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Abstract 

By using the partition function of a graph new topological indices, the bond index, B, and the connective index, 
C, are defined for analyzing the statisco-mechanical aspect of the Hosoya index, Z (here denoted by H). By 
comparing these three indices, B, C, and H for small graphs representing the carbon atom skeletons of 
hydrocarbon molecules, the physical meaning of H was found to be clarified by C.
Keywords. Hosoya index; connective index; partition function; statisco-mechanical theory; topological index; 
structural descriptor; molecular graph. 

1 INTRODUCTION 

The Hosoya index H was proposed three decades ago for a connected graph G representing the 
carbon atom skeleton of a saturated hydrocarbon molecule [1] (in the original paper [1] the notation 
Z was used instead of H). Empirical relations were proposed and discussed for the boiling points of 
saturated hydrocarbons and the Hosoya index [2]. The absolute entropy of acyclic saturated 
hydrocarbons was found to be well correlated linearly with the logarithm of H of the graph 
representing the carbon atom skeleton of hydrocarbons. The physical meaning of these relations 
was clarified by analyzing H and the rotational partition function [3]. It has been interpreted that H
represents the dynamical features of the topological properties of these molecules [4–5]. Some other 
simple topological indices were derived and discussed by the author and colleagues [6–8]. The 
Hosoya index was also applied to –electronic systems and some interesting results were obtained 
[9–11]. Thus, graph–theoretical analyses are found to be useful for explaining the topological 
features of the electronic states of molecules and lattices. For example, the number of perfect 
matchings for some lattices is a useful quantity in the theoretical treatment of adsorption of 
diatomic molecules on metallic surfaces (dimer statistics), nearest–neighbor interaction on the 
lattice points in anti–ferromagnetic metals (Ising model), and stability of aromatic hydrocarbon 
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molecules (Kekulé structures counting). 

In the case of dimer statistics, cylindrical and 3–dimensional lattice models were studied by the 
author and colleagues by use of graph theory [12–16]. In the present note the thermodynamic states 
of hydrocarbons themselves are not treated but the graph–theoretical aspects of the electronic states 
of the cyclic and acyclic molecules are discussed. In section 2 a partition function is defined on the 
assumption of Ising model for the graph G with which the electronic system of a hydrocarbon is 
expressed. In section 3 the Hosoya index H and the connective index C are defined from the 
partition function of a graph G [17]. Then the values of the connective index are calculated and 
compared with those of H. The aim of the present note is not to reveal the characteristics of the 
connective index itself but to analyze the nature of H in terms of the connective index from the 
viewpoint of statistical mechanics. A property of H and C is discussed from the viewpoint of 
statistical mechanics in section 4. 

2 APPLICATION OF THE PARTITION FUNCTION

Usually a partition function is defined for a system composed of a large number of particles. 
However, in the present note it is applied to systems with a smaller number of electrons (say, one 
hundred electrons at most). Consider a graph G of the carbon atom skeleton of an unsaturated 
hydrocarbon from the viewpoint of the Ising model. When we want to calculate the partition 
function of a system of a saturated hydrocarbon we need to treat a graph describing, for example, all 
the 8 valence electrons surrounding a carbon atom nucleus. This makes the calculation of the 
partition function very complicated even for a small saturated hydrocarbon molecule. Therefore, in 
the present note we treat saturated hydrocarbons only mathematically. Namely, we suppose a 
hydrocarbon molecule is an ensemble composed of carbon atoms but not of electrons and nuclei. 
This means that in the case of saturated hydrocarbons the topological indices have not an explicit 
but indirect partition–functional meaning in the present note. Z(N,T,h = 0) is a partition function of 
the system, where N, T and h are the number of vertices, the absolute temperature, and the magnetic 
field respectively [17]. The partition function Z is defined as follows: 

Z(N,T,h = 0) =
ijs

exp (Jsisj), (2.1)

where J = E/kT. Notations si and sj stand for spins. E and k are the exchange energy and Boltzmann 
constant respectively [17]. The following mathematical formula is known: 

exp (As) = cosh A + s sinh A = cosh A (1 + s tanh A) (2.2)

where s = + 1 or –1. From Eqs. (2.1) and (2.2) the next equation is obtained: 

Z = (cosh J ) p
ijs

 (1 + si sj v) (2.3)
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where v = tanh J, and p is the total number of nearest neighbor couples of spins. The following 
function V(s) is defined for the later use: 

V(s) = 
ij

 (1 + vsisj), (2.4)

where we assume that si or sj is +1 or –1 when we calculate the partition function itself because we 
assume the Ising model. However, as long as we are concerned with topological indices we assume 
si or sj is always +1 because we treat the Hosoya index (see section 3). Examples of calculating 
partition functions are shown below. 

In the case of graph I ( –electron system of butadiene, see Figure 1) p = 3. Then we have: 

Z (N = 4) / (cosh J )3 = 
1

1

1

1

s

s

1

1

2

2

s

s

1

1

3

3

s

s

1

1

4

4

s

s
V (s) (2.5)

1 ---------- 2 ---------- 3 ---------- 4

o ---------- o ---------- o ---------- o

t1 ---------- t2 ---------- t3

Figure 1. Graph I.

where V (s) is expressed for the graph I as follows: 

V (s) = (1 + vs1s2) (1 + vs2s3) (1 + vs3s4) = (1 + vt1) (1 + vt2) (1 + vt3)
= 1 + v (t1 + t2 + t3) + v2 (t1t2 + t1t3 + t2t3) + v3 (t1 t2 t3)

(2.6)

where si or sj is + 1 or –1; t1 = s1 s2, t2 = s2 s3, and t3 = s3 s4. We have the following final expression 
for the partition function of graph I: 

Z (I, N = 4) = JJJ coshcoshcosh 2222 (2.7)

The above Eq. (2.6) is graphically shown in Figure 2: 

1 ---------- 2 ---------- 3 ---------- 4

 o o o o I0 

 o ---------- o o o 

 o o ---------- o o I1  

 o o o ---------- o 

 o ---------- o o ---------- o I2-1 

 o ---------- o ---------- o  o  I2-2 

 o  o ---------- o ---------- o  I2-3 

 o ---------- o ---------- o ---------- o  I3 

Figure 2. Graphical Explanation of Eq. (2.6).
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Figure 3. Graph II.
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As shown in section 3, graphs I0, I1, and I2–1 are taken into consideration in the Hosoya index 
H, while graphs I2–2, I2–3, and I3 in the connective index C. In the case of graph II ( –electron
system of cyclobutadiene, see Figure 3.) the partition function is: 

Z (N = 4) / (cosh J )4 = 
1
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V (s), (2.8)

where
V(s) = (1 + vs1s2) (1 + vs2s3)(1 + vs3s4) (1 + vs4s1) = 1 + v (t1 + t2 + t3 + t4) + v2 (t1t2 + t1t3 + 

t1t4 + t2t3 + t2t4 + t3t4) + v3 (t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4) + v4 t1t2t3t4,
(2.9)

where t4 = s4s1. Finally we get the following expression for graph II, where si or sj is +1 or –1 [17]: 
Z (II, N = 4) = (cosh4 J )·24 (1 + v4) (2.10)

A partition function itself such as Eq. (2.10) may be used as a topological index by giving values 
to J and v. The above equation is not discussed in the present note beyond this because we do not 
assume si or sj = –1 or +1 but only assume si or sj = 1 for the definitions of H and C. We define here 
n(G,k) as the number of ways in which k bonds are chosen from graph G. The B–count polynomial 
S(G,v) is defined as: 

S (G, v) =
m

k 0
n (G, k) vk (2.11)

The bond index B is then defined: 

B (G) =
m

k 0
n (G, k) = S (G, 1) (2.12)

For graph G the value B is given as: 

B = 
2
1

1
1

0
1 NNN

 . . .
N

N
N
N 1

1
1

 = 2N–1 (2.13)

for a tree graph, and: 
B = 2N (2.14)

for a monocyclic graph. For examples in the cases of graphs I and II, B (I) = 23 = 8 and B (II) = 24 = 
16. Of course the value B cannot distinguish between graphs with the same number N of vertices, 
i.e., B gives the same value when N is fixed. Both the indices H and C can distinguish between 
graphs with the same number N of vertices but with different branchings and closures. This is 
shown in the next section. 
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3 HOSOYA INDEX AND CONNECTIVE INDEX 

The Hosoya index was defined as follows [1]. A non–adjacent number p(G,k) is the number of 
ways in which k bonds are so chosen from G that no two of them are connected. p(G,0) = 1, p(G,1)
= the number of bonds. The H–counting polynomial is defined as: 

Q(G,v) =
m

k 0
p(G,k) vk (3.1)

The Hosoya index H(G) is defined as: 

H(G) =
m

k 0
p(G,k) = Q(G,1) (3.2)

where m is the maximum number of k for G. In the original paper by Hosoya [1] the notation Z is 
used instead of H. In the present paper a topological index C (the connective index) is proposed for 
a graph G. Consider graph (structure) G with N vertices (electrons). The connective index C is 
defined as follows. The number q(G,k) is the number of ways in which k connected bonds are 
chosen from G. The values q(G,0) and q(G,1) are defined as q(G,0) = 0 and q(G,1) = 0. Here partial 
connections among k bonds are also allowed. For example, graphs I2–2 and I2–3 are allowed for 
counting q(I2,2), but graph I2–1 is not allowed for counting for it. The C–counting polynomial is 
defined as: 

R(G,v) =
m

k 0
q(G,k) vk (3.3)

The connective index is defined as: 

C(G) = 
m

k 0
q(G,k) = R(G,1) (3.4)

where m is the maximum number of k for G. Two graphs III (tree, Figure 4) and IV (non–tree, 
Figure 5) are shown as examples for explanation. 

o ---------- o ---------- o ---------- o ----------  o 
1 ---------- 2 ---------- 3 ---------- 4 ---------- 5

Figure 4. Graph III.

1  o 

2  o 

    3 o----------- o 4 

Figure 5. Graph IV.

For both graphs q(G,0) = 0 and q(G,1) = 0. The entries of q(G,2) are the following pairs: graph 
III :1–2–3, 2–3–4, and 3–4–5; and graph IV:1–2–3, 1–2–4, 2–3–4, 2–4–3, and 3–2–4. Therefore 
q(III,2) = 3 and q(IV,2) = 5. There are four ways 1–2–3–4, and 2–3–4–5, 1–2. . 3–4–5, and 1–2–3. . 
4–5 of choosing three bonds in which three of them are connected in the case of graph III. Then 
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q(III,3) = 4. Finally we obtain: 
R(III,v) = 0 + 0v + 3v2 + 4v3 + v4, (3.5)

C(III) = 
4

0

k

k
q(III,k) = R(III,1) = 8. (3.6)

There are four ways, 1–2–3–4, 1–2–4–3, 2–3–4–2, and1–2–3; 2–4, of choosing three bonds 
connected from graph IV. Therefore q (IV, 3) = 4. 

R(IV,v) = 0 + 0v + 5v2 + 4v3 + v4, (3.7)

C(IV) = 
4

0

k

k
q(IV,k) = R(IV,1) = 10. (3.8)

The values of the connective index are shown in Tables 1 and 2 with the values of H and B. Here 
the graphs represent the carbon atom skeletons of the saturated hydrocarbons given in the tables. 

Table 1. q (G, k) values and connective index C of tree graphs derived from saturated hydrocarbons 
N Graph (G) q(G,k)

k = 0, 1, 2, 3, 4, 5 
C H    B

1
2
3
4

5

CH4
C2H6
C3H8
C4H10
C4H10
C5H12
C5H12
C5H12

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

      0  0  0  0 
      0  0  0  0 
      0  0  1  0 
      0  0  3  1 
      0  0  2  1 
      0  0  6  4  1 
      0  0  4  4  1  
      0  0  3  4  1 

  0   1    1 
  0   2    2 
  1   3    4 
  4   4    8 
  3   5    8 
11   5  16 
  9   7  16 
  8   8  16 

H and B stand for the Hosoya index and the bond index (see the text) 
(1) Methane, (2) Ethane, (3) Propane, (4) 2–Methyl propane, (5) n–Butane, 
(6) 2, 2–di–Methyl propane, (7) 2–Methyl butane, (8) n–Pentane 

Table 2. q (G, k)values and connective index C of monocyclic graphs derived from saturated hydrocarbons 
N Graph (G) q(G,k)

k = 0, 1, 2, 3, 4, 5 
C H    B

3
4

5

C3H6
C4H8
C4H8
C5H10
C5H10
C5H10
C5H10
C5H10

 (9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

      0  0  3  1 
      0  0  5  4  1 
      0  0  4  4  1 
      0  0  8 10 5  1 
      0  0  7 10 5  1 
      0  0  6 10 5  1 
      0  0  6 10 5  1 
      0  0  5 10 5  1 

  4    4    8 
10    6  16 
  9    7  16 
24    8  32 
23    9  32 
22  10  32 
22  10  32 
21  11  32 

H and B stand for the hosoya index and the bond index, respectively 
(9) Cycropropane, (10) Methylcyclopropane, (11) Cyclobutane, (12) 1,1–di–Methylcyclopropane, 
(13) 1,2–di–Methylcyclopropane, (14) Ethylcyclopropane, (15) Ethylcyclobutane, 
(16) Cyclopentane 

The number k increases when N increases in the connective index. However the number k in the 
Hosoya index is at most 4. This fact shows one of excellent natures, simplicity of the latter index. 

The other interesting physical or mathematical characters of the Hosoya index were shown in 
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references [1–5,9–11]. 

The following equation is obtained for n(G,k), p(G,k), and q(G,k) because of their definitions: 
n(G,k) = p(G,k) + q(G,k) (3.9)

Ex. n(I,0) = 1; p(I,0) + q(I,0) = 1 + 0 = 1. 

n(I,1) = 3; p(I,1) + q(I,1) = 3 + 0 = 3. 

n(I,2) = 3; p(I,2) + q(I,2) = 1 + 2 = 3. 

where n (G, k) is the number of ways in which k bonds are chosen from graph G.

When r is the number of bonds of a graph we have r = N–1 in a tree graph and r = N in a 
monocyclic graph. The number n(G,k) is expressed easily as 

n(G,k) = 
k
r

(3.10)

Ex., n (I, 2) = 
2
3

 = 3!/2!1! = 3 

Therefore q(G,k) can be calculated by using Eq. (3.9) and by consulting the tables of p(G,k) if 
n(G,k) is given. There is a mathematical relation among the three indices, H, C, and B because of 
their definitions: 

B(G) = C(G) + H(G) (3.11)

where B(G) = 2N–1 in the case of tree graphs and B(G) = 2N in the case of monocyclic graphs, see 
Eqs. (2.13) and (2.14). 

Ex. in the case of graph III B(III) = 16; C(III) + H(III) = 8 + 8 = 16. 

Ex., in the case of graph IV B(IV) = 16; C(IV) + H(IV) = 10 + 6 = 16. 

Then the index C can be calculated by knowing the Hosoya index H. After all the mathematical 
meanings and physical properties of the index C are decided by those of the Hosoya index H which 
has been widely investigated [1–5,9–11]. 

4 CONCLUSIONS

The Hosoya index and the connective index are parts of the expression for the partition function 
of a graph on the viewpoint of the Ising model, where the graph expresses the carbon atom skeleton 
of a hydrocarbon molecule. The Hosoya index H is more useful in quantitative structure–property 
relationships than the connective index C but the physical meaning of C was elucidated more 
clearly than the physical meaning of H.
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