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Abstract 

Motivation. The versatility of the USCI (unit–subduced–cycle–index) approach is demonstrated in 
characterizing the symmetries of octahedral complexes. 
Method. Edge configurations on a regular octahedron have been combinatorially enumerated by the PCI 
(partial–cycle–index) method, which is one of the four methods of the USCI approach. 
Results. Thereby, the complete set of edge configurations has been obtained, where all edge configurations are 
classified by virtue of two criteria, i.e., the numbers of edges and the point–group symmetries. The latter 
criterion enables us to examine chiral and achiral edge configurations, where complementary configurations are 
discussed in terms of the subductions of coset representations. 
Conclusions. The USCI approach provides a common tool to systematize inorganic stereochemistry as well as 
organic stereochemistry. 
Keywords. Octahedral complex; edge configuration; chiral descriptor; group theory. 

Abbreviations and notations 
CI, cycle index SCI, subduced cycle index 
OC–6, octahedron with 6 positions (polyhedral symbol) CR, coset representation 
USCI–CF, unit subduced cycle index with chirality PCI, partial cycle index 
fittingness USCI, unit subduced cycle index 

1 INTRODUCTION 

Brorson et al. [1] reported exhaustive examination of edge configurations on a regular 
octahedron in order to analyze chirality descriptors of the / system for distinguishing 
enantiomers of octahedral complexes. They provided the complete set of octahedral edge 
configurations after removal of duplication by computer, where they gave the table of 144 edge 
configurations in an itemized manner with respect to the number of occupied edges. The set, 
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however, was not itemized with respect to point–group symmetries, so that the order of listing 
configurations in the original table [1] was rather random from a symmetrical point of view. As a 
result, the point–group symmetrical nature of each configuration had to be examined one by one in 
additional procedures, as found in von Zelewsky’s textbook (pp. 119–128 in Ref. [2]). Such 
additional one–by–one examination came from the neglect of recent developments in combinatorial 
enumerations, as implied in the words of von Zelewsky (p. 11 in Ref. [2]): “The formal description 
(of combinatorial enumerations) becomes so involved that it is, at least in actual cases, often not 
very practical to apply these methods. This book is written for the experimental chemist, and not for 
the mathematical chemist. The chemist who has to solve a stereochemical problem, such as finding 
the number of possible isomers of a molecule, will generally not go to the trouble of using abstruse 
mathematical methods.” The latter attitude of the chemist unfortunately stems from his/her 
knowledge of mathematical methods of the first generation, e.g., Pólya’s theorem [3,4]. In such 
mathematical methods of the first generation [5,6], the itemization of isomers was concerned only 
with the number of objects (e.g., occupied edges in the enumeration of edge configurations of 
octahedral complexes by Brorson et al. [1]), so that the chemist would expect little additional 
information, so long as he/she believed that almost equivalent results could be obtained by manual 
enumeration (or sometimes by computer) [7]. However, since more informative methods of the 
second and third generations have been developed during the last two decades, a well–balanced 
attitude is necessary for the chemist not to miss useful pieces of information. 

Mathematical methods of the second generation for combinatorial enumeration took both 
molecular formulas (the number of objects) and symmetries into consideration [8–13]. Mark tables 
introduced by Burnside [14] or framework groups introduced by Pople [15] were combined with 
permutation groups in order to take account of isomer symmetries. Although these methods worked 
well as sophisticated tools of combinatorial enumerations, further devices were necessary to discuss 
stereochemical problems. 

As a mathematical method of the third generation, we have developed the USCI (unit–subduced–
cycle–index) approach, where we have pointed out the importance of coset representations (CR) 
G(/Gi) [16]. On the basis of the chirality/achirality properties of the groups G and Gi, we have 
proposed the concept of sphericity and have applied it to understanding and solving stereochemical 
problems, e.g., the redefinition of prochirality [16,17], topicity [18,19], stereogenicity [19], and 
anisochrony [20]. Moreover, we have proposed the subduction of coset representations and unit 
subduced cycle indices (USCIs) as new concepts [21]. The concepts have been applied to 
combinatorial enumeration [21] as well as to understanding and solving stereochemical problems 
[22,23], e.g., systematic classification of molecular symmetries [24] and systematic design of 
achiral and chiral molecules [25]. 

As clarified in the preceding paragraphs, the present article will be devoted to discuss edge 
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configurations of octahedral complexes by means of the USCI approach, where combinatorial 
enumerations and stereochemical investigations are combined intimately. Since our efforts have 
mainly focused on vertex configurations in investigating inorganic compounds [26,27], the present 
paper on edge configurations will provide a new prospect of the USCI approach. As a result, it will 
show that the chemist who has to solve a stereochemical problem can rely on informative 
mathematical methods based on the USCI approach. 

2 DESYMMETRIZATION OF AN OCTAHEDRAL SKELETON

Stereochemistry of octahedral complexes is usually discussed by using an octahedral skeleton (I) 
(Figure 1), which is designated by the polyhedral symbol OC–6 [28]. The arrangements of 
polydentate ligands on OC–6 are abstractly represented by edge configurations, in which each 
occupied edge is marked with a thick line. Each edge configuration is derived by the placement of a 
set of thick edges on the twelve unoccupied (thin) edges of OC–6 (I). Since the OC–6 belongs to 
Oh–symmetry, such derivation can be regarded as desymmetrization into a subgroup of the Oh–
symmetry.

Figure 1. Derivation of C2h'–configuration from an Oh–skeleton 

The point group Oh has 33 subgroups up to conjugacy. They have been discussed in detail in 
terms of an irredundant set of subgroups [26]. When two or more subgroups belong to the same 
point group but not conjugate within the group Oh, they are differentiated by the addition of primes. 
For example, the point groups C2 and C2

' represent chiral subgroups of order 2, where the group C2

= {I, C2(3)} stems from the two–fold axis through the top and bottom vertices, while the group C2' = 
{I, C2(1)'} is based on a two–fold axis bisecting a pair facing edges. Note that the symbol I
represents an identity operation and that each number in the parentheses of C2(3) or C2(1)' is an ID 
number to differentiate conjugate operations from each other. The former two–fold axis 
corresponds to those of C2v = {I, C2(3), h(2), h(3)}, C2v' = {I, C2(3), d(2), d(6)}, C2h = {I, C2(3), h(1),
i}, while the latter one is relevant to C2v" = {I, C2(1)', h(1), d(1)} and C2h' = {I, C2(1)', d(6), i}. The 
symbol h with an ID number in parentheses represents a mirror plane containing four vertices (and 
four edges), while the symbol d with an ID number in parentheses designates a mirror plane that 
contains two vertices and intersects two edges faced each other. 
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In the light of the USCI approach, the twelve edges are recognized to form a twelve–membered 
orbit (equivalence class), which is assigned to a coset representation (CR) represented by the 
symbol Oh(/C2v"). The symbol Oh(/C2v") indicates that the global symmetry of the OC–6 (I) is Oh

and the local symmetry of each vacant edge is C2v". Note that each edge coincides with itself (i.e. is 
fixed) by the symmetry operations of C2v" (or, precisely speaking, one of its conjugate subgroups). 
The number of edges (12) is equal to the calculated value according to |Oh|/|C2v"| = 48/4 = 12, 
where the symbols |Oh| and |C2v"| represent the orders of respective point groups. It should be noted 
here that another CR Oh(/C4v) has been considered to treat vertex configurations on a regular 
octahedron [26], whereas the CR Oh(/C2v") should be examined for the present purpose of 
discussing edge configurations. 

Let us consider an edge configuration II, which is obtained by placing four thick edges on the 
OC–6 (I), as shown in Figure 1. The resulting configuration (II) belongs to C2h'. In the configuration 
(II), the four occupied edges (thick lines) are equivalent within the operation of C2h' (= {I, C2(1)',

d(6), i}). In addition, the remaining edges can be classified by their superposabilities: the four 
vacant edges (unmarked), the two vacant edges marked with an open circle ( ), and the two vacant 
edges marked with a heavy circle ( ).

The division of edges during the desymmetrization process can be explained by the subduction 
of a CR. The four occupied edges (thick lines) in II form a four–membered C2h'(/C1)–orbit, where 
|C2h'|/|C1| = 4/1 = 4. The symbol C2h'(/C1) corresponds to the fact that the global symmetry of II is 
C2h' and the local symmetry of each occupied edge is C1. The four vacant edges (unmarked) form 
another four–membered C2h'(/C1)–orbit. The two vacant edges marked with an open circle ( ) form 
a two–membered C2h'(/C2)–obit, where |C2h'|/|C2| = 4/2 = 2. Finally, the two vacant edges marked 
with a heavy circle ( ) form a two–membered C2h'(/Cs)–orbit, where |C2h'|/|Cs| = 4/2 = 2. The total 
process from Oh to C2h' is represented by the following subduction of the CR: 

Oh(/C2v") C2h' = 2C2h'(/C1) + C2h'(/C2) + C2h'(/Cs) (1)

This subduction is identical with the result shown in the corresponding row of Table 1 that is 
calculated algebraically by using mark tables [18]. Table 1 also lists the subductions of other 
subgroups of Oh. Each subduction collected in Table 1 represents an edge partition to produce an 
edge configuration, where each coset representation (CR) corresponds to an orbit of edges. It can be 
characterized by its sphericity (enantiospheric, homospheric, and hemispheric) [18,16], if each edge 
has an inner structure. The sphericity is concisely represented by a dummy variable (i.e., ad for a 
homospheric orbit, bd for a hemispheric orbit, or cd for an enantiospheric orbit), where the subscript 
d represents the size of the orbit at issue. Hence, the subduction, which is a sum of CRs, is 
characterized by means of a product of such dummy variables. The product of dummy variables is 
called a unit subduced cycle index with chirality fittingness (USCI–CF), which is also listed in 
Table 1 [16,18]. 
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Table 1. Subduction of Oh(/C2v
'')

Subgroup Gj Subduction Oh(/C2v") Gj USCI–CF Coefficient 
C1 12C1(/C1) b1

12 1/48 
C2 6C2(/C1) b2

6 1/16 
C2' 5C2'(/C1) + 2C2

'(/C2) b1
2b2

5 1/8 
Cs 4Cs(/C1) + 4Cs(/Cs) a1

4c2
4 1/16 

Cs' 5Cs'(/C1) + 2Cs(/Cs) a1
2c2

5 1/8 
Ci 6Ci(/C1) c2

6 1/48 
C3 4C3(/C1) b3

4 1/6 
C4 3C4(/C1) b4

3 1/8 
S4 3S4(/C1) c4

3 1/8 
D2 3D2(/C1) b4

3 0 
D2' 2D2'(/C1) + D2'(/C2) + D2(/C2'’) b2

2b4
2 0 

C2v C2v(/C1) + 2C2v(/Cs) + 2C2v(/Cs'’) a2
4c4 0 

C2v' 2C2v'(/C1) + C2v'(/Cs) + C2v'(/Cs'’) a2
2c4

2 0 
C2v" 2C2v"(/C1) + C2v"(/Cs) + 2C2v"(/C2v) a1

2 a2c4
2 0 

C2h 2C2h(/C1) + 2C2h(/Cs) a2
2c4

2 0 
C2h' 2C2h'(/C1) + C2h'(/C2) + C2h'(/Cs) a2c2c4

2 0 
D3 D3(/C1) + 2D3(/C2)  b3

2b6 0 
C3v C3v(/C1) + 2C3v(/Cs)  a3

2c6 0 
C3i 2C3i(/C1)  c6

2 1/6 
D4 D4(/C1) + D4(/C2") b4b8 0 
C4v 2C4v(/Cs) + C4v(/Cs') a4

3 0 
C4h C4h(/C1) + C4h(/Cs) a4c8 0 
D2d D2d(/C1) + D2d(/Cs) a4c8 0 
D2d' D2d'(/C2) + 2D2d'(/Cs) a4

2c4 0 
D2h D2h(/Cs) + D2h(/Cs') + D2h(/Cs") a4

3 0 
D2h' D2h'(/C1) + D2h'(/C2v) + D2h(/C2v') a2

2c8 0 
T T(/C1) b12 0 
D3d D3d(/C2) + D3d(/Cs) a6c6 0 
D4h D4h(/Cs) + D4h(/C2v) a4a8 0 
O O(/C2') b12 0 
Th Th(/Cs) a12 0 
Td Td(/Cs) a12 0 
Oh Oh(/C2v")  a12 0 

The “Coefficient” column of Table 1 shows the sum that is calculated for each subgroup by 
adding all the values appearing in the corresponding row of the inverse mark table reported 
previously [26]. In general, the sum of a subgroup is non–zero if it is a cyclic subgroup; otherwise, 
the sum vanishes. The total of the sums for all the subgroups is equal to 1 [18]. The present 
enumeration of edge configurations ignore the sphericities so as to substitute a dummy variable sd

for ad, bd, and cd. Thereby, a unit subduced cycle index (USCI) without chirality fittingness is 
obtained. Among the four methods of the USCI approach that we have proposed for combinatorial 
enumeration [29,30], we here use the PCI method (the generating–function method based on partial 
cycle indices (PCIs)) [31]. The USCIs obtained from UCSI–CFs listed in Table 1 are aligned and 
regarded as a hypothetical row vector. The resulting row vector is multiplied by the inverse mark 
table (M–1) for Oh [26], where the treatment can be symbolically represented by the expression: 

(s1
12, s2

6, s1
2s2

5, s1
4s2

4, s1
2s2

5, …, s12, s12) M–1. (2)

Thereby, we obtain the partial cycle index (PCI) for every subgroup (Eqs. (3) to (24)), as shown 
in Table 2 [32]. 
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Table 2. PCIs for Edge Configurations of Octahedral Complexes. 
PCI(C1) =  (1/48)s1

12 – (1/16)s1
4s2

4 – (1/4)s1
2s2

5 – (1/12)s2
6 – (1/12)s3

4 + (1/8)s2
4s4 + (1/4)s1

2s2s4
2 +

(5/8)s2
2s4

2 + (1/2)s3
2s6 – (1/8)s4

3 – (1/2)s2
2s8 – (5/12)s6

2
(3) 

PCI(C2) =  (1/8)s2
6 – (1/8)s2

4s4 – (3/8)s2
2s4

2 + (3/8)s4
3 + (1/4)s2

2s8 – (1/4) s4s8 (4) 
PCI(C2

’) =  (1/4)s1
2s2

5 – (1/4)s1
2s2s4

2 – (1/2)s2
2s4

2 – (1/2)s3
2s6 + (1/2)s2

2s8 + (1/2)s6
2 (5) 

PCI(CS) =  (1/8)s1
4s2

4 – (1/4)s2
4s4 – (1/4) s1

2s2s4
2 – (1/8)s2

2s4
2 + (1/4)s4

3 + (1/4) s2
2s8 (6) 

PCI(CS
’) =  (1/4)s1

2s2
5 – (1/4)s1

2s2s4
2 – (1/2)s2

2s4
2 – (1/2)s3

2s6 + (1/2)s2
2s8 + (1/2)s6

2 (7) 
PCI(Ci) =  (1/24)s2

6 – (3/8)s2
2s4

2 + (1/12)s4
3 + (1/4)s2

2s8 + (1/3)s6
2 – (1/3)s12 (8) 

PCI(C3) =  (1/4)s3
4 – (1/2)s3

2s6 + (1/4)s6
2 (9) 

PCI(D2
’) =  (1/4)s2

2 s4
2 – (1/4)s4

3 – (1/4) s2
2s8 + (1/4)s4s8 (10) 

PCI(C2v) =  (1/4)s2
4 s4 – (3/4)s4

3 + (1/2)s4s8 (11) 
PCI(C2v

’) =  (1/4)s2
2 s4

2 – (1/4)s4
3 – (1/4) s2

2s8 + (1/4)s4s8 (12) 
PCI(C2v

’’) =  (1/2)s1
2 s2s4

2 – (1/2)s2
2s8  (13) 

PCI(C2h) =  (1/4)s2
2 s4

2 – (1/4)s4
3 – (1/4) s2

2s8 + (1/4)s4s8 (14) 
PCI(C2h

’) =  (1/2)s2
2 s4

2 – (1/2) s2
2s8 – s6

2 + s12  (15) 
PCI(D3) = (1/2)s3

2 s6 – (1/2)s6
2 (16) 

PCI(C3v) = (1/2)s3
2 s6 – (1/2)s6

2 (17) 
PCI(C4v) = (1/2) s4

3 – (1/2)s4s8 (18) 
PCI(D2d

’) = (1/2) s4
3 – (1/2)s4s8 (19) 

PCI(D2h) = (1/6)s4
3 – (1/2)s4s8 + (1/3)s12 (20) 

PCI(D2h
’) = (1/2)s2

2 s8 – (1/2) s4s8  (21) 
PCI(D3d) = s6

2 – s12 (22) 
PCI(D4h) = s4 s8 – s12 (23) 
PCI(Oh) = s12 (24) 

It should be noted that the PCIs for the subgroups C4, S4, D2, C3i, D4, C4h, D2d, T, O, Th, and Td

vanish. This means that edge configurations of these subgroups do not appear in the present 
enumeration. Strictly speaking, subduced cycle indices (SCIs) should be used in place of USCIs. 
However, the SCIs are equal to the USCIs in the present enumeration concerning one orbit. 

Suppose that a given number (d) of occupied edges (thick edges) are placed on the twelve edges 
of the octahedral skeleton (I). Then, the dummy variable is substituted by the following edge 
inventory:

sd = 1+ xd (25)

which are introduced into the PCIs (eqs. 3 to 24). The resulting equations are expanded to give 
generating functions for respective subgroups, where the coefficient of the term xm for each 
subgroup represents the number of edge configurations with m occupied edges. For example, the 
introduction of the inventory Eq. (25) into Eq. (3) yields the generating function for the C1–
symmetry as follows: 

fC1 = (1/48)(1 + x)12 – (1/16)( 1 + x)4(1 + x2)4 – (1/4)( 1 + x)2(1 + x2)5 – (1/12)(1 + x2)6 –
(1/12)( 1 + x3)4 + (1/8)(1 + x2)4( 1 + x4 ) + (1/4)(1 + x)2( 1 + x2 ) (1 + x4)2

+ (5/8)(1 + x2)2( 1 + x4)2 + (1/2)(1 + x3)2( 1 + x6) – (1/8)(1 + x4)3

– (1/2)(1 + x2)2( 1 + x8) – (5/12)(1 + x6)2

= 2x3 + 6x4 + 10x5 + 14x6 + 10x7 + 6x8 + 2x9

(26)
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These coefficients are collected in the C1–row of Table 3. The results of all the subsymmetries of 
Oh are listed in Table 3, where the numbers of edge configurations are itemized with respect to 
point–group symmetries and as well as to the m values. 

Table 3. Numbers of Edge Configurations a,b

 Number of edge configuraions 
For m = 

Symmetry  0  1  2  3 4 5 6 7 8 9 10 11 12 Sum 
C1 0 0  0  2 6 10 14 10 6 2 0 0 0 50 
C2 0 0 0 0 1 0 0 0 1 0 0 0 0 2 
C2' 0 0 1 1 2 4 2 4 2 1 1 0 0 18 
Cs 0  0 0 2 2 4 2 4 2 2 0 0 0 18 
Cs' 0 0 1 1 2 4 2 4 2 1 1 0 0 18 
Ci 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C3 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
D2' 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
C2v 0 0 1 0 0 0 2 0 0 0 1 0 0 4 
C2v' 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
C2v" 0 1 0 1 1 2 2 2 1 1 0 1 0 12 
C2h 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
C2h' 0 0 0 0 1 0 0 0 1 0 0 0 0 2 
D3 0 0 0 1 0 0 0 0 0 1 0 0 0 2 
C3v 0 0 0 1 0 0 0 0 0 1 0 0 0 2 
C4v 0 0 0 0 1 0 0 0 1 0 0 0 0 2 
D2d' 0 0 0 0 1 0 0 0 1 0 0 0 0 2 
D2h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
D2h' 0 0 1 0 0 0 0 0 0 0 1 0 0 2 
D3d 0 0 0 0 0 0 2 0 0 0 0 0 0 2 
D4h 0 0 0 0 1 0 0 0 1 0 0 0 0 2 
Oh 1 0 0 0 0 0 0 0 0 0 0 0 1 2 

Sum c 1 1 4 9 18 24 30 24 18 9 4 1 1 144 
a The rows for the subgroup C4, S4, D2, C3i, D4, C4h, D2d, T, O, Th, and Td are 
omitted, because the corresponding PCIs vanish 
b For a chiral subgroup, an appropriate enantiomer is counted as a representative. In 
other words, a pair of enantiomers is counted once 
c It should be noted that Pólya’s theorem is merely capable of giving the total vaules 
contained in this row 

The sum of each column is calculated and shown at the bottom row of Table 3. Each value can 
be calculated alternatively by using the values collected in the “Coefficient” column of Table 1 and 
the USCIs derived from the USCI–CFs of the same table [18]. Thus, we can obtain the following 
cycle index (CI): 

CI(sd) = (1/48)s1
12 + (1/16)s2

6 + (1/8) s1
2s2

5 + (1/16)s1
4s2

4 + (1/8)s1
2s2

5 + (1/48)s2
6

+ (1/6)s3
4 + (1/8)s4

3 + (1/8)s4
3 + (1/6)s6

2

= (1/48)s1
12 + (1/16)s1

4s2
4 + (1/4)s1

2s2
5+ (1/12)s2

6 + (1/6)s3
4 + (1/4)s4

3 + (1/6)s6
2

(27)

The resulting CI is generally proved to be equivalent to Pólya’s CI [3,4], although the two 
methods of calculating CIs take quite different procedures [18]. The edge inventory, Eq. (25), is 
introduced into the CI, Eq. (27), to give the following generating function: 



Edge Configurations on a Regular Octahedron 
Internet Electronic Journal of Molecular Design 2003, 2, 224–241 

231 
BioChem Press http://www.biochempress.com

CI(sd=1+xd)

= (1/48)(1+ x)12 + (1/16)( 1+ x)4(1+ x2)4 + (1/8)( 1+ x)2(1+ x2)5 + (1/12)(1+ x2)6

+ (1/6)(1+ x3)4 + (1/4)(1 + x4)3 + (1/6)(1+ x6)2

= 1 + x + 4x2 + 9x3 + 18x4 + 24x5 + 30x6 + 24x7 + 18x8 + 9x9 + 4x10 + x11 + x12

(28)

The coefficients of the terms xm are identical with the values collected at the bottom row of Table 
3. These values validate the previous results obtained manually (or by computer) by Brorson et al.
[1]. On the other hand, the sum of each row of Table 3 represents the total number of edge 
configurations for each subgroup. This value can be obtained alternatively by placing x = 1 in the 
edge inventory, Eq. (25), and accordingly by placing sd = 1 + 1d = 2 in each of the PCIs, i.e. Eqs. 
(3)–(24). Although the PCIs for Ci and D2h, Eqs. (8) and (20), do not vanish, the present 
enumeration of edge configurations gives zero values for these symmetries, as confirmed in the 
following calculations: 

0)2462188(
3
1

2
3
12

3
132

4
132

12
142

8
362

24
1)2;(CI 2

di sC
(29)

CI(D2h ; sd=2) 0)264(
3
12

3
122

2
132

6
1

(30)

As found easily by the inspection of Table 3, the number of edge configurations for m is equal to 
the counterpart for 12 – m for each row (point–group symmetry). This means that the concept of the 
complementary configuration introduced by Brorson et al. [1] can be elaborated to take account of 
symmetries as discussed below. 

3 CHIRAL EDGE CONFIGURATIONS

The edge configurations listed in the C1–row of Table 3 are depicted in Figure 2, where an 
arbitrary enantiomer is depicted as a representative for a pair of enantiomers. Since an edge 
configuration with m occupied edge always corresponds to the counterpart (complementary 
configuration) with 12 – m occupied edges (within m < 6), Figure 2 (also the other figures) contains 
the edge configurations of m < 6 along with those of m = 6 for the sake of simplicity. Thus, 32 edge 
configurations are selected from the 50 edge configurations enumerated in the C1–row of Table 3. 

Since the subduction table (Table 1) indicates the partition of edges for each symmetry, it is easy 
to depict each edge configuration belonging to the symmetry. For example, a C2–edge configuration 
has six two–membered C2(/C1)–orbits, as shown in the C2–row of Table 1. The resulting edge 
configuration can be depicted as 33 in Figure 3, where the relevant two–fold axis runs through the 
top and bottom vertices. There is only one edge configuration of m = 4 under the condition of m  6 
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in accord with the enumeration result shown in Table 3. On the other hand, C2'–edge configurations 
are based on the two–fold axis intersecting the front and back edges, as found in the edge 
configurations 34 to 43. Note that all the packing modes of occupied edges (thick edges) and 
unoccupied edges (thin edges) are in agreement with the subduction listed in the C2'–row of Table 
1. These edge configurations are classified in terms of the enumeration results shown in Table 3. 

Figure 2. Asymmetric edge configurations (C1–symmetry for m 6). 
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Figure 3. Chiral edge configurations other than asymmetric ones (m  6). 

4 ACHIRAL EDGE CONFIGURATIONS

Figure 4 depicts edge configurations of Cs– and Cs'–symmetries (m  6). As found in the Cs–
edge configurations 47 to 56, the mirror plane for the Cs–symmetry is selected here as the 
horizontal plane that is perpendicular to the two–fold axis through the top and bottom vertices. All 
the packing modes of occupied edges (thick edges) and unoccupied edges (thin edges) in 47 to 56
are in agreement with the subduction listed in the Cs–row of Table 1. The numbers of the depicted 
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edge configurations are in agreement with the enumeration results shown in the Cs–row of Table 3. 
The edge configurations 57 to 66 belong to the Cs’–symmetry (m  6), where the itemization with 
respect to the m values is in agreement with the enumeration results shown in the Cs'–row of Table 
3. The mirror plane selected for 57 to 66 is the plane that contains the top and bottom vertices and 
bisects the front and back edges. The packing mode of occupied and unoccupied edges in each of 
the edge configurations 47 to 56 is in agreement with the subduction listed in the Cs'–row of Table 
1.

Figure 4. Edge configurations of Cs– and Cs'–symmetries (m  6). 

Figure 5 depicts edge configurations of C2v–like and C2h–like subsymmetries (m  6). The C2v–,
C2v'– and C2h–symmetries have the common two–fold axis with C2, while the C2v"– and C2h'–
symmetries are based on the two–fold axis of C2'. The packing modes in these edge configurations 
are in agreement with the corresponding rows of Table 1. The numbers of the depicted edge 
configurations are in agreement with the enumeration results shown in the corresponding rows of 
Table 3. 

Figure 6 depicts achiral edge configurations having a three–fold axis (m  6). The packing 
modes in these edge configurations are in agreement with the corresponding rows of Table 1. The 
numbers of the depicted edge configurations are in agreement with the enumeration results shown 
in the corresponding rows of Table 3. 
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Figure 5. Edge configurations of C2v–, C2v'–, C2v"–, C2h–, and C2h'–symmetries (m  6) 

Figure 7 depicts remaining achiral edge configurations (m  6), where the edge configuration 
with no occupied edges (Oh) is omitted. The packing modes in these edge configurations are in 
agreement with the corresponding rows of Table 1. The numbers of the depicted edge 
configurations are in agreement with the enumeration results shown in the corresponding rows of 
Table 3. 
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Figure 6. Edge configurations of C3v– and D3d–symmetries (m  6). 

Figure 7. Edge configurations of C4v–, D2d'–, D2h'–, and D4h–symmetries (m  6). 

5 COMPLEMENTARY EDGE CONFIGURATIONS

The complementary configuration of a given configuration with m occupied edges has been 
defined as the configuration made up by the remaining 12 – m edges [1]. It is also known that, if a 
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chiral edge configuration has the chiral descriptor , its complementary configuration has 

mm 212212 , as proved by Brorson et al. [1]. This section is devoted to give an alternative proof 

of this relationship and further aspects of complementary configurations. 

5.1 Chiral Descriptors for Complementary Configurations
Suppose that a chiral edge configuration with m occupied edges has the chiral descriptor 

and that the occupied edges are numbered with the numbers k = 1, 2, …, m. To an extreme case, the 
edge with the number k may have two –edges and two –edges to be determined for the chiral 
descriptor. If an edge selected from the two  edges contributes the  part of the descriptor 

, the pair of the edge k and the selected edge is called an “effective edge pair” for the sake of 

simplicity. Otherwise, it is called an “ineffective edge pair”, since it is ineffective to the chiral 
descriptor. Note that the edge k and the two –edges (effective or ineffective) are placed in the 
same relationship as the three thick lines of 46 shown in Figure 3. Let k  and 'k  be the numbers 

of effective and ineffective edge pairs, respectively, with respect to the edge k. Then, we can place 
2'kk . When k runs from 1 to m, we can place 

m

k k1  + '
1

m

k k  = 2m. Obviously, we have 
m

k k1
2 for the total number of effective edge pairs, since each effective edge pair is counted 

twice. On the other hand, we have 
m

k k1
'  for the total number of ineffective edges. Hence, 

we obtain m22 . The same discussion can be applied to the corresponding complementary 
configuration having the chiral descriptor ~~ . Thereby, we can obtain )12(2~2 m ,

where the number of ineffective edge pairs ( ) is common according to the complementary 
relationship. By deleting  from the two equations, we arrive at m212~ . The same 
discussion is available for the –parts of the complementary chiral descriptors (  and ~~ )

to give m212~ . It follows that the chiral descriptor  is complementary to 

mm 212212 .

5.2 Paired Complementary Configurations 
Each edge configuration with m  5 has its complementary configuration belonging to the same 

point group as the original one. Edge configurations with m = 6 behave differently. Each edge 
configuration in the first row of m = 6 in Figure 2 is complementary to the counterpart in the second 
row of m = 6. Since 12–2m = 0 for m = 6, the chiral descriptor is identical with the 
complementary one mm 212212 . For example, the edge configuration 19 and the corresponding 
complementary one 25 have the same chiral descriptor 43 . The edge configuration 42 is 

complementary to the enantiomer of 43, as shown in Figure 3. 

As for achiral edge configurations, there also appear complementary relationships for m = 6, e.g.,
the Cs' pair of 65 and 66 in Figure 4, the C2v pair of 68 and 69 in Figure 5, the Cs" pair of 76 and 77
in Figure 5, and the D3d pair of 81 and 82 in Figure 6. 
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5.3 Self–Complementary Configurations
The edge configuration 31 is self–complementary so that 31 is homomeric to the corresponding 

complementary configuration. This phenomenon is ascribed to the presence of the subduction 
6C2(/C1), which involves the subduction 12C1(/C1) (for 31) in a homomeric fashion. In other 
words, the partition of the twelve edges of a regular octahedron into the set of the edges for 31 and 
the set of the remaining ones (i.e. the edges for its complementary configuration) produces a C2–
object of the two sets. The two sets form a hemispheric orbit ascribed to C2(/C1), where the local 
symmetry C1 is the symmetry of the edge configuration 31. The self–complementary behavior of 
the edge configuration 32 can be similarly explained. 

The edge configuration 44 is a special case of self–complementary relationships, so that 44 is 
enantiomeric to the corresponding complementary configuration. This is ascribed to the presence of 
the subduction 2C3i(/C1), which involves the subduction 4C3(/C1) in an enantiomeric fashion. In 
other words, the partition of the twelve edges of a regular octahedron into the set of the edges for 44
and the set of the edges for its complementary configuration produces a C3i–object of the two sets. 
The two sets form an enantiospheric orbit that is ascribed to 2C3i(/C3), where the local symmetry C3

is the symmetry of the edge configuration 44.

The edge configuration 45 is self–complementary, where 45 is homomeric to the corresponding 
complementary configuration. This is ascribed to the presence of the subduction D4(/C1) + D4(/C2"), 
which involves the subduction 2D2'(/C1) + D2'(/C2) + D2'(/C2') in a homomeric fashion. The 
partition of the twelve edges of a regular octahedron into the set of the edges for 45 and the set of 
the edges for its complementary configuration produces a D4–object of the two sets. The two sets 
form a hemispheric orbit that is ascribed to D4(/D2'), where the local symmetry D2' is the symmetry 
of the edge configuration 45.

Self–complementary relationships are also observed for achiral edge configurations. For 
example, the Cs–configurations 55 and 56 in Figure 4 are self–complementary respectively. This is 
ascribed to the presence of the subduction 2C2v'(/C1) + C2v'(/Cs) + C2v'(/Cs'), which involves the 
subduction 4Cs(/C1) + 4Cs(/Cs) in a homomeric fashion. The set of the edges for 55 (or 56) and the 
set of the edges for its complementary configuration form a C2v’–object. The two sets form a 
homospheric orbit that is ascribed to the CR C2v'(/Cs), where the local symmetry Cs is the symmetry 
of the edge configuration 55 (or 56). 

The C2v'–configuration 70 in Figure 5 is self–complementary. This is ascribed to the presence of 
the subduction D4h(/Cs) + D4h(/C2v), which involves the subduction 2C2v'(/C1) + C2v'(/Cs) + 
C2v'(/Cs') in a homomeric fashion. This case can be similarly explained by D4h(/C2v'), where the 
local symmetry C2v' is the symmetry of the edge configuration 70.

The C2h–configuration 78 in Figure 5 is self–complementary. This is ascribed to the presence of 
the subduction D4h(/Cs) + D4h(/C2v), which involves the subduction 2C2h(/C1) + 2C2h(/Cs) in a 
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homomeric fashion. This case can be explained by D4h(/C2h), where the local symmetry C2h is the 
symmetry of the edge configuration 78.

The discussion described above can be extended to a more general case in which the edges of a 
G–object (e.g., Oh) are divided into two parts so as to give a Gi–object with the two parts. If the two 
parts form two distinct orbits that are ascribed to 2Gi(/Gi), they correspond to a pair of 
complementary configurations. The local symmetry Gi is the same as those of the complementary 
configurations. If the the two pairs form a two–membered orbit that is ascribed to Gi'(/Gi), they 
correspond to a self–complementary configuration, where Gi' is a supergroup of Gi (|Gi'|/|Gi| = 2). 
The local symmetry Gi is the same as that of the self–complementary configuration. 

6 EDGE CONFIGURATIONS WITH TERDENTATE LIGANDS

Edge configurations with a terdentate ligand correspond to the ones with adjacent occupied 
edges (m = 2). They are 57 of Cs'–symmetry in Figure 4 and 67 of C2v–symmetry in Figure 5. Edge 
configurations with two terdentate ligands correspond to cases with two sets of adjacent occupied 
edges (m = 4). They are found to be 37 of C2'–symmetry in Figure 3, 79 of C2h'–symmetry in Figure 
5, and 84 of D2d'–symmetry in Figure 7. It should be emphasized here that the USCI approach 
itemizes the symmetry of each edge configuration, clarifying the non–existence of edge 
configurations of the Ci–symmetry, see Table 3 and Eq. (30). The edge configuration 79 has once 
been assigned to such Ci–symmetry in von Zelewsky’s textbook (No. 31 described on p. 119 in Ref. 
[2]).

Although 84 of D2d'–symmetry (Figure 7) is achiral as the edge configuration, the non–planarity 
of the central atom may change 84 into a chiral configuration, as discussed in pages 119–121 of von 
Zelewsky’s textbook. This desymmetrization is more elaborately explained in terms of the concept 
of mismatched molecules [33]. In 84, the orbit of the vertices accommodating the central atom is 
ascribed to the CR D2d'(/C2v), which is produced by the following subduction [26]: 

Oh(/C4v) D2d' = 2D2d'(/Cs) + D2d'(/Cs) + D2d'(/C2v) (31)

Let us now consider the ligand H2NCH2CH2–NH–CH2CH2NH2. The non–planarity of the central 
ligand atom in such a configuration as 84 is determined to be C1, which is mismatched to the local 
symmetry C2v. According to this mismatch, the global symmetry is reduced so as to compensate the 
mismatch. This is accomplished by the following subduction: 

Oh(/C4v) C2' = 3C2'(/C1) (32)

The resulting local symmetry C1 satisfies the C1 due to the non–planarity. It follows that the 
resulting complex belongs to C2'–symmetry at the highest attainable conformation. 
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7 CONCLUSIONS 

The complete set of octahedral edge configurations is obtained by virtue of the USCI (unit–
subduced–cycle–index) approach, where the set is itemized with respect to two criteria, i.e., the 
numbers of edges and the point–group symmetries. The latter criterion enables us to examine chiral 
and achiral edge configurations. Complementary configurations are discussed in terms of the 
subductions of coset representations (CRs). Thus the versatility of the USCI approach is 
demonstrated in characterizing inorganic complexes. 
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