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Abstract 

A novel theoretical method that enables extraction of the function describing the dependence of the decoupled 
X–H(D) intramolecular potential on the hydrogen bond strength from experimental frequency–structure 
correlation equations is proposed. The method is based on the Hellmann–Feynman theorem, using the perturbed 
anharmonic oscillator wavefunctions, and the conceptual approach of Sceats and Rice. Within the proposed 
method, other parameters obtained by empirical correlations have also exact physical meanings. 
Motivation. The hydrogen bonding is beyond doubt one of the most interesting interactions from both 
fundamental and application viewpoints. A lot of experimental data have been collected so far regarding the 
spectroscopic manifestations of this interaction, among which the most important is the frequency downshift of 
the X–H stretching mode. A number of empirical correlations have been performed for the dependence of 

XH(D)01,
~  versus RX...Y in hydrogen bonded X–H...Y systems. However, there is still a lack of systematic 
theoretical basis for the empirical correlation functions which are widely applicable. Also, it would be especially 
interesting to extract the function describing the dependence of the intramolecular X–H(D) potential on the 
hydrogen bond strength obtained from experimental frequency–structure correlations. 
Method. The Hellmann–Feynman theorem, in combination with the stationary perturbation theory in the non–
degenerate case for the representation of anharmonic oscillator perturbed (by hydrogen bonding) wavefunction, 
is applied. 
Results. It is shown that there is a solid theoretical basis for the empirical spectra–structure correlations in the 
case of hydrogen bonded systems. Moreover, on the basis of the derived theoretical model, “extraction” of the 
function describing the dependence of the intramolecular X–H(D) potential on the hydrogen bond strength 
becomes possible using experimental frequency–structure correlation data. 
Conclusions. Within the conceptual approach of Sceats and Rice, a Hellmann–Feynman based theoretical model 
is derived, that enables determination of the function describing the dependence of the intramolecular X–H(D) 
potential on the hydrogen bond strength, derived from experimental frequency–structure correlations. Within the 
proposed method, other empirically obtained parameters have exact physical meanings as well. The proposed 
approach may serve to test the validity and physical basis of various model functions used for empirical 
correlations. 
Keywords. Hydrogen bonding; Hellmann–Feynman theorem; frequency–structure correlations; intramolecular 
X–H(D) potential; Sceats–Rice model potential. 
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1 INTRODUCTION 

The hydrogen bonding, as a very striking and biologically important interaction, has been 
studied, both theoretically and experimentally [2–18]. Various models have been proposed in order 
to rationalize the experimental observations. Many experimental data have been satisfactory 
explained within the “strong coupling theory” of Marechal and co–workers [3–9], as well as with its 
modifications [10]. Nowadays, with the enormous progress of ab initio and density functional 
methods, even subtle peculiarities of potential energy hypersurfaces of hydrogen bonded systems 
can be explored. A lot of experimental correlations among various quantities characterizing the 
hydrogen bonding interaction have been performed so far [11–14]. Since it has been shown that this 
interaction significantly affects the X–H(D) potential [15–20], special attention was paid to the 
dependence of the intramolecular X–H(D) potential on the parameters that characterize the 
hydrogen bond strength. The change in this potential due to the hydrogen bond formation may be 
treated within standard perturbation theoretical approaches [15,16]. On the other hand, the more 
phenomenological approach of Sceats and Rice [1] appears to be very useful in explaining the 
overtone spectra of Ice I [1], as well as in analyzing the spectral data for a series of methanol 
complexes with organic bases [21]. On the basis of the Sceats–Rice potential, a theoretical basis for 
the observed OD01,OH01,

~/~ vs OH01,
~  [17, 18] as well as OH(D)01,

~ vs RO...O [19] correlations in solid 

crystalline hydrates was established. Recently, a more general perturbation theoretical method 
dealing with the XH(D)01,

~ vs RX...Y correlations in hydrogen bonded X–H...Y systems was proposed 

[22].

Within the conceptual approach of Sceats and Rice, and based on the Hellmann–Feynman 
theorem [23], a theoretical method enabling the extraction of the analytical form of the function that 
describes the dependence of the decoupled intramolecular X–H(D) potential on the hydrogen bond 
strength, from the experimentally obtained X...YXH(D)01,

~ Rf  correlation equations is here 

proposed. The method is applicable to linear X–H(D)...Y complexes, in which the stretch–stretch 
couplings of the (X–H) mode with the internal modes of the radical X may be neglected. An 
extension to non–linear cases may be easily done. Within the proposed model, other parameters 
obtained by empirical correlations have an exact physical meaning as well. 

2 THEORETICAL MODEL

The main assumption of the Sceats–Rice [1] approach is that the effect of hydrogen bonding on a 
water molecule in solid state can be modeled by modifying only the diagonal harmonic force 
constant krr and the stretch–stretch interaction force constant krr’ in the unperturbed potential, in 
internal coordinates [1], written as: 
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The previous expression provides a sufficiently good description of the anharmonic potential 
even limiting to the above mentioned terms [24]. Thus, the terms of the type 21

2 rrrk er

can be neglected. 

From the previous statement it follows that, in isotopically isolated HDO molecules, (or in 
general, X–H(D) hydrogen bonded species in which the interaction of the X–H(D) stretching mode 
with the internal modes of the radical X may be practically neglected), the whole effect of hydrogen 
bonding on the X–H(D) oscillators may be accounted for by the changes in the diagonal force 
constant krr.

Treating the unperturbed by hydrogen bonding X–H(D) oscillator as a cubic–quartic anharmonic 
system, its Hamiltonian can be written in the form: 

4(0)3(0)2(0)
2

(0)

2
1

2
ˆˆ rkrkrkpH rrrrrrrrr (1)

where  is the reduced mass, and r = r – r0, r and r0 being the actual and the equilibrium X–H(D) 
distance. Within the elaborated approach, the Hamiltonian of the system perturbed by the hydrogen 
bonding interaction, takes the form: 

4(0)3(0)2
2

2
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2
ˆˆ rkrkrkpH rrrrrrrrr (2)

where the diagonal harmonic force constant krr depends on the hydrogen bond strength. If only 
linear X–H(D)...Y hydrogen bonds are considered, for a fixed pair (X, Y), the hydrogen bond 
strength depends only on the X...Y distance (RX...Y) (of course, for another choice of the proton 
donor and the proton acceptor, it depends on other properties as well, such as the effective charge 
on the Y atom). In that case, krr is a function of RX...Y (denoted by R hereafter) only: 

)(Rfkrr (3)

The hydrogen bond distance thus appears as a parameter in the Hamiltonian (2): 
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Note that, the equilibrium distance r0 depends on the hydrogen bond strength as well, but since 
the derivative dr0/dR is negligibly small, it may be practically neglected (as in the original approach 
of Sceats and Rice). According to the Hellmann–Feynman theorem, 
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where En is the energy of the n–th level of the perturbed anharmonic oscillator, while n(r,R) is the 
corresponding wavefunction that depends parametrically on R. Since the hydrogen bonding 
interaction effects may be treated as a perturbation to the energy spectrum of the free anharmonic 
oscillator, n(r,R) may be represented with the perturbation series: 

RrRrrRr nnnn ,,, (2)(1)(0) (6)

where )()0( rn is the unperturbed anharmonic oscillator wavefunction, while the successive 
perturbation corrections are denoted by Rri

n ,)( . In order to calculate these successive 

corrections, it is suitable to split the Hamiltonian (4) into a part referring to the non hydrogen 
bonded X–H(D) system and the perturbation. The simplest way to do this is to represent the 
function krr(R) in the form: 

)(1)( )0( RkRk rrrr (7)

where the function )(R must satisfy several logical requirements. Since for large values of R krr

tends to )0(
rrk , the condition: 

0)(lim R
R (8)

obviously holds. Further, 

1)()(max 0RR (9)

where R0 may be regarded as some critical distance, for which the X–H(D) oscillator does not 
longer exist. The model is limited to weak and medium strong hydrogen bonds, where the values of 
R are significantly larger than R0. Otherwise, 1)(R must hold. 

The expression (7) and the previous discussion, allows one to write the Hamiltonian (4) in the 
form: 

2(0)(0) )(
2
1)(ˆ,ˆ rRkrHRrH rr (10)

Applying the stationary perturbation theory with the perturbation operator: 

2(0) )(
2
1),(ˆ rRkRrV rr (11)

the successive corrections to the unperturbed wavefunction are straightforwardly calculated using 
the matrix elements [23]: 

)0(2)0((0))0()0( )(
2
1ˆ

nmrrnmmn rRkVV (12)

The corresponding expressions are: 
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On the other hand, the derivative 
R
Ĥ is given by: 

R
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In the previous expression, the dropped smaller terms include the derivative of the equilibrium X–H 
distance r0 on the parameter R, which is practically negligible. 

The Hellmann–Feynman expression thus takes the form: 

)()(
d

)(d
2
1,

ˆ
,

d
d )0(2)0()0( rrr

R
RkRr

R
HRr

R
E

nnrrnn
n

nm nm

mnnm

rr

rrrrrr
kR

)()()()(

2
1)(

)0(2)0()0(2)0(

)0(

nm nm

nmmn

rr

rrrrrr
k

)()()()(

2
1

)0(2)0()0(2)0(

)0(

(17)

nm nm nmnm

mmnmmn

rr

rrrrrrrrr
kR

' '
2

)0(
'

2)0()0(2)0(
'

)0(2)0(
2)0(2

)()()()()()(

4
1)(

or, in a more compact form: 

)()(
d

)(d
2
1

d
d 2

210
)0( RcRcc

R
Rk

R
E

nnnrr
n (18)

)(d)()(
2
1d 2

210
)0( RRcRcckE nnnrrn (19)



A Hellmann–Feynman Basis for the Dependence of the Intramolecular X–H(D) Potential on the Hydrogen Bond 
Internet Electronic Journal of Molecular Design 2002, 1, 285–292 

290 
BioChem Press http://www.biochempress.com

which gives, by integration: 
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The energy difference between the ground and the first excited vibrational state is, accordingly: 
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or, expressed in terms of the wavenumber of the corresponding vibrational transition: 
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If only the first–order perturbation corrections of the wavefunction are accounted for, the 
previous expression reduces to the form: 
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On the other hand, the experimental data [11–15] regarding the dependence of the wavenumber 
corresponding to the 1 0 vibrational transition on the hydrogen bond strength, show that the 
dependence of 01

~ on R may be successfully fitted with a function of the type: 

)exp(~~ )(
0101 aRKf (25)

where the constant )(
01

~ f refers to a free X–H(D) oscillator. Obviously, the experimentally derived 

correlation equations allow a direct determination of the function describing the dependence of the 
intramolecular X–H(D) potential on the hydrogen bond strength. It follows that the function (R) is 
often of the type exp(–aR), and the dependence of the harmonic diagonal force constant on R,
within the first–order perturbation theory, may be successfully described by the function: 

)exp(1)( )0( aRkRk rrrr (26)

Further, the empirically obtained coefficient K is equal to the difference: 

)()()()(
2

)0(
0

2)0(
0

)0(
1

2)0(
1

)0(

rrrrrr
hc

krr (27)

It is, thus, possible to obtain the term )()()()( )0(
0

2)0(
0

)0(
1

2)0(
1 rrrrrr from the 

correlation data, if the unperturbed force constant )0(
rrk is known. On the other hand, if one calculates 

the matrix elements )()( )0(2)0( rrr nn in the basis of the eigenfunctions of a Morse–type 

oscillator, it is also principally possible to obtain the value for )0(
rrk from experimental data for a 
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particular series of compounds. On the other hand, the term: 

hc
CC 01 (28)

obviously corresponds to the wavenumber of the unperturbed (by hydrogen bonding) X–H(D) 
oscillator. In fact, many discussions have been devoted to the choice of the constant )(

01
~ f in 

empirical correlations [11,19]. Although the previously mentioned choice is principally incorrect 
[11,12,19,22], it is, however, the simplest one for a large number of systems. Especially in case of 
solid crystalline hydrates, it is impossible to achieve experimentally the situation of an O–H(D) 
oscillator, that does not take part in hydrogen bonding and is in the same crystalline environment as 
the hydrogen bonded ones [19,22]. It is thus easier to take the wavenumber for free H2O(HDO), or, 
in general X–H(D) species as a reference point in correlations. The theoretical approach elaborated 
in this work gives a further support to the statement that a better choice instead of )(

01
~ f should be the 

corresponding value for an unbounded oscillator, in exactly the same crystalline environment. 

On the other hand, if all terms in the perturbation series are retained, the dependence of the 
01

~ value on the parameter R is given by the following expression: 

)()()(~ 32
01 RDRCRBA (29)

It is well known [11, 12] that the 01
~ values correlate very well with R in cases of weak and 

medium strong hydrogen bonds. However, for stronger hydrogen bonds, the correlation between 
these parameters is much worse. Obviously, this theoretical approach suggests a deeper 
fundamental reason for such experimental findings. In cases for which the perturbation theory is 
still applicable, but the perturbation is not very small, inclusion of the higher–order terms from the 
perturbation series may be significant. The last equation is a method for testing the model functions 
used for correlations. Namely, instead of the functions of type (25) one may use the following ones: 

aR
Kf 1~~ )(

0101 (30)

Expanding the interval of the R values, and including the higher order perturbation correction 
terms, the empirical model function providing a deeper physical meaning should allow a better 
correlation with the experimental data. 

3 CONCLUSIONS 

Within the conceptual approach of Sceats and Rice, a Hellmann–Feynman based theoretical 
model is derived, that enables determination of the function describing the dependence of the 
intramolecular X–H(D) potential on the hydrogen bond strength, derived from experimental 
frequency–structure correlations. Within the proposed method, other empirically obtained 
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parameters have exact physical meanings as well. The proposed approach may serve to test the 
validity and physical basis of various model functions used for empirical correlations. 
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