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Abstract 

Motivation. Powerful Monte Carlo algorithm may solve the multiple–minima problem for the bulk water 
system. 
Method. The multicanonical algorithm is based on a non–Boltzman weight factor and produces flat probability 
distribution of potential energy artificially. The method allows the system to rove through the complex potential 
energy surface without getting trapped in a local minimum state, and has been proven to be efficient for studying 
first–order phase transitions of complex systems such as spin glasses and proteins. One of the features of the 
method is that the expectation values of thermodynamic properties can be calculated as a function of temperature 
by applying the histogram–reweighting techniques to the results of one long production run. 
Results. In the present study, we determined the multicanonical weight factor that can produce flat probability 
distribution of potential energy corresponding to the temperature range from 170 to 630 K. From the peak of the 
heat capacity, we found a phase transition at 190 K. The lower energy structures and oxygen–oxygen radial 
distribution functions imply that the structure at lower temperatures is irregular. However, the average number of 
hydrogen bonds per water molecule is nearly equal to four at low temperatures, which suggests the formation of 
amorphous ice. 
Conclusions. We conclude that the phase transition we found in the present study is the one between liquid 
water and amorphous ice. In order to study first–order phase transition between water and crystalline ice with the 
multicanonical algorithm, we have to obtain more precise multicanonical weight factor in the low energy region. 
Keywords. Multicanonical Monte Carlo method; TIP4P water; bulk water; phase transition; amorphous ice. 

Abbreviations and notations 
MUCA, multicanonical algorithm gOO, oxygen–oxygen radial distribution function 
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1 INTRODUCTION 

The great advancement of computer technology and simulation technique has made computer 
simulation an effective tool in many fields of chemistry and physics. However, simulations of 
complex systems with many degrees of freedom such as spin glasses and biopolymers are still 
greatly hampered by the multiple–minima problem. This is because conventional canonical 
simulations at low temperatures tend to get trapped in one of huge number of local–minimum states 
on the potential energy surface. 

The multicanonical algorithm (MUCA) [1,2] has been introduced as one of efficient methods to 
overcome the multiple–minima problem in simulations of complex systems [1–7] (for recent 
reviews, see Refs. [8] and [9]). The algorithm is based on an artificial, non–Boltzman weight factor 
and performs a free one–dimensional random walk in potential energy space, which allows the 
simulation to avoid getting trapped in states of energy local minima. Moreover, one can calculate 
the expectation values of thermodynamic quantities as a function of temperature by applying the 
histogram–reweighting techniques [10] to the results of one long production run. 

Bulk water system is another complex system that suffers from the multiple–minima problem. In 
particular, phase transition of ice formation has been very difficult for molecular simulations and 
only a few successful results have been reported [11–16]. In the present study, we apply the 
multicanonical Monte Carlo (MUCAMC) method to the bulk water system. 

This article is organized as follows. In Section 2, the MUCAMC method is briefly described. We 
report the results of the MUCAMC simulation of a bulk water system in Section 3. Concluding 
remarks follow in Section 4. 

2 METHODS 

2.1 Multicanonical Algorithm
Although the multicanonical algorithm is explained in detail elsewhere [8,9], we give a short 

overview in this subsection for completeness. In the canonical ensemble, the probability distribution 
of the potential energy E, PB(E;T), is given by the product of the density of states n(E) and the 
Boltzmann weight factor WB(E;T): 

E
BB eEnTEWEnTEP )();()();( , (1)

where  is the inverse temperature 1/kBT with the Boltzmann constant kB and temperature T.
Because n(E) is a rapidly increasing function and WB(E;T) decreases exponentially, PB(E;T)
generally has a bell–like shape. 

In multicanonical ensemble, each state is weighted by a non–Boltzmann weight factor Wmu(E), 
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which we refer to as the multicanonical weight factor, so that a uniform potential energy 
distribution is obtained: 

constant)()()( EWEnEP mumu . (2)

In this artificial ensemble, one–dimensional free random walk in the potential energy space can 
be carried out. The random walk allows the system to escape from any local–minimum–energy 
states and to sample the configurational space much more widely with a smaller number of 
simulation steps than the conventional canonical Monte Carlo or molecular dynamics methods. 

From the definition of Eq. (2), the multicanonical weight factor is inversely proportional to the 
density of the states, and is written as follows: 

)(
1)( /)(

En
eEW BkES

mu , (3)

where S(E) is the entropy in the microcanonical ensemble: 

)(ln)( EnkES B . (4)

Since the density of states of the system is usually unknown, the multicanonical weight has to be 
determined numerically by iterations of short preliminary runs. In the present study, we employ the 
iterative procedure from Ref. [5]. 

A multicanonical Monte Carlo simulation is performed, for instance, with the usual Metropolis 
criterion [17]: the transition probability of state x with potential energy E to state x' with potential 
energy E' is given by 

w(x x' )
1,                      for S 0,
exp(- S/kB )     for S 0, (5)

where

)()'( ESESS . (6)

Once the multicanonical weight factor (equivalently the entropy S(E)) is given, one performs a 
long multicanonical production run. By monitoring the potential energy throughout the simulation, 
one can find the global–minimum–energy state. Moreover, adopting the reweighting techniques, the 
expectation value of a physical quantity A at any temperature T (= 1/kB ) is given by 

E

E
E

E

T eEn

eEnEA
A

)(

)()(
, (7)

where the optimal density of states n(E) is given by the single–histogram reweighting techniques 
[10]:
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mu , (8)

and Hmu(E) is the recorded histogram of the probability distribution of potential energy Pmu(E) that 
was obtained from the production run. For instance, the heat capacity is calculated by the following 
equation:

2

22

Tk

EE
C

B

TT
V . (9)

2.2 Computational Details
We chose the periodic cubic cell, with an edge size of 12.78 Å containing 64 water molecules, as 

a basic cell (the density is 0.917 g/cm3). The TIP4P potential [18] was employed for the water–
water intermolecular interaction. The electrostatic potential was calculated by the Ewald summation 
techniques [19]. We remark that we do not observe evaporations of water molecules in the present 
study because we fix the volume (we are only interested in liquid–solid phase transitions). As we 
described in Subsection 2.1, the MUCAMC simulation consists of two steps. First, we determined 
the multicanonical weight factor by iterations in Ref. [5]. In each iteration the MUCAMC 
simulation with 105 Monte Carlo sweeps was performed. Our Monte Carlo simulation is performed 
by choosing a water molecule randomly and updating its coordinates with Metropolis criterion [17]. 
One Monte Carlo sweep consists of 64 such updates. After the multicanonical weight factor was 
determined, we then made one long production run of 5 106 Monte Carlo sweeps. The step size of 
coordinate updates was determined so that the acceptance ratio is 0.5 in the canonical Monte Carlo 
simulation at 500 K, and was fixed for all MUCAMC simulations. 

3 RESULTS AND DISCUSSION 

With the multicanonical Monte Carlo method, we expect to obtain a free random walk in 
potential energy space and thus a flat energy distribution. Time series of the total potential energy 
from the production run is shown in Figure 1(a). We indeed see a random walk between around –20 
and –45 kJ/mol. Time series of the total potential energy obtained by the conventional canonical 
Monte Carlo simulations with 106 MC sweeps at temperatures 200 and 500 K are also shown in 
Figure 1(b) for comparison. Average values from these simulations at 200 and 500 K are –41.8 and 
–24.6 kJ/mol, respectively. Hence, the multicanonical simulation of Figure 1(a) covers the energy 
range which corresponds to that at least between 200 and 500 K. Covering a wide temperature 
range in a single simulation run is one of the advantages for using the multicanonical algorithm. 

Figure 2 shows the histogram of the potential energy distribution that was obtained by the 
MUCAMC production run. In the figure, we regard the histogram that exceeds 105 as flat. This 
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implies that the multicanonical ensemble is realized in the potential energy range between –46 and 
–20 kJ/mol. 
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Figure 1. Time series of total potential energy obtained by (a) a long production run of the MUCAMC 
simulation and (b) the conventional canonical Monte Carlo simulations at temperatures 200 and 500 K. 

Another advantage for using the multicanonical algorithm is that entropy can be calculated 
directly as a function of total potential energy (see Eqs. (4) and (8)). The entropy calculated by the 
MUCAMC simulation is shown in Figure 3. Since we can only calculate the relative values of the 
entropy, we set the absolute value of the entropy to 0 at the lowest energy of the production run. 
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Figure 2. Histogram of the total potential energy distribution that was obtained by the MUCAMC production run. 
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Applying the reweighting techniques to the results of the MUCAMC production run, we can 
calculate physical quantities as a function of temperature (see Eq. (7)). For instance, the average 
potential energy that was calculated at every 10 K from 150 to 630 K is shown in Figure 4. In 
Figure 2 above, we found that the energy histogram is flat in the range between –46 and –20 kJ/mol, 
within which we have sufficient sampling. From Figure 4, this energy range corresponds to the 
temperature range between 170 and 630 K (the average values are thus reliable in this range). The 
average energy in Figure 4 monotonically increases as the temperature is raised. The slope seems to 
suddenly change around 200 K, suggesting the existence of some kind of phase transition. 
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Figure 3. The entropy as a function of potential energy that was obtained by the MUCAMC production run. 
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Figure 4. The change in average potential energy obtained by the MUCAMC 
calculation. Averaged energies was calculated every 10 K. 
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If there is a phase transition around 200 K, one should observe a peak in the heat capacity. This 
quantity is calculated by the reweighting techniques (see Eq. (9)) and shown in Figure 5. A 
remarkable peak at 190 K is indeed observed. 
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Figure 5. Heat capacity CV as a function of temperature. The values at each temperature are interpolated. 

We now want to decide what kind of phase transition we have identified. The phase in higher 
temperature belongs to liquid water phase, while we have less information about the phase in lower 
temperature. In order to know the structure of the phase, the oxygen–oxygen radial distribution 
function, gOO, was calculated by the reweighting techniques. In Figure 6 the results for T = 150, 
250, and 500 K are shown. Those that were obtained by the conventional canonical Monte Carlo 
simulations are also shown in Figure 6 and they are essentially in agreement with those from the 
MUCAMC simulation. 
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Figure 6 The oxygen–oxygen radial distribution function gOO at (a) 150 K (b) 250 K, and (c) 500 K. The results that 
were obtained from the MUCAMC production run by the reweighting techniques are shown in red curve and those from 
the conventional canonical Monte Carlo simulation are in green curve. Distances are in Å. 

We emphasize that only one MUCAMC simulation was necessary to obtain the gOO’s for a wide 
temperature range, while we need many simulation runs to cover this temperature range by 
conventional canonical simulations. The result at 250 K is typical for bulk water and has peaks at 
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around 2.9 and 4.5 Å. The first peak is observed at all three temperatures. The peak is sharper at 
150 K, whereas that is broader at 250 K and even more broader at 500 K. The second peak that is 
observed at both 150 K and 250 K is shifted to around 5.8 Å and less pronounced at 500 K. The 
shape of gOO at 150 K implies that hydrogen bonding is much stronger than in bulk water but that 
the orientational flexibility remains. This suggests that we have an amorphous ice at 150 K. 
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Figure 7. The average number of hydrogen bonds per water molecule. 

Figure 8 Snapshots obtained by the conventional canonical Monte Carlo simulations at temperatures (a) 150 K and (b) 
500 K. The total potential energy is, respectively, (a) –47.85 kJ/mol and (b) –25.12 kJ/mol. Hydrogen bonds are drawn 
in yellow dashed lines. 

Moreover, the average number of hydrogen bonds per water molecule was calculated as a 
function of temperature from the results of the MUCAMC production run by the reweighting 
techniques. Here, we consider that the hydrogen bond is formed when the distance between the 
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acceptor oxygen and hydrogen atom is less than or equal to 2.5 Å. The results are shown in Figure 
7. The number is 3.84 below 180 K. This should be compared with the ideal value, four, of the 
crystalline ice, which indicates that only 4 % of possible hydrogen bonds are broken. This is another 
evidence for the formation of amorphous ice at low temperatures. 

Finally, the snapshots that were obtained by the conventional canonical Monte Carlo simulations 
at temperatures 150 and 500 K are shown in Figure 8. Water molecules are arranged irregularly at 
both temperatures. However, at 150 K, we observe some regularity in the hydrogen bond patterns 
that is characteristic for the amorphous ice formation. 

4 CONCLUSIONS 

We applied the multicanonical Monte Carlo method to the bulk water system. The method is 
suitable for systems that have complex potential energy surfaces. In the present study, the 
multicanonical weight factor that we determined turned out to be reliable for the energy range 
between –46 and –20 kJ/mol, which corresponds to the temperature range between 170 and 630 K. 
We found a phase transition at 190 K. By studying the oxygen–oxygen radial distribution function 
and the average number of hydrogen bonds per water molecule, we concluded that the phase 
transition that we found is between amorphous ice and liquid water. Although we did not obtain 
crystalline ice in the present study, we believe that this can be achieved by determining a more 
accurate multicanonical weight factor in lower energy regions. 
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