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Abstract 

The invention of selective cyclooxygenase–2 (COX–2) inhibitors peaks the first phase of an exciting and fast 
paced effort to exploit a novel target for nonsteroidal anti–inflammatory drugs (NSAIDs). A series of molecules 
has been reported as specific COX–2 inhibitors belonging to the class of tetrahydroisoindole nucleus. A 1,3–
diaryl substitution on the central polycyclic ring system and absence of sulfonyl moiety are the two structural 
features of this chemical series. We report the three–dimensional quantitative structure–activity relationship 
(3D–QSAR) performed by genetic function approximation (GFA) on this class of compounds. QSAR models 
were generated using a training set of 20 compounds and the predictive ability of each model was assessed using 
a set of 7 molecules. The internal and external consistency of the final QSAR model was 0.656 and 0.669 
respectively. The results indicate that shape (steric), electronic and spatial (conformational) descriptors govern 
the COX–2 enzyme inhibition. The descriptors appeared in the final model are compatible with the COX–2 
enzyme topology. A hypothetical mechanism of enzyme–inhibitor interaction was derived to gain important 
structural insights into designing novel antiinflammatory agents prior to their synthesis. 
Keywords. Three–dimensional quantitative structure–activity relationships; 3D–QSAR; genetic function 
approximation; GFA; NSAIDs; cyclooxygenase–2; COX–2 inhibitors; tetrahydroisoindoles. 

1 INTRODUCTION 

The history of non–steroidal antiinflammatory drugs (NSAIDs), which are used for the treatment 
of pain, inflammation and fever, is rich and well documented. The discovery in 1971 by Vane, that 
cyclooxygenase (COX) is their molecular target was a landmark finding but did not reasoned the 
undesired effects such as gastric irritation of classical NSAIDs [1]. It was postulated recently that an 
inflammatory or mitogenic stimulus might result in gene expression responsible for the synthesis of 
a second, inducible COX isoenzyme called COX–2, which is very similar in structure to its 
constitutive counterpart COX–1 and its inhibition itself is sufficient to produce desired 
antiinflammatory effect without any side effects [2]. This hypothesis gave an opportunity to 
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differentiate desired and undesired effects of COX isoforms in the treatment of inflammation with 
classical NSAIDs. The importance of the COX–2 discovery is reflected in the unprecedented speed 
at which different research laboratories developed extensive libraries of selective COX–2 enzyme 
inhibitors as a new class of antiinflammatory, analgesic and antipyretic drugs with significantly 
reduced side effects. Recent epidemiological and experimental data suggest that selective inhibition 
of COX–2 could also be an important strategy for preventing or treating number of diseases such as 
cancer, Alzheimer’s, cardiovascular (angiogenesis) and blood clotting disorders [3]. Hence, there is 
a need to develop more selective COX–2 enzyme inhibitors with broad range of activities without 
any side effects. 

The recent invention of selective COX–2 inhibitors: celecoxib, rofecoxib and valdecoxib 
climaxes the first phase of a fast paced effort to exploit novel target for NSAIDs. The COX–2 
inhibitors belonging to a tricyclic group of compounds possess a diarylstilbene core with a sulfonyl 
(–SO2–) group at para position on one of the aromatic rings [4] (Figure 1). 

R1 R2

x N
R1 R1

R3

Figure 1. General structure of selective tricyclic COX–2 
inhibitors. 

Figure 2. General structure of selective new isoindole 
derivatives. 

New COX–2 inhibitors continue to emerge from the patent literature. Many are variation of 
tricyclic or classical NSAIDs. Recently, Guillaume et al. reported a diverse series of molecules, 
belonging to the class of tetrahydroisoindoles as COX–2 enzyme inhibitors with potent 
antiinflammatory activity and reduced side effects [5] (Figure 2). The series stand out as a new class 
among the COX–2 inhibitors reported till date and is characterized by the absence of diarylstilbene 
core and sulfonyl (–SO2–) group on aromatic ring, which are considered to induce selectivity for 
tricyclic compounds. This series is evident for the flexibility of the COX–2 active site [6]. This 
stimulated to study further and understand the factors responsible for therapeutic activity or 
inhibitory potency for such diverse molecules inhibiting COX–2 enzyme. 

Though the crystal structure of ovine COX–1, murine COX–2, and human COX–2 enzymes with 
or without ligands are solved, the de novo design or optimization of COX–2 selectivity of inhibitors 
is not an easy task, due to (a) the physicochemical and kinetic factors hidden in X–ray crystal 
structure could be involved in the inhibition and (b) the flexibility of the COX–2 active site [6]. In 
such cases generating 3D–QSAR models using various physicochemical descriptors can yield 
information to understand the factors responsible for biological activity. Our strategy follows the 
methodology used previously to generate successful 3D–QSAR models for antifungal, antibacterial, 
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antiHIV–1, antidiabetic, and antitubercular agents [7–11]. 

In order to deduce the correlation between structural and biological activity of present series of 
molecules, Genetic Function Approximation (GFA) has been used to generate different 3D–QSAR 
models from various descriptors available within Cerius2 molecular modeling software [12]. GFA 
generates a population of equations for correlation between biological activity and physico–
chemical properties. GFA developed by Rogers involves combination of Friedman’s multivariate 
adaptive regression splines (MARS) algorithm with Holland’s genetic algorithm to evolve a 
population of equations that best fit the training set data [12–17]. This is done as follows: (a) An 
initial population of equations is generated by random choice of descriptors. The fitness of each 
equation is scored by lack–of–fit (LOF) measure, LOF = LSE/{1 – (c + d×p)/m}2, where LSE is the 
least square error, c is the number of basis functions in the models, d is the smoothing parameter 
which controls the number of terms in the equation, p is the number of features contained in all 
terms of the models, and m is the number of compounds in the training set. (b) Pairs from the 
population of equations are chosen at random and ‘crossovers’ are performed and progeny 
equations are generated. (c) The fitness of each progeny equation is assessed by LOF measure. (d)
If the fitness of new progeny equation is better, then it is preserved. The model with proper balance 
of all statistical terms will be used to explain the variance in the biological activity. 

A distinctive feature of GFA is that instead of generating a single model, as do most other 
statistical methods, it produces a population of models (e.g., 100). The range of variation in this 
population gives added information on the quality fit and importance of descriptors. By examining 
these models, additional information can be obtained. For example, the frequency of use of a 
particular descriptor in the population of equations may indicate how relevant the descriptor is to 
the prediction of activity. Combination of robust statistical technique GFA coupled with the use of 
different types of descriptors would result in better prediction of biological activity for COX–2 
enzyme inhibitors as antiinflammatory agents. In this paper, we present 3D–QSAR models for the 
1,3–diaryltetrahydroisoindoles as COX–2 inhibitors with antiinflammatory activity. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 

2.1.1 Molecules 

In the present study a set of 27 molecules belonging to 1,3–diaryltetrahydroisoindoles as COX–2 
inhibitors with antiinflammatory activity were taken from the literature and used [5]. A training set 
containing 20 molecules (Table 1) was used for the generation of QSAR models. A test set of 7 
molecules (Table 2) with uniformly distributed biological activities was used to test the predictive 
ability of the generated models. 
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Table 1. Structures and biological activities of the molecules from the training set 
No Structure Ring R1 R2 R3 IC50 COX–2 IC50 COX–1 
1 – – H H H 1.5 100 
2 a – – H H H 3.3 100 
3 – – NH2 H H 1.8 1000 
4 – – NHSO2CH3 H H 500 1000 
5 – – H F F 1.7 100 
6 – – H CH3 CH3 16.7 500 
7 – – H OCH3 OCH3 21.3 1000 
8 – – H Cl Cl 5 5000 
9 – – H F imidazolyl–1–yl 42 500 

10
S

– – – – 10.9 1000 

11

H

N
– – – – 32.4 >2500 

12
N

– – – – 50.0 <1000 

13 – H H H 3.1 1000 

14 – H H H 14.5 100 

15 – H H H 0.7 250 

16 – H F F 2.9 100 

17 – H H H 2.6 100 

18 – H F SO2CH3 700 5000 

19 – H F F 4.5 500 

20 – H F F 0.6 230 

a double bond present between positions 6 and 7 
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Table 2. Structures and biological activities of test set compounds
No Structure Ring R1 R2 R3 IC50 COX–2 IC50 COX–1 

21 – H SCH3 SCH3 500 500 

22 – H F F 1.1 100 

23 – H H H 1.6 250 

24 – H H H 35.6 5000 

25
N

– – – – 10 <1000 

26
N

– – – – 28.7 2500 

27

H

N
– – – – 10 2500 

2.1.2 Biological activity 

Biological activities of the molecules in terms of pIC50 (IC50 = log 1/IC50) values of 
concentrations in unit of M required for 50% of inhibition against COX–2 enzyme isolated from 
mouse resident peritoneal macrophages, were used in the present study. Further details of the 
biological testing can be found in [5]. 

2.2 Molecular Modeling 

2.2.1 Software 

All molecular modeling studies were carried out using Cerius2 (version 3.5) running on Silicon 
Graphics O2 R5000 workstation [18]. Structures were constructed and partial charges were 
assigned using the charge equilibration method within Cerius2 [19]. Throughout the study, the 
Universal forcefield 1.02 was used. The molecules were subsequently minimized until a root mean 
square deviation 0.001 kcal/mol Å was achieved and used in the study. 

2.2.2 Calculation of descriptors 

Different types of descriptors were calculated for each molecule in the study table using default 
settings within Cerius2. These descriptors included electronic, spatial, structural, thermodynamic, 
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and molecular shape analysis (MSA). A complete list of descriptors used in the study is given in 
Table 3. 

Table 3. Descriptors used in the present study 
No Descriptor Type Description 
1 Vm Spatial Molecular volume d
2 Area Spatial Molecular surface area d
3 Density Spatial Molecular density d
4 RadOfGyration Spatial Radius of gyration d
5 PMI–mag Spatial Principle moment of inertia d
6 PMI–X Spatial Principle moment of inertia X–component 
7 PMI–Y Spatial Principle moment of inertia Y–component 
8 PMI–Z Spatial Principle moment of inertia Z–component 
9 MW Structural Molecular weight d

10 Rotlbonds Structural Number of rotatable bonds d
11 Hbond acceptor Structural Number of hydrogen bond acceptors d
12 Hbond donor Structural Number of hydrogen bond donors d
13 AlogP Thermodynamic Logarithm of partition coefficient d
14 MolRef Thermodynamic Molar refractivity d
15 Dipole–mag Electronic Diploe moment d
16 Dipole–X Electronic Diploe moment–X–component 
17 Dipole–Y Electronic Dipole moment–Y–component 
18 Dipole–Z Electronic Dipole moment–Z–component  
19 Charge Electronic Sum of partial charges d
20 Apol Electronic Sum of atomic polarizabilities d
21 HOMO Electronic  Highest occupied molecular orbital energy 
22 LUMO Electronic Lowest unoccupied molecular orbital energy 
23 Sr Electronic Superdelocalizability 
24 Foct Thermodynamic Desolvation free energy for octanol 
25 Fh2o Thermodynamic Desolvation free energy for water 
26 Hf Thermodynamic Heat of formation 
27 DIFFV MSA Difference volume 
28 COSV MSA Common overlap steric volume 
29 Fo MSA Common overlap volume ratio 
30 NCOSV MSA Non–common overlap steric volume 
31 Shape RMS MSA RMS to shape reference 
32 SR Vol MSA Volume of shape reference compound 

d default descriptor 

2.2.3 MSA descriptors 

MSA descriptors were calculated using MSA module within Cerius2 [20]. Conformational 
analyses on all the molecules were performed using random sampling search with maximum 
number of conformers set to 50. Lowest energy conformer of the most active molecule was used as 
reference for calculation of MSA descriptors. 

2.2.4 Generation of QSAR models 

QSAR analysis is an area of computational research, which builds models of biological activity 
using physico–chemical properties of a series of compounds. The underlying assumption is that the 
variations of biological activity within a series can be correlated with changes in measured or 
computed molecular features of the molecules. In the present study, QSAR model generation was 
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performed by GFA technique. The application of the GFA algorithm allows the construction of 
high–quality predictive models and makes available additional information not provided by 
standard regression techniques, even for data sets with many features. GFA was performed by using 
20,000 crossovers, a smoothness value of 1.00 and other default settings for each combination. The 
number of terms in the equation was fixed to 4 including the constant in the training set. The 
equations generated were evaluated on the following basis: (a) LOF measure; (b) Variable terms in 
the equation; (c) Internal and external predictive ability of the equation. 

The predictive r2 was based only on molecules not included in the training set and is defined as: 
r2

pred = (SD – PRESS)/SD, where SD is the sum of the squared deviations between the biological 
activity of molecules in the test set and the mean biological activity of the training set molecules 
and PRESS is the sum of the squared deviations between predicted and actual activity values for 
every molecule in the test. Like r2

cv, the predictive r2 can assume a negative value reflecting a 
complete lack of predictive ability of the training set for the molecules included in the test set 
[21,22].

3 RESULTS AND DISCUSSION 

3.1 Results 
In the present study only those molecules were used for which absolute IC50 values were 

available and thus QSAR models were generated using a training set of 20 molecules. Test set of 7 
molecules with regularly distributed biological activities was used to assess the predictive power of 
generated QSAR models. Biological activity was expressed in terms of log 1/IC50 ( m) against 
COX–2 enzyme. The conformational space of the rotatable bonds in the molecule was explored 
using random sampling technique in order to obtain sterically accessible conformations within 
optimum computational time. Conformational search using random sampling was performed, 
during the MSA technique; the lowest energy conformers were selected for alignment. All the 
molecules were aligned on lowest energy conformer of the most active molecule (compound 20). 
GFA was used for generation of QSAR models with 20,000 crossovers and the smoothness value d
of 1.0. 

3.1.1 Significance of molecular descriptors 

The Cerius2 QSAR generates different descriptors belonging to different categories like 
conformational, electronic, shape, spatial, thermodynamic, etc. Interpretation of QSAR models with 
more terms becomes difficult for drug design. Moreover all the terms may not be relevant. To 
obtain stable and consistent results from GFA and also to determine relevant descriptors, we used a 
procedure to select a subset of descriptors, from a much large pool of descriptor. GFA was run 
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several times by using molecular descriptors in several combinations to generate different QSAR 
models containing not more than four terms per equation. 

Four models were generated using combination of different descriptors: Model A: Using default 
descriptors; Model B: Default + Thermodynamic descriptors; Model C: Default + MSA descriptors; 
Model D: Combination of all descriptors. All the statistically significant equations for each QSAR 
model are given in Table 4. The term BA in these equations represents biological activity expressed 
as pIC50 values. 

Table 4. Summary of the best equation selected from different GFA models. Model D is selected to explain the 
observed antiinflammatory activity of tetrahydroisoindole derivatives 

No Equation LOF r2 r2
cv F–value r2

pred Parameter 

Model A BA = 2.417590 + 0.833226 AlogP – 0.000346 Apol 
+ 0.524673 Hbond donor – 0.185838 RadOfGyration 0.546 0.709 0.510 9.14 0.735 Default 

Model B BA = 1.963100+ 0.833146 AlogP – 0.000371 Apol 
+ 0.530211 Hbond donor 0.405 0.706 0.539 12.81 0.711 Default 

Thermodynamic

Model C BA = 2.663920 + 0.008006 COSV 
+ 0.700323 AlogP – 0.000458 Apol 0.401 0.709 0.524 13.01 0.705 Default 

MSA 

Model D BA = 1.476940 + 0.013920 COSV 
+ 0.561998 Dipol–Z – 0.000360 PMI–Z 0.313 0.773 0.656 18.18 0.669 All 

Model A. QSAR equations using GFA were generated using default descriptors. The resultant 
equations were evaluated for their predictive power. As evident from the variable usage graph, 
molecular descriptors: AlogP, Hbond donor, Rotlbonds and Apol were frequently used in the 
generation of QSAR models. A single best equation from the set of equations was selected on the 
basis of good internal and external predictivity, variable terms, LOF value, and other statistical 
terms like higher F value. The variable terms in the equation show low correlation among 
themselves indicating less probability of chance correlation. 

Model B. This model was built by combination of default and thermodynamic descriptors. The 
resultant set of equations were evaluated on the basis of cross–validated r2 (r2

cv), non–cross 
validated r2, LOF, variable terms. As indicated by variable usage graph the generations of set of 
equations were dominated by repeated use of AlogP, Vm, MolRef and Apol. The single best 
equation was chosen having highest external predictive power. Addition of thermodynamic 
descriptor to QSAR table increased the internal predictivity moderately but has low LOF and higher 
F value than the model generated by using default descriptors. 

Model C. Deviation in the biological activity for a series of molecules can be explained on the 
basis of differences in the physico–chemical descriptors. Hence, we considered the use of shape 
related descriptors in the generation of QSAR models. Six MSA descriptors were calculated using 
MSA module added to QSAR table and Model C was generated. The equations were analyzed on 
the basis of important statistical parameters used in the earlier models. Descriptors like NCOSV, 
AlogP, Hbond acceptor, COSV, and Apol were repeatedly used to generate QSAR Model C. A 
single best equation was selected with proper balance of statistical terms. The internal predictivity 
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of equation is more than Model A and slightly less than Model B, where as the external predictivity 
is comparable as that of both Model A and B. The equation also has low LOF and higher F value 
than Model A and B. Therefore the equation clearly shows the importance of shape related 
descriptors.

Table 5. Summary of the five best GFA equations of Model D. Eq. (3) is the representative equation of Model D 
No Equation LOF r2 r2

cv F–value r2
pred

1 BA = 0.755642 – 0. 001976 PMI–mag + 0.483868 Dipol–Z 
+ 3.980070 Fo 0.307 0.777 0.678 18.588 0.654 

2 BA = 0.735826. – 0.002652 PMI–Z + 0.475220 Dipol–Z 
+ 4.084670 Fo 0.311 0.774 0.673 18.278 0.642 

3 BA = 1.476940 + 0.013920 COSV + 0.561998 Dipol–Z  
– 0.000360 PMI–Z 0.313 0.773 0.656 18.180 0.669 

4 BA = 1.663190 + 0.872127 AlogP – 0.181546 Foct  
– 0.028770 Vm 0.373 0.729 0.574 14.383 0.623 

5 BA = 3.377270 + 0.647270 AlogP – 0.010086 NCOSV  
– 0.000306 Apol 0.378 0.726 0.541 14.122 0.662 

Table 6. Observed and predicted biological activities of training set 
of molecules. Results computed with Model D, Table 4 

Molecule Observed pIC50 Calculated pIC50 Residual 
1 2.830 1.874 0.956 
2 2.481 2.492 –0.011 
3 2.744 2.482 0.262 
4 0.301 0.834 –0.533 
5 2.769 2.843 –0.074 
6 1.777 1.962 –0.185 
7 1.672 1.470 0.201 
8 2.301 2.204 0.092 
9 1.377 0.987 0.390 

10 1.962 2.658 –0.696 
11 1.489 1.630 –0.141 
12 1.301 1.909 –0.608 
13 2.509 2.408 0.101 
14 1.839 2.101 –0.263 
15 3.154 2.441 0.713 
16 2.537 2.645 –0.108 
17 2.585 2.671 –0.085 
18 0.155 0.146 0.009 
19 2.347 2.553 –0.206 
20 3.22 3.034 0.188 

Model D. It is well known that the variation in the observed biological activity is influenced by 
combination of different types of physicochemical properties. Therefore generation of QSAR 
models by clubbing together the descriptors belonging to different categories and allowing GFA to 
choose a proper, combination of descriptors, can have best internal and external predictivity along 
with proper balance of other statistical parameters. Model D was generated by using 32 descriptors. 
The GFA has indicated dominant role of Dipole–Z, AlogP, NCOSV, COSV and Apol descriptors, 
as these are frequently used in the generation of QSAR models. Best five equations were selected 
and are shown in the Table 5. Eq. (3) was chosen as representative of Model D, which has more 
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proper balance of all statistical terms than the rest of the models i.e., low LOF, higher r2
cv, r2, and F 

values along with proper external predictivity. The incorporation of all the descriptors resulted in an 
increase in the internal consistency of the molecules considered for generation of models. Hence, 
Eq. (3) of Model D was also selected to explain the variation in the inhibitory activity of 
tetrahydroisoindoles. The observed and predicted biological activities of training and test set 
molecules are given in Table 6 and 7 respectively. 

Table 7. Observed and predicted biological activities of test set with Model D, Table 4 
Molecule Observed pIC50 Predicted pIC50 Residual 

21 0.301 0.496 – 0.195 
22 2.959 2.065 + 0.894 
23 2.796 2.435 + 0.361 
24 1.448 2.045 – 0.597 
25 2.000 1.624 + 0.376 
26 1.542 1.694 – 0.152 
27 2.000 2.450 – 0.450 

3.2 Randomization Tests 
To determine the model’s reliability and significance, the randomization procedure was 

performed at 95 % (19 trials) and 98 % (49 trials) confidence level. The randomization was done by 
repeatedly permuting the dependent variable set. If the score of the original QSAR model proved 
better than those from the permuted data sets, the model would be considered statistically 
significant better than those obtained from the permuted data. The results of 19 and 49 trials of 
randomization tests are shown in the Table 8. The correlation coefficient r2 for the nonrandom 
QSAR model was 0.772, significantly better than those obtained form randomized data. None of the 
permuted sets produced an r2 comparable with 0.772; hence, the value obtained for the original 
GFA model is significant. 

Table 8. Results of Randomization Tests 
Confidence 

Level Trials r2
nonrandom 

r2
random 

(Mean) SD a SD b r2 < c r2 > d

95 % 19 0.773 0.165 3.502 0.165 19 0 
98 % 49 0.773 0.139 3.599 0.140 49 0 

a Number of standard deviations of the mean value of r2 of all random trials to the non–random r2 value 
b Standard deviation of the r2 values of all random trials from the mean value of r2

c number of r2 values from random trials that are less than the r2 value for the non–random trial 
d number of r2 values from random trials that are greater than the r2 value for the non–random trial 

3.3 Discussion 
The Cerius2 QSAR module provides different descriptors divided into categories like 

thermodynamic, conformational, electronic, spatial, structural and receptor. Among these, some 
descriptors constitute a default set. Using this default set we obtained a reasonably well predictable 
model (Model A) with cross–validated r2 (r2

cv) 0.510. Therefore, in order to optimize the internal 
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and external predictivity the default descriptor set was extended in three different ways by including 
(a) thermodynamic, (b) MSA, and (c) all thirty two (2D and 3D) descriptors available in the Cerius2 
QSAR module to generate different models by using GFA. With these additions the models were 
greatly improved in terms of internal and external consistency. 

3.3.1 Interpretation of models 

The frequent occurrence of AlogP and APol in Model A, B, and C clearly underlines the 
importance of thermodynamic and electronic descriptors for inhibition of COX–2 enzyme for the 
current series of molecules. AlogP is thermodynamic descriptor and represent hydrophobicity. By 
looking at the structure of the molecules it is evident that they are highly lipophilic, hence the 
appearance of AlogP is not a surprising one. AlogP is correlated positively, as COX–2 active site is 
hydrophobic in nature, and molecules with proper lipophilicity and bulkiness as that of most active 
compound may have same or enhanced enzyme inhibition property. It appears that an increase in 
the bulkiness of functional group(s) on aromatic ring(s) may lead to less active compound, as 
bulkiness may disorient the aromatic ring away from favorable interactions with active site residues. 
For example, compound 18 having a sulfonyl group, bulkier than most active compound, is less 
active because it may not be accommodated in the active site properly to have favorable 
interactions. APol is an electronic descriptor related to distribution of mass and is also proportional 
to the number of valence electrons in a molecule, as well as how tightly they are bound to their 
nuclei. Its presence is important because this term is unique for this class due to presence of 
nitrogen (in most of the molecules) or sulfur (compound 10) in the polycyclic fused pyrrole or 
thiophene ring. The APol term in the QSAR models supports the biological activity that molecules 
containing unsubstituted nitrogen in the ring are more active than the corresponding substituted 
analogues. This implicates the possibility of charge transfer and electronic interactions between 
ligand and enzyme responsible for activity. 

Model A. Along with AlogP and Apol, Model A contains descriptors like Hbond donor 
(structural) and RadOfGyration (spatial). Hbond donor is positively correlated to biological activity, 
it indicates that presence of Hbond donor group(s) in the molecule, allow it to retain the activity, in 
other words the –N– of pyrrole which is the only hydrogen donor group should be unsubstituted for 
better activity against COX–2 or even if substituted should contain hydrogen bond donor groups. 
For example, compounds 3 and 4 that contain substitution on pyrrole –N– are less potent than the 
unsubstituted analogues but are more potent than the non–hydrogen bond donor substituted 
compounds (compounds that are not included in the study as they are totally inactive to be 
considered for the generation of models). RadOfGyration is a spatial descriptor measuring the 
rigidity of the molecules needed for activity. 

Model B. The model contains the descriptors from Model A but lack a spatial descriptor. 
Statistically, a combination of default and thermodynamic descriptors yielded improved model as 
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indicated by increase in the internal consistency, F value and lower LOF value. The importance of 
descriptors appeared in the equations are same as explained above. 

Model C. The model was obtained by incorporating shape descriptors considering the fact that a 
variation in the topology/shape/structure of molecule will yield fluctuation in the biological activity 
for a set of molecules belonging to same class. Variable usage graph hints that shape descriptors 
such as COSV, NCOSV, and Vm play an important role in the construction of QSAR models along 
with thermodynamic and electronic. The appearance of COSV in the equation clearly indicates that 
the variation in the structure plays an important role. This model is characterized by low LOF, 
higher F value, and slightly improved internal consistency than Model A. Hence, the combination 
of MSA and default descriptors is significant. 

Model D. In search of combination of descriptors that can give meaningful QSAR, models the 
default descriptors were combined with thermodynamic and shape descriptors separately. The 
obtained models were improved statistically compared to those constructed only with default 
descriptors. This forced to combine all the descriptors of different classes and to generate a model. 

Figure 3. Variable usage graph. 

The variable usage graph (Figure 3) has shown a different phenomenon in the generation of 
QSAR equations, along with AlogP and APol, which were used extensively in the earlier models, 
i.e., they were accompanied by Dipole–Z, NCOSV and COSV for the generation of the current 
model. In all aspects, the model has improved statistical terms except r2

pred, which is slightly 
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smaller than in earlier models. Higher r2
cv, r2, F, a very low LOF values and a proper r2

pred clearly 
indicates that Model D is superior among all other models. Hence, we chose this model as the 
equation, to explain the observed biological activity for new class of COX–2 enzyme inhibitors. 
Graph of observed and predicted biological activities of training and test set are shown in the Figure 
4 and 5 respectively. 
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Figure 4. Observed and GFA predicted biological activities of training set (Model D, Table 4). 
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Figure 5. Observed and GFA predicted biological activities of test set (Model D, Table 4). 
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3.3.2 Interpretation of the descriptors in the selected QSAR equation 

The observed COX–2 enzyme inhibition activity for 1,3–diaryltetrahydroisoindole derivatives is 
influenced by descriptors COSV, Dipole–Z, and PMI–Z. The descriptors COSV and Dipole–Z were 
positively correlated and PMI–Z negatively correlated. 

COSV. It is the common volume between shape reference and the other analogues. Because the 
shape reference molecule is the one with highest biological activity and COSV is positively 
correlated, molecules that are structurally/conformationally similar to the most active molecule are 
expected to exhibit higher activity. The presence of COSV also indicates the importance of 
conformational rigidity of the two aromatic rings attached to central pyrrole nucleus of the 
molecules. Guillaume et al., while explaining SAR in the original paper, described that the 
attachment of polycyclic rings increases the bulkiness (steric), and an increase in hydrophobic 
character of the inhibitors will enhance the enzyme inhibition property [5]. This may be due to the 
attachment of polycyclic rings to pyrrole nucleus additionally which may give proper rigidity to it 
and in turn allowing the two aromatic rings to have proper conformation, so to occupy a larger area 
in the active site of enzyme. 

Dipole–Z. It is an electronic descriptor and indicates the strength and orientation behavior of 
polarizable functional group(s) of a molecule in electrostatic field. The active analogue (compound 
20) of the current series contains two fluoro groups on the aromatic rings attached to pyrrole 
nucleus. One of the aromatic rings bearing fluoro functionality is oriented towards Dipole–Z 
component, i.e. perpendicular to pyrrole nucleus. Therefore, the presence of small polarizable 
groups oriented at Z component may allow the molecule to retain activity as that of active analogue. 
Increase in the bulkiness of polarizable group may yield slightly less active compounds, such as 8.
Thus the dipole interactions are important for COX–2 enzyme inhibition. 

PMI–Z. PMI–Z is a spatial descriptor and indicates the orientation and conformational rigidity 
of the molecule. Thus the orientation of the aromatic ring bearing small polarizable groups along Z–
axis is important for the enzyme inhibition. 

The crystal structures of both COX–1 and COX–2 are available and active sites of both isoforms 
have been explored. It is well established that the active site of COX–2 is flexible and offers various 
chemical moieties to act either as substrates or inhibitors [6]. The molecules under study are potent 
COX–2 inhibitors and characterized by lacking primary requisites present in various tricyclic 
classes of newly developed COX–2 inhibitors. Guillaume et al., while explaining the SAR 
mentioned that, when functional groups thought to induce COX–2 selectivity for tricyclic inhibitors 
were retained, the molecules lost COX–2 selectivity (compound 18) [5]. Hence, they concluded that 
the binding mode for this diverse class in COX–2 active site might be different than the tricyclic 
class of COX–2 inhibitors. Therefore, at this stage it would be appropriate to compare the 
descriptors appeared in the model, selected for explaining the SAR with the protein topology. 
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3.3.3 Hypothetical mechanism of ligand–enzyme interaction 

The final equation (Model D, Table 4) contains COSV and Dipole–Z as positively correlated 
terms and PMI–Z correlated negatively. 

COSV. The common overlap steric volume would be significant in terms of occupation at the 
enzyme–binding site, as it represents the volume available for binding. The COSV is positively 
correlated and as the shape reference (compound 20) is bulkier it indicates that the active site of 
COX–2 enzyme is large. The volume of the COX–2 active site is approximately 20–25% larger 
than that of COX–1, because the presence of smaller amino acid in position 523 in COX–2 (valine 
in COX–2; isoleucine in COX–1) induces a conformational change, thereby forming an additional 
hydrophobic secondary internal pocket protruding off the primary binding site which is absent in 
COX–1 [23,24]. Consequently, the total volume of COX–2 primary binding site and its associated 
secondary pocket (394 Å3) is about 20–25% larger than that of COX–1 binding site (316 Å3).
Though the molecules lack traditional requisite functional groups, but probably due to their 
bulkiness (331.70 Å3 for the most active) are capable of occupying larger area (84.18% by most 
active molecule) in the active site and making proper interactions with active site residues hence are 
active. Thus positively correlated COSV in our equation is justified. 

Dipole–Z. The appearance of positively correlated Dipole–Z indicates the presence of electronic 
and –  interactions between the molecule and active site residues. These kinds of interactions are 
common in COX–2 enzyme inhibitors, particularly in case of tricyclic inhibitors. Because the 
primary and secondary active sites of COX–2 enzyme are lined by amino acid derivatives that are 
capable of having electrostatic interactions with appropriate functional groups present in the 
inhibitors. Ex: (a) His90, Gln192, and Tyr355 (control the access of ligands into the secondary 
pocket by hydrogen bonding network) [25], (b) Tyr385, Ser530, Arg120 and recently Arg513 in the 
primary active site [26]. Recent molecular modeling studies reveal that the water molecules present 
near the mouth of the active site play major role in the remodeling of the hydrogen–bonding 
network involving Arg120 and Glu524 which is necessary for time dependent inhibition of enzyme 
by the inhibitors. In the present study the contribution of dipole moment is mainly from aromatic 
rings and its substituents like fluoro and –N– of pyrrole nucleus. The SAR of molecules under study 
reveals that molecules with an unsubstituted pyrrole nitrogen and with fluoro substituted aromatic 
rings have retained the enzyme inhibition profile because it may be possible that the –H– of pyrrole 
nitrogen may involve in the hydrogen bond formation with the water molecules or the functional 
groups present on the aromatic rings may have electrostatic interactions with the active site residues 
as mentioned above. 

PMI–Z. PMI indicates orientation and conformational rigidity of the molecule and its value 
depends on the total mass distribution within the molecule. In the tricyclic class of COX–2 
inhibitors, central heterocyclic core if it is substituted by an additional substituent or if it has an 
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additional fused five or six–member ring may orient more favorably the ligand within the COX–2 
binding site to enhance COX–2 selectivity [27]. Therefore, for the molecules under study, 
constitution of central pyrrole core by bicyclic ring system may be needed as it may provide rigidity 
to pyrrole nucleus and may facilitate rotatory motion of the molecule around the principle axis so as 
to orient the each aromatic ring in a proper direction particularly one ring bearing small polarizable 
group, towards the Z component. This kind of orientation may provide molecule to attain a proper 
shape or orientation or conformation, which fit best in the active site of COX–2 enzyme, retaining 
necessary interactions with active site residues. 
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Though AlogP not appeared in the final equation but its appearance in three models out of four 
(Table 4) clearly indicates that the active site of the enzyme in which these molecules bind, may be 
hydrophobic and it is well established in the literature [24]. 

Therefore, broadly it can be concluded that, QSAR models developed from different 
combinations of the descriptors indicate that the inhibition of COX–2 enzyme may be non–covalent 
in nature and depends upon shape (steric), electronic, and conformational (spatial or orientation) 
properties of the molecules. Most probable orientations of active (compound 20) and inactive 
(compound 18) molecules in the COX–2 active sites are given in the Figure 6 and 7 respectively. 

3.3.4 Comparison of model with the earlier QSAR studies 

The discovery of COX–2 enzyme has led to the development of different classes of COX–2 
inhibitors by various research groups. Then onwards the COX–2 enzyme has become a fruitful 
target for drug design. Several molecular modeling studies have been performed on COX–2 
inhibitors, but only a few QSAR studies on this class have appeared in the literature. The methods 
employed include CoMFA, CoMSIA, ANN and classical QSAR and recently Liu et al. reported a 
QSAR of COX–2 inhibitors with Molecular Electronegativity Distance Vector as descriptors along 
with combination of Genetic Algorithm and MLR method [28–36]. The CoMFA and CoMSIA for 
tricyclic COX–2 inhibitors reveal that the COX–2 site is hydrophobic and its inhibition is driven by 
optimum hydrophobicity and steric interactions. Small polarizable functional groups are necessary 
to occupy the secondary pocket for COX–2 inhibition. All the QSAR studies appeared in literature 
were performed on vicinal diaryl compounds. The descriptors appeared in the final equation and 
other models of present study are complementary with the topology of the enzyme active site and 
hence, are consistent with the earlier molecular modeling and QSAR studies. 

4 CONCLUSIONS 

Series of 1,3–diaryl–4,5,6,7–terahydro–2, 4–isoindole derivatives are reported as potent COX–2 
inhibitors with very good antiinflammatory activity. 1,3–diaryl substitution on the central 
polycyclic ring system and absence of a sulfonyl moiety on the phenyl ring are two distinctive 
structural features that distinguishes this new chemical series from the COX–2 inhibitors known till 
date. QSAR analysis was performed using robust statistical technique GFA, coupled with the use of 
combinations of different classes of descriptors. The generated models were analyzed for their 
statistical significance. The models were also validated for their external prediction power. 

GFA handled the physico–chemical descriptors effectively in the generations of QSAR models 
with significant statistical terms including external predictivity. For the current series of molecules 
the descriptors COSV, Dipole–Z, and PMI–Z appears to contribute significantly for the observed 
biological activity. The current QSAR analysis reveals that the inhibition of COX–2 enzyme by 
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these diverse set of molecules may be non covalent in nature and depends upon shape (steric), 
electronic and spatial (conformational) properties of the molecules. The selected model has good 
internal and external prediction power. Low values of correlation coefficient obtained from the 
randomized tests than the non–randomized tests clearly indicates the significance of the model 
generated by GFA. The descriptors appeared in the model are complementary to the COX–2 
enzyme topology. An attempt has been made to develop a hypothetical mechanism of inhibitor and 
enzyme interaction. Due to bulkiness, the molecules may occupy larger COX–2 binding site, which 
is being same for tricyclic class of inhibitors but may have different interactions with the active site 
residues. The presence of small polarizable functional group may improve COX–2 inhibitory 
potency.

Although results obtained from different Models A to C are fairly significant in terms of 
statistical measurements but indicate that various descriptors might play a role in determining the 
COX–2 inhibition in different experimental conditions. Therefore, by averaging the results of 
multiple models, the utility of modeling study can be increased, rather than relying on an individual 
model.
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