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Abstract

Motivation. Novel carbon allotropes with finite molecular structure, including spherical fullerenes, are
nowadays currently produced and investigated. The Kekulé structures count and permanent of the adjacency
matrix of these molecules are related to structural parameters involving the presence of contiguous pentagons.
Method. Both single– and complete–linkage cluster analyses of the structural parameters allow classifying these
parameters. Principal component analysis (PCA) of the structural parameters and the cluster analyses of the
fullerenes permits classifying these molecules.
Results. Cluster analysis provides a binary taxonomy of the structural parameters that separates first the q
parameter (the number of edges common to two pentagons). PCA clearly distinguishes three classes of
fullerenes. The cluster analysis of fullerenes is in agreement with PCA classification.
Conclusions. Cluster analysis shows the greatest similarity for the p and r (the number of vertices common to 
three pentagons) parameters. Split decomposition indicates a spurious relationship resulting from base
composition effects. PCA provides three orthogonal factors F1–F3. The use of only F1 gives an error of 13%. The
use F1 and F2 decreases the error to 3%. PCA groups the fullerenes in three classes. Some fullerenes with 
different numbers of atoms belong to the same class, while some fullerene isomers are members of different
classes.
Availability. The software programs are available on request from the author (Francisco.Torrens@uv.es) and are
free for academics.
Keywords. Cluster analysis; dendrogram; split decomposition; principal component analysis; similarity matrix;
fullerene.

1 INTRODUCTION

Multivariate data often consist of sets of high–dimensional vectors. In chemical applications, a
vector could be a series of physical measurements or calculated properties made on a molecule. A 
dataset of compounds may be a series of related molecules collected for, e.g., a structure–activity
study. If the vectors are only two–dimensional (2D), they can be plotted in a plane. This allows the
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visual inspection of the structure of the dataset to identify clusters and particular objects, i.e., to 
perform an exploratory data analysis. 

When dealing with vectors whose dimensions are larger than two, it is not possible to represent
them graphically in a plane. One way to overcome this problem is to transform the N–dimensional
vectors into 2D. Many projection methods have been developed for this task. A good projection 
method preserves as faithfully as possible the original structure of the high–dimensional data. 
Unfortunately, the true distances between the vectors in the original high–dimensional space cannot
be preserved exactly in the projected 2D display. The two–dimensional plot thus obtained must 
distort in some way the original picture. Such distortions can cause misleading plots. Among the
many papers concerned with the projection of multivariate data, the checking of the projections
remains mostly an exception. 

Projection algorithms can be either supervised or unsupervised. Because this article deals with
exploratory data structure analysis, only unsupervised methods are used. Unsupervised algorithms
can be either linear (e.g., principal component analysis) or non–linear (e.g., non–linear mapping,
self–organizing map). Comparisons of the quality of projection methods were described elsewhere
[1–6].

Principal component analysis (PCA) is probably one of the most popular projection methods [7]. 
Its principal feature is to rotate the vector space using the eigenvectors (principal components, PCs 
or factors) of the covariance matrix as a new basis [8]. PCs corresponding to the two largest 
eigenvalues (variance) are used to produce 2D plots [9]. The quality of the projection is commonly 
expressed by the retained variance of the first two PCs. In addition, plots of other components, such 
as the first against the third, etc., might be useful. PCA facilitates the statistical analysis, but the 
interpretation is obscured, as each new variable results from the combination of others.

To illustrate the usefulness of this method, a projection method and a dataset of molecules are 
studied. The dataset deals with a series of 31 fullerenes represented by three structural parameters.
For this example, PCA projection method is applied. On the other hand, a method is described for 
clustering data. The relative efficiency of clustering algorithms and similarity descriptors has been
the subject of several recent articles [10–12].

In a previous paper, the calculation of the Kekulé structures count and permanent of adjacency 
matrices [13] was applied to fullerenes with different structural parameters involving the presence
of contiguous pentagons [14]. In this work, PCA of the structural parameters has been carried out. 
The aim of this paper is to analyse the interdependence between the structural parameters, to 
classify them, and to classify the fullerenes. Section 2 presents the computational method. Section 3 
discusses the calculation results for fullerenes. Section 4 summarizes the conclusions. 
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2 COMPUTATIONAL METHOD

2.1 Principal Component Analysis
Data may be viewed as N (number of points) vectors in P (number of calculated parameters)

dimensions. The data for each set can be represented by a matrix  which has N rows and P
columns. Each pattern is therefore represented by a point in 

X
P, where  is the field of real 

numbers. If each pattern s was represented in 2, then one could plot and investigate the extent of
relationship between individual parameters. In P such a simple analysis is not possible. However, 
if many of the data are highly intercorrelated, the points in P can likely be represented by a 
subspace of fewer dimensions. The method of PCA or the Karhunen–Loeve transformation is a 
standard method for reduction of dimensionality. The first PC, F1, is the line that comes closest to
the points in the sense of minimizing the sum of the squared Euclidean distances from the points to 
the line. The second PC, F2, is given by projections onto the basis vector orthogonal to F1. For 
points in P, the first r PCs give the subspace that comes closest to approximating the N points. F1

is the first axis of the points. Successive axes are major directions orthogonal to previous axes. PCs
are the closest approximating hyperplane, and because they are calculated from eigenvectors of a 
P×P matrix, the computations are relatively accessible. However, there are important scaling
choices, because PCs are scale dependent. To control this dependence, the most commonly used 
convention is to rescale the variables so that each variable have a mean of zero and a standard 
deviation of one. The co–variance matrix for these rescaled variables is the correlation matrix.

For each one of the N fullerenes, one has P values for the structural parameters. Therefore, one 
can build a table with N rows and P columns. Let us consider an P space with an orthonormal
basis set. Each axis of this basis set is a direction of one of the P variables. For each fullerene in the 
table, a point is associated in P where the coordinates on the P axes are the values of its P
parameters. For the N data in the table there are associated N points in P, making up a cloud in this 
space. The objective of the analysis is to represent this cloud in a space with dimension lower than
P, with the minimal loss of information. For accomplishing this, PCs of the cloud and the 
correlations of these axes with the P variables are determined. A new system of uncorrelated factors 
is thus obtained. Each variable can be expressed by means of these P factors. Anyway, certain
factors contribute stronger than others to the variation of the variables. In general, the importance of
a factor is represented by its percentage of variance. Therefore, by projecting the cloud over the 
plane containing the two most important factors, F1 and F2, one obtains a representation that 
contains the greatest part of the information. To call a third factor can be necessary if the two firsts 
are insufficient. 

The comparison of the measures of two different variables has no sense. However, the initial
measures can be transformed: the N values of the j–th variable are compared with the mean of this
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j–th variable. In fact, the transformed value results 

jjijij xxx

where j is the standard deviation of the j–th variable. The factorial analysis method, which consists 
in finding the eigenvalues and eigenvectors of the covariance matrix, proceeds the standardized
variables to diagonalize the correlation matrix of the initial variables. In effect, the factors have the 
form:

P

k
kiki xCF

1

On the (F1, F2) plane, each point (variable) k has as coordinates some numbers proportional to 
the C1k and C2k coefficients of the F1 and F2 factors. The profile of a factor Fi is the vector of the 
squared Cik coefficients 22

2
2
1 ,...,, iPii CCC . Each C  represents the weight of variable k in factor F2

ik i. It 

gives the fraction of each variable in factor Fi.

2.2 Cluster Analysis
One approach to the diversity problem is to cluster a structural database or virtual library based

on some kind of structural criteria. Standard approaches for clustering can be broken into two broad 
categories: hierarchical and non–hierarchical. Hierarchical approaches can be further categorized as 
agglomerative or divisive. In these approaches, either the database is divided successively until a
predetermined number of clusters have been created, or members are successively grouped together 
until the predetermined number of clusters has been assembled. In either case, a dendrogram (binary
tree) is created that maps N members in one cluster to N members in N clusters. In a non–
hierarchical approach, a nearest–neighbour list is created and used to assemble members into related 
clusters. An example of this is the Jarvis–Patrick clustering algorithm, which has been widely used 
to cluster structural databases [15]. 

There are many reasons why one might want to cluster a database of molecular structures [16]. 
Two of the most practical reasons are to identify representative compounds from a structural 
database or virtual compound library for screening or synthesis [17]. In addition, one can be 
interested in using a clustering algorithm to validate similarity methods and descriptors. If it is 
possible to cluster databases where one has some biological data in a way that groups compounds
with like activity, that will serve to validate the methods used to assign similarity. Further, it is
sometimes useful just to be able to determine if a database offering is rather diverse or if most of the
structures fall into a small number of homologous structural classes [18]. 

Three objectives must be in mind when designing a clustering algorithm [19]. First, a method
would divide a database into an appropriate number of clusters based on the structures and their 
relative similarity rather than some predefined number. Having to specify the number of clusters is
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a significant shortcoming of most clustering algorithms that create a defined number of clusters 
without regard to the fact that this sometimes requires grouping very unlike structures together.
Second, a method would allow clustering additional structures without starting from scratch. This 
objective requires an algorithm that can begin with a set of clusters and add future structures to 
existing clusters or create new clusters as their structural topology dictates. Third, of course, any 
method has to be computationally tenable for very large structural databases. Speed is one of the 
most significant problems with hierarchical methods, but even the more efficient non–hierarchical 
approaches scale formally as N2.

Using the IMSL [20] subroutine CLINK, a program has been written to carry out the cluster
analysis from a correlation or similarity matrix. The algorithm performs hierarchical cluster analysis
based upon a distance matrix or upon a similarity matrix. Hierarchical clustering proceeds in four 
steps. Initially, each pattern point is considered to be a cluster, numbered 1 to n = Npt, where Npt is
the number of data points to be clustered. 

Step 1. If the data matrix contains similarities they are converted to distances.

Step 2. A search is made of the distance matrix to find the two closest clusters. These clusters are 
merged to form a new cluster, numbered n + k.

Step 3. Based upon the method of clustering, updating of the distance measure corresponding to 
the new cluster is performed.

Step 4. Set k = k + 1. If k < n, go to step 2. 

The procedure allows two methods of computing the distances between clusters. The single and 
complete methods differ primarily in how the distance matrix is updated after two clusters have 
been joined. To understand these measures, suppose in the following discussion that clusters A and
B have just been joined to form cluster Z, and interest is in computing the distance of Z with another 
cluster called C (cf. Figure 1). In the single linkage method, the distance from Z to C is the
minimum of the distances (A to C, B to C). In the complete linkage method, the distance from Z to
C is the maximum of the distances (A to C, B to C). In general, single linkage will yield long thin
clusters, while complete linkage will yield clusters that are more spherical. 

distZ

A B C

Figure 1. Distance between clusters Z and C.
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3 RESULTS AND DISCUSSION

The structural features involving adjacent pentagons are encoded by the p, q and r parameters as 
illustrated in Figure 2. The p and q parameters enumerate, respectively, the number of edges
common to two pentagons and the number of vertices common to three pentagons [21]. The r
parameter enumerates the number of pairs of non–adjacent pentagon edges shared with two other 
pentagons [22]. Thus, q and r complement each other by counting both possible arrangements of 
three contiguous pentagons. 

p q r

Figure 2. Substructures that contribute to the p, q and r counts.

Table 1. Values of p, q and r Counts for Fullerenes.
Fullerene K per(A) ln[per(A)]/lnK p q r
C20 (Ih) 36 1392 2.0199 30 20 30
C24 (D6d) 54 4692 2.1192 24 12 36
C26 (D3h) 63 8553 2.1853 21 8 30
C28 (Td) 75 15705 2.2378 18 4 24
C28 (D2) 90 16196 2.1540 20 8 24
C30 (C2v) I 107 29621 2.2034 17 4 20
C30 (C2v) II 117 30053 2.1651 18 6 20
C30 (D5h) 151 31945 2.0672 20 10 20
C32 (D3) 144 55140 2.1968 15 2 18
C32 (C2) I 151 55705 2.1780 16 4 16
C32 (C2) II 168 57092 2.1375 17 6 16
C32 (D2) 184 58384 2.1045 18 8 15
C34 (C3v) 195 103665 2.1902 15 3 15
C34 (Cs) 196 104484 2.1896 15 3 16
C34 (C2) I 204 103544 2.1714 14 2 14
C34 (C2) II 212 107720 2.1632 17 6 16
C36 (D6h) 272 192528 2.1706 12 0 12
C36 (D2d) 288 192720 2.1489 12 0 12
C36 (C2v) 312 197340 2.1231 13 2 10
C36 (D3h) 364 207924 2.0764 15 6 6
C38 (C2v) 360 366820 2.1768 14 2 14
C38 (C3v) 378 363300 2.1572 12 1 9
C38 (D3h) 456 411768 2.1116 18 8 18
C40 (D5d) I 562 515781 2.0775 10 0 10
C40 (Td) 576 704640 2.1185 12 4 0
C40 (D5d) II 701 803177 2.0750 20 10 20
C44 (T) 864 2478744 2.1775 12 4 0
C44 (D3h) 960 2436480 2.1416 9 2 0
C60 (Ih) 12500 395974320 2.0986 0 0 0
C70 (D5h) 52168 – – 0 0 0
C82 (Cs) – – – 0 0 0

101
BioChem Press http://www.biochempress.com



F. Torrens
Internet Electronic Journal of Molecular Design 2003, 2, 96–111

The values for the structural parameters involving the presence of contiguous pentagons are 
listed in Table 1. Much chemical graph–theory work revolved around the adjacency matrices A of 
the compounds under investigation. The determinant of the 3 3 matrix [a b c, d e f, g h i] is aei –
ahf – dbi + dhc + gbf – gec. The permanent of this matrix, per(A), is the sum of the same six terms.
K is the Kekulé structure count. Cash selected a group of 27 fullerenes (included in Table 1) to 
correlate ln[per(A)]/ln K, ln K and ln[per(A)] with the structural parameters p, q and r. Despite the
good results obtained by Cash, three important remarks were made: (a) parameters p, q and r
include some redundant information, (b) the error of some parameters is large, and (c) non–linear 
effects of p, q and r can affect ln[per(A)]/ln K, ln K or ln[per(A)] [14]. In this work, a different 
strategy has been used: (a) smaller superpositions of the p–q and p–r pairs were sought, (b) not all 
the three structural parameters were necessarily retained in the fits, and (c) non–linear correlations 
were allowed. The best linear correlation of ln[per(A)]/ln K for the first 29 fullerenes in Table 1 is:

rqK 00364.00108.014.2lnperln A
n = 29 R = 0.721 s = 0.036 F = 14.1   MAPE = 1.21%   AEV = 0.4803

(1)

The mean absolute percentage error (MAPE) is 1.21% and the approximation error variance
(AEV) is 0.4803. All other models with greater MAPE and AEV have been discarded. As there 
were several fullerenes with the same set of p, q and r parameters, Eq. (1) explains 95% of the 
correlation coefficient of the means (n = 24, R = 0.757). On the other hand, the best non–linear 
correlation of ln[per(A)]/ln K with the structural parameters results:

qrrz
qz

zzz
qrrz

zzzz
qz

zzz
zK

00277.00983.022.1
232.016.1

921.0726.0
00277.00983.022.1

875.005.1
232.016.1

20.1225.0
0515.013.2lnperln

12

11

121122

21

22212232

31

323141

41A

MAPE 0.87% AEV 0.2432

(2)

and AEV decreases 49%. For ln K alone, the best linear correlation for the first 30 fullerenes in
Table 1 is: 

ln K = 10.1 – 0.376p + 0.255q
n = 30 R = 0.965 s = 0.401 F = 181.6 MAPE = 4.21% AEV = 0.0692 (3)

Equation (3) explains 98% of the correlation coefficient of the means (n = 24, R = 0.982). The
best non–linear model does not improve the results. For ln[per(A)] alone, the best linear correlation
for the first 29 fullerenes in Table 1 is: 
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ln per A 20.2 0.660 p 0.383q
n = 29 R = 0.949 s = 0.757 F = 118.5   MAPE = 4.05%   AEV = 0.0988

(4)

Equation (4) explains 97% of the correlation coefficient of the means (n = 24, R = 0.977). On the
other hand, the best non–linear correlation results are: 

ln per A 20.0 0.666 p 0.616q 0.00850 pq
MAPE 3.91% AEV 0.0871

(5)

and AEV decreases 12% with respect to the linear fit. Small superpositions of the p–q and p–r pairs 
are observed in Eqs. (1)–(5). This diminishes the risk of co–linearity in the fits given the close
relationship between each pair p–q and p–r [23].

Table 2. Cross–Validation Correlation Coefficient in a Leave–n–Out Procedure for Fullerenes.
n ln[per(A)]/lnK

vs p,q,r
ln[per(A)]/lnK

vs q,r
lnK

vs p,q,r
lnK

vs p,q
ln[per(A)]

vs p,q,r
ln[per(A)]

vs p,q
lnK vs p,q,r

(means)
lnK vs p,q
(means)

1 0.551 0.623 0.935 0.943 0.930 0.932 0.974 0.975
2 0.550 0.623 0.935 0.943 0.930 0.932 0.974 0.975
3 0.548 0.622 0.936 0.944 0.930 0.932 0.973 0.975
4 0.546 0.622 0.937 0.944 0.930 0.932 0.973 0.974
5 0.544 0.622 0.938 0.944 0.929 0.932 0.973 0.974
6 0.542 0.621 0.939 0.945 0.929 0.932 0.972 0.974
7 0.540 0.621 0.939 0.945 0.929 0.932 0.972 0.974
8 0.538 0.620 0.940 0.946 0.928 0.932 0.972 0.974
9 0.536 0.619 0.941 0.946 0.928 0.932 0.971 0.974

10 0.534 0.619 0.942 0.946 0.927 0.932 0.971 0.974

The correlation coefficient found between cross–validated representatives and the property 
values Rcv has been calculated with the leave–n–out procedure [24]. The procedure furnishes a new 
method for selecting the best set of descriptors according to the criterion of maximization of the 
value of Rcv. The Rcv calculations for fullerenes are given in Table 2 for 1 n 10. In general, Rcv

decreases with n. However, for both ln K methods Rcv increases with n. The effect is corrected when 
the set of points is substituted by the means (cf. the last two columns in Table 2). In particular, the
method ln[per(A)]/ln K vs. {q,r} gives greater Rcv than vs. {p,q,r} for the whole range of n given in 
Table 2. The same happens for both ln K and ln[per(A)] vs. {p,q}, which give greater Rcv than vs.
{p,q,r}. The corresponding interpretation is that the {q,r} set of descriptors is more predictive than 
the {p,q,r} set for modelling ln[per(A)]/ln K, and that {p,q} is more predictive than {p,q,r} for 
representing both ln K and ln[per(A)].

On the other hand, the upper triangle of the symmetrical correlation matrix R calculated for the
structural parameters p, q and r results:

000.1
691.0000.1
864.0836.0000.1

R
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High correlation is observed between p–r and p–q. Both single– and complete–linkage
hierarchical cluster analyses allow building the dendrogram for the structural parameters p, q and r
of fullerenes (Figure 3) [25]. The cluster analysis performs a binary taxonomy of the structural 
parameters that separates first the q parameter. Further, the p and r counts are set apart. 

q

p

r
Figure 3. Dendrogram for the p, q and r counts of fullerenes.

From both cluster analyses, the radial tree is built for the structural parameters p, q and r of 
fullerenes (cf. Figure 4). The radial tree in Figure 4 is in agreement with the dendrogram (Figure 3). 

0.1

q

p

r

Figure 4. Radial tree graph for the p, q and r counts of fullerenes.

SplitsTree is an interactive program for analyzing and visualizing clustering data [26]. Based on 
the method of split decomposition, it takes as input a distance matrix or a set of clustering data and
produces as output a graph that represents the relationships between the taxa. For ideal data, this
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graph is a tree, whereas less ideal data will give rise to a tree–like network that can be interpreted as
possible evidence for different and conflicting data. Further, as split decomposition does not attempt 
to force data onto a tree, it can provide a good indication of how tree–like given data are. The splits 
graph for the structural parameters p, q and r of the fullerenes is displayed in Figure 5. The splits 
graph in Figure 5 reveals that a conflicting relationship exists between p, and parameters q and r.
This is due to the interdependence between p, q and r. Hence, the splits graph indicates a spurious 
relationship resulting from base composition effects. 

pqr.nex

Fit=98.6 ntax=3

r

q

p0.1

Figure 5. The splits graph for the p, q and r counts of fullerenes.

The PCA for the structural parameters p, q and r results in three factors F1– F3, which are linear
combinations of p, q and r. The coefficients for factor F1 are:

F1 0.602 p 0.561q 0.569r (6)

The coefficients for factor F2 are: 
F2 0.055p 0.739q 0.671r (7)

The coefficients for factor F3 are: 
F3 0.797p 0.372q 0.476r (8)

Table 3. Importance of the Principal Component Analysis Factors. 
Factor Eigenvalue Percentage Accumulated percentage

F1 2.59619787 86.54 86.54
F2 0.31005411 10.34 96.88
F3 0.09374803 3.12 100.00

The importance of PCA factors F1–F3 for the structural parameters of the fullerenes is collected
in Table 3. In particular, the use of only the first factor F1 explains 87% of the variance and gives a 
relative error of 13%. However, the use of the two first factors, F1 and F2, explains 97% of the 
variance, reducing the relative error to 3%. 

Table 4. Profile of the Principal Component Analysis Factors.
Factor Percentage of p Percentage of q Percentage of r

F1 36.19 31.49 32.32
F2 0.31 54.64 45.05
F3 63.51 13.86 22.63
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The profile of PCA factors F1–F3 for the structural parameters of the fullerenes is resumed in
Table 4. In particular, factor F1 cannot be reduced to two variables (p and r) without making a 
relative error of 31% (the percentage of q). For both F1 and F3 factors, variable p has the greatest 
weight in the profile. On the other hand, for factor F2 the most important variable is q. In some way, 
factors F1 and F3 could be considered as linear combinations of p and r (with relative errors of 31%
and 14%, respectively). However, factor F2 can be expressed as a linear combination of q and r
within a relative error of only 0.3%. 

PCA F2 vs. F1 plot for the fullerenes is illustrated in Figure 6. Fullerenes in classes 2 and 3 with 
the same set of p, q and r values in Table 1 appear superposed in Figure 6. Three classes are clearly 
distinguished: class 1 with 7 members (below the bisector, F1 > F2, bottom of Figure 6), class 2 
with 17 members (near the bisector, F1 F2, middle of Figure 6) and class 3 with 7 members
(above the bisector, F1 < F2, top of Figure 6). In general, fullerenes with the same number of atoms
belong to the same class. The exceptions are the isomers of C30, C32, C36 and C40 fullerenes, which
are members of two classes. However, no fullerene has isomers belonging to the three classes.

-1

0

1

2

F 2

-2 0 2

F1

Class 3

Class 2

Class 1

C28Td

C28D2C30C2vII

C30C2vI

C32D3

C24D6d

C26D3h

C36D3h

C40Td=C44T

C44D3h

C60Ih=C70D5h=C82Cs

C20Ih

Figure 6. PCA F2 vs. F1 plot for the fullerenes.

On the other hand, instead of N fullerenes (points) in the P space of P parameters, let us 
consider P structural parameters in the N space of N fullerenes. A table with P rows and N
columns has been built and the similarity of the fullerenes is compared. The dendrogram for the
fullerenes matching to the p, q and r structural parameters is shown in Figure 7. The tree provides a 
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binary taxonomy of the fullerenes in Table 1, which separates first the 7 fullerenes in class 1 [from
C28 (Td) to C26 (D3h), top of Figure 7], then the 17 fullerenes in class 2 [from C34 (Cs) to C38 (C3v),
middle of Figure 7] and finally the 7 fullerenes in class 3 [from C36 (D3h) to C82 (Cs), bottom of 
Figure 7]. These classes correspond to those obtained by PCA (Figure 6). 

Figure 7. Dendrogram for the fullerenes.
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The radial tree for the fullerenes relating to the p, q and r structural parameters is displayed in 
Figure 8. It separates first the 7 fullerenes in class 1 [C28 (Td)–C26 (D3h), right of Figure 8], then the 
17 fullerenes in class 2 [C34 (Cs)–C38 (C3v), middle of Figure 8] and finally the 7 fullerenes in class
3 [C36 (D3h)–C82 (Cs), left of Figure 8]. These classes correspond to those obtained by PCA (Figure 
6) and dendrogram (Figure 7). 

Figure 8. Radial tree graph for the fullerenes.

108
BioChem Press http://www.biochempress.com

Class 1 shows rather high values of the p, q and r structural parameters for its small number of C 
atoms. These arrangements (especially q and r) decrease the stability of the fullerenes. This low
stability is corroborated by the greatest ln[per(A)]/ln K values (2.18 on average) in Table 1. This 
result is far from that expected for alternant hydrocarbons (2.00), which are more stable. The 
corresponding interpretation is that high p, q and r indices drop the Kekulé structure count K, with a 
subsequent rise in ln[per(A)]/ln K. Class 2 presents relatively high values of p, q and r for its
moderate size. These reasonable q and r counts cause an intermediate stability of the fullerenes. 
This intermediary stability is in agreement with lower ln[per(A)]/ln K values (2.13 on average). The
interpretation is that relatively high p, q and r parameters decrease K, causing moderate values of 
ln[per(A)]/ln K. Class 3 exhibits low values of p, q and r for its great largeness. These low q and r
counts increase the stability of the fullerenes. This high stability corresponds to the lowest 
ln[per(A)]/ln K values (2.12 on average). The interpretation is that low p, q and r sums rise K, with



Principal Component Analysis of Structural Parameters for Fullerenes
Internet Electronic Journal of Molecular Design 2003, 2, 96–111

a resultant drop in ln[per(A)]/ln K.

Table 5. Heats of Formation and Related Data for Carbon Clusters Cn.
Class Fullerene Conjugated–Circuit Per–Site

Ratios to Graphite a
Corrected Hückel Delocalization
Energy Per–Site Ratios to Graphite a

Heat of formation ( Hf)
 per atom b

1 C28 (Td) –0.008 –0.394 31.11
2 C40 (D5d)   0.322   0.313 28.35
3 C60 (Ih)   0.712   0.676 14.49

a Taken from Ref. [29]
b In kcal·mol–1, taken from Ref. [30]

Referring to the mass spectra for fullerenes, Rohlfing et al. [27] showed that some class–3 
species have the highest relative abundances and therefore are observed to have the greatest relative
stability of the fullerenes. Campbell and Hertel [28] concluded that the presence of such a large
number of fullerenes in the mass spectra supports the stability of fullerenes generally. The large
intensities for certain fullerene masses indicate a specially high stability for certain fullerenes, such
as C60 and C70, which belong to class 3. Schmalz et al. [29] carried out conjugated–circuit counts 
and Hückel molecular orbital (HMO) calculations (cf., e.g. Table 5), and concluded that both 
conjugated–circuit values per atom and HMO delocalization energies per atom corrected for –
strain predict a greater stability for larger (class 3) clusters. Bakowies and Thiel [30] calculated with
modified neglect of diatomic overlap (MNDO) the heats of formation (e.g. Table 5) and concluded 
that the heats of formation per atom predict a greater stability for larger (class 3) clusters.

4 CONCLUSIONS 

From the preceding results the following conclusions can be drawn. 

1. The results for the Kekulé structure count and permanent of the adjacency matrix of fullerenes 
are given for a series of structures up to C70 and C60, respectively. With the permanent now open to 
computation, a great deal of work remains to be done to characterize the relationship of the 
permanent to chemical structure and properties. Much future work remains to be done in elucidating
the extent to which the permanent encodes structural features in a quantitative way as well as in 
exploring the relationship of the permanent to structure in fullerenes.

2. Linear and non–linear correlation models have been obtained for ln[per(A)]/ln K, ln K and 
ln[per(A)] of fullerenes as functions of structural parameters involving the presence of contiguous 
pentagons. The non–linear regression equation for ln[per(A)]/ln K has been improved. The variance 
of the fit has decreased 49%. It has also diminished the risk of co–linearity in the fit. The cross–
validation leave–n–out procedure shows that the most predictive set of descriptors according to the 
criteria of maximization of Rcv are {q,r} for ln[per(A)]/ln K, and {p,q} for both ln K and ln[per(A)].

3. The cluster analysis shows the greatest similarity for the p and r parameters. Split 
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decomposition indicates a spurious relationship resulting from base composition effects. 

4. PCA provides three orthogonal factors F1–F3. The use of only F1 gives a relative error of 13%. 
The use of F1 and F2 decreases the relative error to 3%. The fullerenes have been grouped in three 
classes. Some fullerenes with different numbers of atoms belong to the same class. However, some
fullerene isomers are members of different classes. Nevertheless, no fullerene belongs to the three 
classes.

5. The similarity between fullerenes has been compared with the cluster analysis of these
molecules. The cluster analysis is in agreement with PCA classification.
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