
the rooted product of G and H, in which some attachments of H are not made (i.e., H need not be 
attached to all nodes of G). In general, D s + 1 (s  1) is constructed from D s, and the number of 
copies attached to D s obeys some fixed generation law. The dendrimers, in particular, imitate
molecular structures bearing the same name [1–9]. Their practical importance [1–6] is the 
motivation for investigations reported in this paper.

D 0 D 1 D 2 D 3 D 4

A monodendron M is a maximal connected subgraph of a dendrimer D that shares only the 
coalescence node r with a core G; in other words, it is a maximal (hyper)branch of D. Being a 
dendrimer in its own right, M has, however, two peculiarities. First, its core G is played by the same
(weighted) graph H that is a structural repeating unit of branches (G = H). Second, a core G (or H)
of M possesses the root (node r), which is not a feature of all dendrimers. Owing to its root r, the 
entire monodendron can be made to serve the function of a new structural unit (instead of H) for 
constructing the higher dendrimers. Moreover, as well as any other dendrimer, M can serve as a 
hypercore in the same procedure, instead of a simple core G = D1. As an instance of

, the monodendron series  is defined as M0)}{ j
jDD 0)}{ j

jMM 0 = K1, M 1 = G = H and M k

(k  2) is constructed by analogy to D k (see above).

M 1 M 2 M 3

Let (a copy of) H invariably make d + 1, with d < p(H), attachments inside a dendrimer D. Of 
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this amount, 1 attachment holds for the root of H itself while the other d are to hold the roots of all 
its incident neighbors in D. The number d is called a progressive degree of H [8]. A dendrimer is 
said homogeneous if all its monodendrons are equivalent and all prescribed attachments within it 
are made [8]. By definition, all dendrimers that we consider herein are homogeneous. 

A monodendron M j (j  1) contains 1 + d + d 2 + …+ d j – 1 =(d j – 1) / (d – 1) isomorphic copies
of H therein; they are lying in concentric layers (tiers). This distribution correlates with their
distance from a core G; all copies of H that are built into one and the same tier are spaced at the
same distance from G.

It is convenient to begin numbering the layers in a monodendron M from its core G = H (thus 
receiving the ordinal 1). So, the number of layers in M j (j  0) equals to j itself and the k–th layer 
contains d k–1  isomorphic  copies  of H  (and  0  under k = 0);  the  number  of  nodes,  in  the j–th
(uttermost) layer, being used for further attachments is d j.

1
2

3

444

We come now to an important remark: the above procedure, successively generating all 
monodendrons M j  of  a  series M,  is unambiguous.  It  always  reproduces  one  and  the  same
monodendron M j with a given number j of tiers. So, it is impossible to produce, out of M j, any 
other homogeneous monodendron with j layers. Hence it follows that the number j  0 of layers 
uniquely characterizes a homogeneous monodendron M j in a specific series M.

In general, a monodendron M j and d j isomorphic copies of the monodendron M j (used as G and
H, respectively) afford a monodendron M j + k (j, k  0, see above). We can write this as: M j * M k =
M j + k.  The binary operation * is obviously commutative and associative: M j * M k = M k * M j and
M j * (M k * M l) = (M j * M k) * M l (j, k, l  0), which can easily be verified, recalling that the 
number of tiers in the resulting monodendron uniquely characterizes it. Since M 0 = K1 acts as the 
identity, we can at once conclude that (M;*) is an infinite commutative monoid isomorphic to the 
additive monoid (N; +) of all nonnegative integers. One can simply say that M is a monoid (without 
indicating its operation) and adopt the multiplicative notation M j M k for M j * M k. The M herein
discussed resembles two earlier–studied situations [13,24] in every essential detail. 
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In order to proceed, we need some preparations. Let U be an arbitrary connected (weighted) 
graph with the root r. In the context of the B–polynomials (see above), U can be characterized by a 
family F of its connected (weighted) subgraphs, which are strictly selected for each specific sort of 
the B–polynomials [9,12–17]. Regardless of a sort of the B–polynomial, one can distribute the 
whole family F into two parts F1 and F2, where F1 stands for subgraphs of F covering the node r
and F2 does for the remaining subgraphs of F. Given an arbitrary fixed natural s, substitute the
weight sw( ) for the original weight w( ) of every subgraph F1 and denote by S the newly–
weighted graph thus obtained (where S is reminiscent of s). Evidently, graphs U and S are 
isomorphic and possess identical roots. 

r
1

1 r

1

r
s s

1

U U S

We shall also need in a generalized analog T of the graph S. The graph T is defined through the 
same reweighting w( ) sw( ) from the coalescence G o U provided that reweighted therein are
only subgraphs F containing the coalescence node r and pertaining to its section U. Thus, no 
subgraph whatever is reweighted in its section G.

An auxiliary series , of monodendrons now can be defined: S0)}{ j
jSS 0 = K1, S 1 = G = H =

S and S k (k  2) is constructed in the same way as M k above. 

s s
s

S0 = K1 S 1 S 1

ss
ss

s
s

s
ss

S 2 S 2

We shall use the notation J–r for the graph obtained from a graph J by removing node r. Mention
in passing that, in this case, S–r = U–r.

The dendrimer series L  is the series of reduced monodendrons, defined as follows: 
L

0)}{ j
jL

SL k
r

k0 = K0 (an empty graph) and . It can be also introduced as a dendrimer series D)1(k
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with D1 = G = S–r and H = S.

ss
s

s

s

s
s

s

s
s

s

s

s s

s
s s

s

s s

s

S 3 S 3

s s
s

s s
s

ss s s
ss

ss

s s

s

s

ss

s

s

L1 L2 L3 L4

At last, we shall consider rather complicated reduced monodendrons, which will play a crucial 
role below. It is the series  of dendrimers defined as follows: R0)}{ j

jRR 0 = K0, R1 = G = U–r

and R k  (k  2)  is  constructed  in  the  same  way  as D k  above, provided that H = U |s| (the s–uple
coalescence of s isomorphic copies of U having the convalescence node r in common). 

r
1

2
r

U R 1= U–r H = U |2|

R 2 R 3

Choose any specific B–polynomial, whose roots comprise the corresponding B–spectrum. A 
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series W  of graphs is called strongly B–subspectral (or subspectral, for short) if the B–

spectrum of its member W
0)}{ j

jW
k is wholly included in the spectrum of every member W k (0 j k),

taking into account the multiplicity of all eigenvalues of W j [20]. An objective of this paper is to

show that R is a universally subspectral series for all sorts of the B–polynomials. Now we turn to 

some known results that will be used below. 

4 BASIC LEMMAS

We begin with a previous result (see Corollary 1.1. in [9]), rewritten here as: 

Lemma 1. Let Q be the graph formed by attaching a graph G to a graph H, and let r be the
resulting coalescence node. Then 

););)););););); wwwwwww rrrrrr GBHBbxGBHBGBHBQB (((((((( (2)

Since the present text deals only with the homogeneous dendrimers, we have to omit here
quoting the most comprehensive result of [9] (Theorem 2) and restrict our consideration to mere
corollaries thereof. So, the following result is due to Corollary 2.1 in [9], viz.: 

Lemma 2. Let G and H be rooted graph. Let G(H) be the graph obtained by attaching an 
isomorph of H to each of the p nodes of G. Then 

xrHB

xHB
xxGBxHBxHGB p

r
;

;;;);)(( (3)

where H  is the graph H with all loops at its root r removed. 

Note earlier specific versions of Lemma 2 for the characteristic [15,23] and matching [15] 
polynomials (wherein only unweighted graphs have been treated). 

Recall now that any simple B–polynomial, such as B(G; x) in (3), can be expanded in powers of
x; therefore we can write down it as 

01
10 ...; xxxxGB p

pp  ( 0 = 1) (4)

Owing to (4), we can give herein a new version of Lemma 2, viz.: 

Lemma 3. Let G and H be rooted graphs. Let G(H) be rooted as above. Then

p

g

g
r

gp
g xHBxHBxHGB

0
,;;; (5)

where H is the same as above. 

The next quotation (Corollary 2.2 from [9]) appears herein as: 
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Lemma 4. Let G and H be rooted graphs. Let G(H) be the graph by attaching an isomorph of H
to each of the p nodes of G. Also, let ,1 2 , ..., p  be the roots of B(G; x). Then 

.;;;
1

p

i
ri xHBxHBxHGB (6)

Notice that H is misprinted in the original text (Corollary 2.2 of [9]) as H.

We can also derive a special corollary (see Corollary 2.3 in [9]) from Lemma 4, viz.: 

Lemma 5. Let 0 be a k–uple (k  1) root of B(G; x). Then kxHB ; divides .; xHGB

Here, we cannot help stating another new lemma that generalizes Lemmas 4 and 5. First, denote by 

. (1 i p) the graph obtained by attaching a self–loop with the weight b
i

H r = –  to node r of 

H . It is not difficult to establish that the expression in square brackets, in (6), is just B( ; x),

which immediately affords us a derived result, viz.: 

i

0
H

Lemma 6. Let G and H be rooted graphs. Let G(H) be the graph obtained by attaching an 
isomorph of H to each of the nodes of G. Also, let (1 i p) be defined as above. Then 

i
H

p

i

xHBxHGB
i

1

.;; (7)

Note that a specific case of (7), when B(G(H);x) is the characteristic polynomial of a "bundled" 
(comblike) graph, was anticipated in a physical text [25], which is indicative of the practical need in 
such mathematical results among physicists. 

The next fact is simply due to the definition of the graph S, viz.: 

Lemma 7. Let H and S be two graphs, as above. Then 

www ;UBbxs;UBs;SB rrr1 (8)

We also need in a generalized analog T of the graph S. The graph T is derived through the same
reweighting sww

F
 from the coalescence G o U provided that reweighted therein are 

only subgraphs containing the coalescence node r and pertaining to its section U. Thus, no 
subgraph whatever is reweighted in its section G.

Closing this paragraph is the following generalization of the last lemma.

Lemma 8. Let G U and T be two graphs, as above. Then 

wwww ;UB;GBs;UGBs;TB r1 (9)
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5 MAIN RESULTS 

Let and  be the multiplicity of a specific root 1m 2m  for polynomials B(G1; x) and 
B(G2;x), respectively. We shall call the number 21min mm , m a common multiplicity of 
the eigenvalue for the polynomials B (G1; x) and B (G2; x).

The first our statement is quite elementary and at once follows from Lemma 1. 

Proposition 9. Let m be a common multiplicity of an eigenvalue  for polynomials B(H; x)
and B(H–r; x). Then the multiplicity of  in the B–spectra of the coalescence G H of graphs G and
H is not less than m( ).

Note that, a priori the existence of a multiple eigenvalue  in the B–spectrum of H does not yet 
imply that  is an eigenvalue of H–r, or conversely. Nevertheless, in the case of the characteristic 
polynomial and usual spectra of graphs the former implication does take place [14]. 

One can easily turn to the case of the multiple coalescence of graphs and state the following. 

Lemma 10. Let U |s| be the s–tuple coalescence of (s isomorphic copies of) a graph U. Then 

wwww ;;1;; rUBGBsUGBsTB (10)

Proof. Throughout this proof, we will (for brevity) write U for xUB ;  and the like, in 
equations. Substituting U |s – 1| for Q in (2) and assuming U |s – 1| to be G therein we obtain 

.

1

...2

1

1

23|2|2

2232

12|1|

1|1|||

rrrrrr
s
r

rrr
s
r

s
rrr

s
r

s
r

r
s
r

s
rrr

s
r

s
rr

s
rrr

s
r

s
r

s
rrr

s
rr

ss

UbxUbxUsU
UbxUsUU

UbxUUUU
bxUUbxUUUUU

UbxUUUU
UbxUUUUU

However, by virtue of Lemma 7, the last expression in braces is B(S;x) (or S, in a brief notation) 
whence the proof is immediate.

Here, we should note that a specific case of the last lemma dealing with just the characteristic
polynomial has been used in quantum chemistry, where this was qualified as “the case with one
atom lying on a symmetry axis or mirror plane” [18,19]. In view of numerous possible applications, 
studying the B–spectrum of various graphs with symmetry undoubtedly deserves the most serious 
attention [14,18–21]. In a wider context, our research is also relevant to the said. The point is that a 
homogeneous monodendron (leave alone more complicated dendrimers) may sometimes possess a 
fairly rich group of automorphisms isomorphic to a braid group or even to the wreath product of 
such groups. This information could surely be of use; but since it is beyond present scope, we have 
to revert here to the main content. 
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Our working tool in this paper will be the following:

Lemma 11. Let G U |s| be the multiple coalescence of a graph G and s isomorphic copies of a 
graph U, as above. Then 

.;;; 1|| s
r

s xUBxTBxUGB (11)

Proof. It is due to the definition of T and the same repetitive use of Lemma 1 as in the proof of
Lemma 10. 

In particular, one can derive from it the following: 

Corollary 11.1. Let G(U |s|) be the rooted product of a graph G and p copies of a graph U |s|, as
above. Then 

p

i

p

i

sp
r

s
ri

ss xTBxUBxUBxUBxUGB
i1 1

1|||| ,;;;;; (12)

where T  is defined by analogy with  above. 
i i

H

Corollary 11.1 takes into account symmetry of U |s| (in the coalescence point r). As it was already 
mentioned above, a specific case thereof dealing with the characteristic polynomial xUP s ;||

UH

 of 
 was earlier employed in quantum chemistry [18,19]. Corollary 11.1 shows to what (high) 

degree the multiplicity of eigenvalues in the B–spectra of G(H) may get provided that .
The role of the multiple coalescence is even more impressive in the case of the series R. We shall 
demonstrate this through stating our main result herein, viz.: 

||sU
||s

Theorem 12. Let jR and be dendrimers of the series R and L, respectively. Then 1jL j

,;;;
1

1

1
j

k

sdkjj kj
xLBxLBxRB (13)

where d and s are defined as above. 

Proof. By virtue of Lemma 11, one can properly prune 11 sd j  peripheral copies of a 
subgraph  and reweight r–containing subgraphs in the remaining d  isomorphic 
copies of U at the periphery, which gives a new disconnected graph with the same spectrum as R

rrr USL 1j

j

has. Repeating the procedure for the second time one obtains 12 sjd  pruned copies of  and 
the corresponding reweighted remainder of R

2
rL

j, et seq. At the end, one obtains d (s – 1) copies of 
 and a copy of L1j

rL j. Since successively performing these j – 1 pruning stages exactly produces all 
the factors on the R.H.S. of (13), we immediately arrive at the proof. 

Theorem 12 gives an important corollary, viz.:

Corollary 12.1. Let R j and R k ( kj0 ) be two members of the series R. Then the B–spectrum
of R j always contained  in  the B–spectrum  of R k,  taking  into  account  the  multiplicity  of  every
eigenvalue of R j.
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We can also state the second version of Corollary 12.1, viz.: 

Corollary 12.2. The series R is strongly B–subspectral.

Now we shall turn to discussing possible applications of the above results. 

6 DISCUSSION 

The analysis of the above mathematical results enables us to draw the following conclusions. 
According to basic Lemmas 2–6 and Corollary 11.1 derived herein, the B–spectrum of the rooted 
product G(H) (hence F–graphs as well) can uniquely be reconstructed from like B–spectra of 
graphs G, H and H–r. Regrettably a similar reconstruction for the general dendritic series D is (yet) 
unknown. Apparently, in a hybrid case, when the role of H is played by a (preassembled)
monodendron M j and  all  vertices  of G  are  employed  for  attachments,  the B–spectrum  of  the 
dendrimer  (or else the rooted  product G(M j))  thus  obtained is  reconstructible  as  well.  To  some
degree, the last already sounds promising because otherwise it would be very difficult to predict the
B–spectra of target graphs (respectively, molecules), as is necessary for creating substances with
given electronic and photonic properties. 

The main idea of the paper is using the multiple coalescence of graphs as a fundamental
principle for constructing dendrimers with calculable spectra. Here, it is worthy mentioning that 
most syntheses described in the chemical literature [1–5] do not take into account such a possibility
for building hyperbranched molecules at all. For this purpose, the easiest thing is to recall Lemma 
11. This lemma demonstrates that employing the multiple coalescence U |s| for a graph H gives us 
dendrimers (or other graphs) with the B–spectra, wherein the whole B–spectrum of a graph U–r

repeats, as a subspectrum, a definite number of times (see the fractal character of dendrimers).
Degeneracy of described eigenvalues, first of all, tautologically means the possibility of filling
some (needed) energy levels, in a molecule or bulky material, to a rather higher degree than it takes
place for undegenerate eigenvalues. The said is profitable not only for electronic and photonic 
properties (of such substances) but can well be addressed to treating diverse surfaces or substrates 
in order to passivate these or, on the contrary, make more catalytically active, hydrophilic etc.
Under this, a surface acquires the properties of a chemical group represented by a graph U–r because 
the latter multiply contributes to the resulting B–spectrum of the system obtained. To the best of our 
knowledge, there is no other like method to saturate the spectrum of a target product (graph) with
the subspectrum pertaining to U–r.

The most impressive results are obtained for the monodendron series R, which is the strongly B–
subspectral series. It is predictable that molecules corresponding to different members R j 1j  of 
a series R can compose chemical mixtures whose spectral properties are linearly dependent on 
partial concentrations of components. This paves the way to constructing, in the future, special 
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sensors and measuring tools based on such a principle. Besides, the monodendrons of the series R
possess the minimum possible number of distinct eigenvalues and each their eigenvalue has the
maximum possible multiplicity, as compared to other sorts of dendrimers. The latter properties of 
monodendrons of R seem to be indicative of that they can be adopted as building units (or per se) in 
the molecular light–harvesting antennae [4–6] having the highest possible efficiency. The chief 
structural feature of the molecular monodendrons R j is this: while other sorts of dendrimers used for
producing intramolecular branching polyfunctional molecular fragments (such as 1,3,5–
trioxibenzene etc.), the monodendrons R j have just monoatomic branching points (polyvalent atoms
C, Si, Pt, etc.).

The mathematical ideas discussed in this paper concern not merely spectral properties of a few 
classes of molecular graphs, they also suggest broad potentials for their applications to synthetic
chemistry, theoretical physics, and materials engineering.
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