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Abstract 

Motivation. DNA sequencing has become routine and has resulted in an abundance of data on primary 
sequences of DNA for various species. Hence, we faced the task of process such great amount of data, which 
poses a number of yet unsolved problems. The motivation of this paper is to introduce a new numerical 
characterization of DNA sequences. 
Method. We define a scheme to give a logic order of DNA primary sequences in term of the classification of 
nucleic acid bases. Using logic sequences we generate a set of 4×6 matrices to represent DNA primary 
sequences, which are based on counting all (0,1) triplets in the logic sequences. Using the condensed 
representation of primary DNA primary sequences and the eigenvalues of the corresponding symmetric real 
matrix a comparison is made between the primary sequences for exon–1 of human –globin and seven other 
species.
Results. With this procedure we extend the matrix method to determine new invariants as descriptors for DNA 
sequences. 
Conclusions. On the basis of this new scheme, we find that a new similarity index, the informational 
compression ratio, can characterize the evolution relationships for different species. 
Keywords. DNA sequence; –globin gene; similarity analysis; condensed matrix; DNA descriptor index; 
evolutionary rates and gradient. 

1 INTRODUCTION 

In recent years, effective representation of long DNA sequences has led to several innovative 
techniques to provide useful ways for viewing, sorting, analyzing, and comparing various 
sequences. For example, Gate, Nandy, Leong, Mogenthaler, and Randi  have defined methods for 
representing graphically DNA sequences using a two–dimensional Cartesian coordinate system [1–
7]. These methods are based on choosing four directions in the x,y coordinate system to represent 
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the content of the four bases in DNA sequences. The algorithm essentially consists of plotting a 
point corresponding to a base by moving a step in a direction depending on the defined association 
of a base with the direction. The cumulative plot of such points produces a graph that corresponds 
to the sequence of bases in the gene fragment under consideration. 

It is clear that the difference in the base composition and distribution of individual members of a 
homologous family will induce changes in the plot of the sequences in the graphical representation. 
Nevertheless, this method has some disadvantages. First, graphical approaches involve to a greater 
or lesser degree arbitrary conventions when the assignment of the direction in the x,y plane are 
selected for the nucleic bases A, C, G and T, where A, C, G, T are the codes respectively for 
adenine, cytosine, guanine and thymine. Second, DNA primary sequences vary enormously in their 
length. Even when the long sequences are broken down into segments corresponding to exons or 
introns, the segments corresponding to the same position within a gene and belonging to different 
species may have different length. 

In 1986, Gate [1] proposed a Manhattan distance approach only for an equal length sequence. In 
1996, Nandy [8] estimated the divergence of two graphs by calculating the plot density, i.e., the 
ratio of the number of points and the enclosing area for the points, but this method misses out on 
difference arising out of shape changes within the same overall distribution. In recent years, it was 
proposed a numerical characterization of graphical representation of DNA primary sequences, and 
further proposed a method to compare more graphs in order to provide a quantitative estimate of the 
divergence of the different sequences. However, because the graphical representation of a shorter 
DNA sequence may correspond to more DNA sequences (for example, sequences AG, AGAG, 
AGAGAG, …, have the same graphical representation), much more work needs to be done to forge 
this technique into a precision tool for characterization of gene sequences. 

A possible strategy to avoid such difficulties is to represent the DNA sequences by suitably 
constructed matrices. A way to arrive at a numerical matrix for a sequence, or a structure such as a 
molecule, is by first imbedding the sequence (or a structure) in a 2D or 3D space. For a system of 
fixed geometry one can consider for any two elements their Euclidean distance (‘through space 
distance’) and their graph theoretical distance (‘through bond distance’). The D/D matrix [9], the 
elements of which are given as the quotient of Euclidean and the graph theoretical distance, have 
been shown to lead to useful structural invariants. In this way one arrives at an index that has been 
structurally interpreted as measuring the degree of folding of chain molecules, planar or spatial 
curves, and fractals. 

Instead of using a geometrical representation of the primary DNA sequences, Randi  [10] 
constructed the S/S matrix. The entry of the S/S matrix is the quotient of serial distance between 
selected labels of one kind only and the sequence distance when all labels are counted in the 
primary DNA sequence. The large S/S matrices belonging to lengthy primary DNA sequences are 
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reduced to smaller matrices, namely AA, AT, AG, AC, TA, TT, TG, TC, GA, GT, GG, GC, CA, 
CT, CG, CC. Using the average matrix element of each sub matrix as its ‘representative’ in the 4×4 
condensed matrix, the large initial matrix is reduced to symmetrical 4×4 matrix with, at most, ten 
different entries. Such matrices not only offer some instant insight into the nature of the primary 
sequence of DNA but also allow one to make qualitative and quantitative comparisons between 
different DNA sequences, whether within the same or between different species. 

Randi  introduced a 4×4 condensed matrix representation of primary DNA sequences that offers 
an alternative method of transforming the DNA sequences into a numerical value [11]. Instead of 
analyzing the primary sequence by constructing a large matrix, one can associate a smaller matrix 
with the segment of DNA in which the rows and columns are assigned to individual nucleic bases 
of the same kind. The entry (X, Y) of the matrix is assigned to the frequency of occurrence of (X, Y)
as adjacent entries in the primary sequence of DNA, where X, Y  {A, C, G, T}. Clearly, there is a 
greater loss of information when one condenses the primary sequence of DNA into a 4×4 matrix by 
this method. Due to this drawback, Randi  has done a lot of work on the recovery of lost 
information, and constructed the additional 4×4 condensed matrices for nonadjacent pairs of nucleic 
bases at distance 2, 3, …, 6 and so on. In addition, he did not pay attention to the influence of 
different length of DNA primary sequences, so, the usefulness and reliability of the present 
approach would be evaluated in comparison with the of exon–1 of human and seven other species 

–globins.

2 METHODS 

2.1 The Construction of Logic Sequences Based on the Classification of Nucleic
Acids

In this contribution we adopt the procedure proposed by He and Wang for encoding into a 
numerical form the DNA sequence [12]. Nucleic acids and proteins are all linear macromolecules. 
Although in this approach we consider only the primary structure of DNA, the 3D structure of DNA 
should be considered in order to have a comprehensive picture of the DNA similarity. 

In DNA sequences, the four bases A, C, G, T can be divided into two classes according to their 
chemical structures, i.e. purine P1 = {A, G} and pyrimidine P2 = {C, T}. The bases can also be 
divided into another two classes, amino group G1 = {A, C} and keto group G2 = {G, T}. In addition, 
the division can also be made according to the strength of the hydrogen bond, i.e. weak H–bonds H1

= {A, T} and strong H–bonds H2 = {G, C}. For a DNA sequence, using each classification, we can 
rewrite the sequence into a (0,1) sequence. For example, ATG becomes 101 in the P1(P2)–schema, 
100 in G1(G2)–schema and 110 in the H1(H2)–schema. 
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Table 1. Exon–1 of the –Globin Genes for Eight Species 
No Species Bases Length
1 Human ATGGT GCACC TGACT CCTGA GGAGA AGTCT GCCGT TACTG CCCTG TGGGG 

CAAGG TGAAC GTGGA TGAAG TTGGT GGTGA GGCCC TGGGC AG 92

2 Goat ATGCT GACTG CTGAG GAGAA GGCTG CCGTC ACCGG CTTCT GGGGC AAGGT 
GAAAG TGGAT GAAGT TGGTG CTGAG GCCCT GGGCA G 86

3 Opossum ATGGT GCACT TGACT TCTGA GGAGA AGAAC TGCAT CACTA CCATC TGGTC 
TAAGG TGCAG GTTGA CCAGA CTGGT GGTGA GGCCC TTGGC AG 92

4 Gallus ATGGT GCACT GGACT GCTGA GGAGA AGCAG CTCAT CACCG GCCTC TGGGG 
CAAGG TCAAT GTGGC CGAAT GTGGG GCCGA AGCCC TGGCC AG 92

5 Lemur ATGAC TTTGC TGAGT GCTGA GGAGA ATGCT CATGT CACCT CTCTG TGGGG 
CAAGG TGGAT GTAGA GAAAG TTGGT GGCGA GGCCT TGGGC AG 92

6 Mouse ATGGT TGCAC CTGAC TGATG CTGAG AAGTC TGCTG TCTCT TGCCT GTGGG 
CAAAG GTGAA CCCCG ATGAA GTTGG TGGTG AGGCC CTGGG CAG 93

7 Rabbit ATGGT GCATC TGTCC AGTGA GGAGA AGTCT GCGGT CACTG CCCTG TGGGG 
CAAGG TGAAT GTGGA AGAAG TTGGT GGTGA GGCCC TGGGC 90

8 Rat 
ATGGT GCACC TAACT GATGC TGAGA AGGCT ACTGT TAGTG GCCTG TGGGG 
AAAGG TGAAC CCTGA TAATG TTGGC GCTGA GGCCC TGGGC AG 92

In this representation, some information of the DNA sequence structure may be lost, however, it 
is easier to compare sequences. We perform similar operations on the sequence according to the 
second and third classifications so that the loss of information of the sequence can be greatly 
reduced. Thus, we obtain three (0,1) sequences corresponding to the same DNA primary sequence, 
and we call them as logic sequences of the DNA primary sequence over (P1, P2), (G1, G2), and (H1,
H2), respectively. For example, the logic sequences for exon–1 of the –globin gene for humans 
(species 1 in Table 1) are presented in Table 2. 

Analogously, we derive the other seven species logic sequences for their –globin genes, and the 
i–th species logic sequences are listed in Table i + 1, i = 2, 4, …, 7. In the next subsection, we will 
generate a type of condensed matrices by considering the frequencies of occurrence of (0, 1) triplets 
based on the logic sequences for the species. As will be seen, the sequence length will standardize 
the condensed matrices when different lengths of DNA sequences are compared together. 

Table 2. The logic sequences of exon–1 of the –globin gene for human (species 1) 
(P1, P2) 10110101000110000011111111100010010010010000101111011110111010111101110011011011110000111011
(G1, G2) 10000011110011011001001011001001100011001110000000111000011100001001100000000001001110000110
(H1, H2) 11001001001010100101001011010100001110100001010000011001011001001011101100100101000001000010

Table 3. The logic sequences of exon–1 of the –globin gene for goat (species 2) 
(P1, P2) 101001100100111111111100110010010010011000001111011110111110111011110011010011110000111011
(G1, G2) 10010011001001001011001001100111100100100000111000011100001001100000001001001110000110
(H1, H2) 11001010100101001011000100001010000011010000011001011101001101101100100101000001000010

Table 4. The logic sequences of exon–1 of the –globin gene for opossum (species 3) 
(P1, P2) 10110101000110000011111111111001010010010010001100011110101110011001110011011011110000011011
(G1, G2) 10000011100011001001001011011100110111011110100001011000011000001111011000000001001110000110
(H1, H2) 11001001011010110101001011011010011010110011010010111001001001101001010100100101000001100010
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Table 5. The logic sequences of exon–1 of the –globins gene for gallus (species 4) 
(P1, P2) 10110101001110010011111111101100010010011000001111011110011010110011101011110011110000110011
(G1, G2) 10000011100011001001001011011010110111100110100000111000111000001101100000001101101110001110
(H1, H2) 11001001010010100101001011001001011010000001010000011001011101000001110100000001100001000010

Table 6. The logic sequences of exon–1 of the –globin gene for lemur (species 5) 
(P1, P2) 10110000100111010011111111010001010010000000101111011110111010111111110011011011110000111011
(G1, G2) 10011000010010001001001011001011000111101010000000111000001000101011100000000101001100000110
(H1, H2) 11010111001010100101001011100101101010010101010000011001001101101011101100100001000011000010

Table 7. The logic sequences of exon–1 of the –globin gene for mouse (species 6) 
(P1, P2) 1011001010001100110100111111000100100000010001011101111101110000110111100110110111100001110111
(G1, G2) 1000000111100110010010010110010010001010001100000011110000111111010011000000000010011100001100
(H1, H2) 1100110010010101011001010110101001010101100010100001110010110000011011011001001010000010000100

Table 8. The logic sequences of exon–1 of the –globin gene for rabbit (species 7)} 
(P1, P2) 101101010001000110111111111000101100100100001011110111101110101111111100110110111100001110
(G1, G2) 100000110100011100010010110010010001110011100000001110000110000011011000000000010011100001
(H1, H2) 110010011010100101010010110101000010101000010100000110010111010011011011001001010000010000

Table 9. The logic sequences of exon–1 of the –globin gene for rat (species 8) 
(P1, P2) 10110101000110011010011111110010010011011000101111111110111000011011010011010011110000111011
(G1, G2) 10000011110111001001001011001011000010000110000000111000011111001011000000101001001110000110
(H1, H2) 11001001001110101100101011000110101110100001010000111001011000101111101100000101000001000010

2.2 The Construction of Novel Condensed Matrices
In each DNA logic sequence, there are eight possible triplets that can occur: 000, 001, 010, 011, 

100, 101, 110 and 111. Therefore, for a given exon–1 of the –globin gene, there exist 24 triplets, 
i.e. P2P2P2, P2P2P1, P2P1P2, P2P1P1, P1P2P2, P1P2P1, P1P1P2, P1P1P1, G2G2G2, G2G2G1, G2G1G2,
G2G1G1, G1G2G2, G1G2G1, G1G1G2, G1G1G1, and H2H2H2, H2H2H1, H2H1H2, H2H1H1, H1H2H2,
H1H2H1, H1H1H2, H1H1H1. For example, P1P2P2 signifies that X, Y, Z belong to P1, P2 and P2

respectively, i.e. P1P2P2 is equivalent to the logic triplet 100, in which XYZ is one of triplet codons 
of a DNA primary sequence, X, Y, Z  {A, C, G, T}. We transform the above 24 logic triplets into 
a 4×6 condensed matrix as follows: 

112212112212111211

122222122222121221

111211111211112212

121221121221122222

2
1

HHHHHHGGGGGGPPPPPP
HHHHHHGGGGGGPPPPPP
HHHHHHGGGGGGPPPPPP
HHHHHHGGGGGGPPPPPP

l
M (1)

where l is the length of DNA primary sequence. Counting the enumeration of the frequency of 
occurrence of the 24 logic (0, 1) triplets, we can obtain the corresponding matrix for each species 
listed in Table 1. If the condensed matrix of the i–th type of species is denoted by Mi, i = 1, 2, …, 8, 
then
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7179102111
13141814711
1859126

1113118115

84
1

6211251812
15121523129
27612138

121521599

90
1

21 MM

6181551713
14191117912
27715147

1014911126

90
1

10201361512
1441219912
111813138

1614712129

90
1

43 MM

919991513
131115221011
11099147

15143161111

91
1

9198132111
1291422128
31048128

1612714810

90
1

65 MM

9151091613
121414201111
610810148

1212514116

90
1

7201062112
12121426128
18510128

151331487

88
1

87 MM

Observing these matrices, we can obtain some common features, which are not easily detected 
from the DNA primary sequences in Table 1. The triplets P1P1P1, G2G2G2 and H2H1H2 are the most 
frequent elements of the condensed matrices, while the less frequent triplets are P2P1P2, P2P2P2,
G1G2G1, G1G1G1 and H1H1H1. Some triplets, such as P2P1P1, P1P1P2, G1G1G2, G1G1G1, H2H2H1,
H2H1H1, H1H2H2 are small variations triplets in the frequency of occurrence, while other elements, 
for example, H2H2H2 etc. show considerable variations. Moreover, we find also that for each 
condensed matrix, the sum of all elements in the last two rows is greater than one in the first two 
rows, which means that the values of A+G, T+G and C+G are large, hence, we could conclude G is 
dominant among all nucleic acid bases for each sequence. These observed results reflect the 
chemical structure properties implied in exon–1 of –globin genes. In fact, this phenomenon was 
also indicated in Table 5 of [11]. 

3 RESULTS AND DISCUSSION 

3.1 Comparative Study of Exon–1 of Different Species
Let Mi and Mj be the condensed matrices of species i and j in Table 1, which appear in the above 

section. The distance of matrices Mi and Mj is defined as 

2)(4

1

6

1

)( )( lm
j

l m
lm

i
jiij aaMMd  ( 8,,2,1, ji ) (2)

where an
lm denotes row l and column m element of matrix Mi, which signifies the frequency of 
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occurrence of the corresponding (0,1) logic triplet. By using these distance listed in Table 10 as a 
measure of similarity/dissimilarity, we could investigate the similarities and dissimilarities for the 
eight exon–1 –globin genes. The underlying assumption is that the larger the distance, the lesser 
similar the corresponding DNA sequence. We expected that exon–1 of mouse and exon–1 of rat 
will be quite similar. From Table 10 we see indeed that the corresponding entry is the smallest 
number, being 0.113061. However, in [11] the smallest entry is not the entry (mouse, rat), but 
(human, mouse), (human, rabbit), and (goat, lemur) entries which are much smaller than the entry 
(mouse, rat), and correspond to species that are not close in the evolutionary tree. In this paper, the 
magnitudes of numerical values in Table 10 are roughly in proportion to the degrees of similarity. A 
large entry in such a table certainly points to species that are dissimilar. It is also interesting to 
observe from Table 10, that gallus (species 4) shows great dissimilarity with other species, because 
almost all entries belonging to gallus are large. In fact, it is not a mammal, while the other species in 
Table 10 are mammals. 

Table 10. Similarity/Dissimilarity Table for the Eight Exons in Table 1 
Species 1. Human 2. Goat 3. Opossum 4. Gallus 5. Lemmur 6. Mouse 7. Rabbit 8. Rat 
1 Human 0 0.17295 0.164054 0.172133 0.160247 0.11737 0.0905605 0.142292 
2 Goat  0 0.232425 0.21019 0.192083 0.16794 0.19071 0.163029 
3 Opossum   0 0.203063 0.176383 0.137324 0.186579 0.169967 
4 Gallus    0 0.239341 0.2022 0.208684 0.156347 
5 Lemmur     0 0.133222 0.127072 0.149897 
6 Mouse      0 0.134051 0.113061 
7 Rabbit       0 0.154569 
8 Rat        0 

3.2 Evolutionary Rates and Gradient Analysis for Various Species
The eigenvalues of a matrix are one of the best–known matrix invariants [13,14]. If a matrix is 

symmetric, then the eigenvalues are real. A set of eigenvalues can be viewed as a numerical 
characteristic of a structure. In the previous section, we generated 4×6 matrix Mi, i = 1, 2, …, 8. In 
order to obtain a symmetric matrix, we define t

iii MMS , and denote Ri = i1/ i4, where t
iM

denotes the transpose of Mi, i1 and i4 are the maximum and minimum eigenvalue of Si

respectively. With Ri we denote the informational compression ratio of DNA primary sequence. The 
magnitude of Ri gives expression to the oscillatory degree of elements in matrix Si, i = 1, 2, …, 8, as 
will be seen. Using a program encode into Mathematica 4.0, we obtain the symmetric matrices Si as 
follows: 

1081899596773
8991055491727
596491351444
773727444761

7056
1

1114961621756
9611348708924
621708466510
756924510760

8100
1

21 SS
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10681985647784
9851192703872
647703572556
784872556678

8100
1

1074769703890
769942614808
703614588610
891808610870

8100
1

43 SS

998952662880
9521220673977
662673508557
880977557948

8281
1

12371017693888
10171113566882
693566397484
888882484809

8100
1

65 SS

912957702718
9571178766849
702766560574
718849574666

8100
1

1170968625731
9681368946894
625646398426
731894426712

7744
1

87 SS

From the above matrices, R1 = 67.1821, R2 = 184.101, R3 = 116.669, R4 = 211.175, R5 = 636.007, 
R6 = 183.414, R7 = 176.324, R8 = 308.009, and their ordinal relation is: R1 < R3 < R7 < R6 < R2 < R4

< R8 < R5.

Table 11. Calculation of the informational compression ratios 
k R1

k R2
k R3

k R4
k R5

k R6
k R7

k R8
k

1 67.18 184.10 111.66 211.17 636.007 183.414 176.324 308.009 
4 171.416 627.769 31.9482 118.355 1759.46 139.748 458.466 280.103 
8 6431.42 23419.7 160.357 529.672 60795.2 1812.03 29313.1 2011.58 
10 48292.2 174678 474.916 1865.72 455983. 8802.88 299019. 6916.08 
15 8.71793×106 3.44121×107 8692.03 63377.5 9.01129×107 580424. 1.212×108 190618. 
25 3.42369×1011 2.02269×1012 3.4814×106 9.41062×107 5.11373×1012 3.34297×109 2.57659×1013 2.11115×108

30 6.91354×1013 5.24597×1014 7.06502×107 3.68903×109 1.32015×1015 2.63301×1011 1.226×1016 7.66256×109

However, we expected that mouse and rats are the most similar, but the corresponding R6 and R8

segregate farther, these phenomena demonstrate that the loss of information also perhaps 
accompanies the condensation of the DNA sequence into the 4 4 matrix Si. A way to recover some 
of the lost information associated with the condensation of the DNA sequence to a single 4 4
symmetric matrix Si is to introduce the k–th power of Si in which one can generate the closely 
related matrices Si

k, obtained from the Si by raising each element separately to the k–th power for i = 
1, 2, …, 8. After several iterative computations, Ri

j = i1
j/ i4

j is obtained as presented in Table 11, 
where i1

j and i4
j denote the maximum and the minimum eigenvalues of the k–th power of Si.

Obviously, R3
k and R4

k are almost the smallest numbers among R1
k, R2

k, …, R8
k, and R2

k, R5
k, R7

k

are almost the larger ones. These phenomena make us think of the results of Randi  and Vra ko in 
[15] (page 603, paragraph 2): “The leading eigenvalue of D/D matrix, as has been mentioned 
earlier, give a measure of the degree of folding of long chains. The smaller the value of 1, the more 
folded the corresponding graphical representation of DNA. It follows therefore that among the eight 

–globins the opossum –hemoglobin, sequence C (here is sequence 3), is the most folded. On the 
other hand, the graphical representation of rabbit –globins and the goat –globins are the least 
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folded of the eight sequences considered”. Hence, the quotient of the maximum and minimum 
eigenvalues can also be regarded as a good index of the degree of folding even for a structure, such 
as the sequences of DNA considered. Now, we arrange R1

k, R2
k, …, R8

k in term of their magnitude 
for different k, and list all results in Table 12, then, some features come into light: R3

k, R4
k, R6

k, R8
k

run ahead along with increase of k, while for advanced species (human, goat, lemur and rabbit) the 
corresponding informational compression ratios are greater than the formers out and away. 
Opossum, gallus, mouse and rat are always ahead because of their evolutionary relationship of 
belonging to murine. At the same time we see that opossum and gallus –globins show greater 
differences with all other species, including human. The situation has not much changed when k
increases. In fact, gallus species has little similarity with the remaining species of Table 1, as is said 
above. The condensed information suggests that this species would be separated from the rest at an 
earlier stage of evolutionary development. The former species (opossum) is very similar to gallus, 
the former belonging to mammal and the later not. This suggests that opossum would also be 
separated from the rest at an earlier stage too. Moreover, the magnitude of R3

k, R4
k, R6

k and R8
k first 

decrease and then enlarge at lower speed by degrees as k grows, while the others ascend at high 
speed all through. The growth rate of R4

k is the least, and the growth rates R1
k and R7

k is the biggest. 
The interval between R6

k and R8
k become shorten as k grows, the ordinal relation runs to 

stabilization although individual Ri
k change endlessly. It is obvious that this stable ordinal relation is 

in accordance with the species’ evolutionary gradient on the whole. 

Table 12. Recovering information and finding the complexity about time 
k  Ordinal relation of R1

k, R2
k, R3

k, R4
k, R5

k, R6
k, R7

k, R8
k

1 R1 < R3 < R7 < R6 < R2 < R4 < R8 < R5
4 R3

4 < R4
4 < R6

4 < R1
4 < R8

4 < R7
4 < R2

4 < R5
4

8 R3
8 < R4

8 < R6
8 < R8

8 < R1
8 < R2

8 < R7
8 < R5

8

10 R3
10 < R4

10 < R8
10 < R6

10 < R1
10 < R2

10 < R7
10 < R5

10

15 R3
15 < R4

15 < R8
15 < R6

15 < R1
15 < R2

15 < R5
15 < R7

15

25 R3
25 < R4

25 < R8
25 < R6

25 < R1
25 < R2

25 < R5
25 < R7

25

30 R3
30 < R4

30 < R8
30 < R6

30 < R1
30 < R2

30 < R5
30 < R7

30

4 CONCLUSIONS 

We use an intensive approach, which consider not only sequence structures but also chemical 
structure for DNA primary sequences. The invariant of sequences is applied to the comparison of 
DNA primary sequences, rather than sequence themselves. Such scheme extends the matrix 
methods and improves previously obtained results. The method is suitable for application to whole 
genes. In addition, we find that the informational compression ratio possibly indicates the 
evolutionary gradient, which is influenced by base composition and distribution. 
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