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Abstract 

Following the success of human genome project, the gap between sharply increasing the number of protein 
sequences entering into data bank and slow accumulation of know structure is becoming large. Developing a fast 
and accurate method to predict the protein properties based on the primary sequences becomes indispensable. In 
general, the performance of the predictive system can be improved by selecting appropriate algorithm and the 
fitting method of extracting feature. Thus a new method of extracting feature (the weighting pseudo–amino acid 
composition) from the sequences has been introduced to predict the protein homo–oligomers, which is a 
combination of a set of weighting discrete sequence correlation factors computed with the amino acid index 
profile and the 20 components of the conventional amino acid composition. We extract four attribute parameter 
datasets (COMP, PLIV, FAUJ and MAXF) from the primary sequences as examples to investigate this problem. 
The COMP attribute dataset is composed of amino acid composition, and the PLIV, FAUJ and MAXF attribute 
datasets are composed of the amino acid composition and a set of weighting discrete sequence correlation factors 
of corresponding amino acid residue index. The total accuracies of PLIV, FAUJ and MAXF using support vector 
machines (SVM) algorithm are 80.36%, 79.34% and 79.02% respectively in 10 fold cross–validation (10CV) 
test, which are 4.59%, 3.57% and 3.25% respectively higher than that of COMP. Based on the same COMP and 
PLIV attribute datasets, the total accuracies of SVM are 33.87% and 18.05% respectively higher than that of 
covariant discriminant algorithm in the jackknife test. These results show that the method of extracting feature 
from the protein sequences is effective and feasible for predicting homo–oligomers, and implies that the primary 
sequences of homo–oligomeric proteins contain quaternary structure information, and also indicates that the 
performance of SVM is superior to the covariant discriminant algorithm for classifying protein homo–oligomers. 
Keywords. Support vector machines; SVM; covariant discriminant; weighting pseudo–amino acid composition; 
amino acid composition; homo–oligomers. 

1 INTRODUCTION 

The functional diversity of proteins is made possible by the diversity of their spatial structures, 
which are capable of highly specific molecular recognition. Understanding or simulating the 
molecular processes involved in the formation of protein structure and in their biological function is 
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a major challenge of molecular biology. Although the protein spatial structure can be determined by 
conducting various experiments, it is time consuming and costly to acquire this kind of knowledge 
solely by experiments [1]. Nowadays, it is generally accepted that the protein structure is 
determined by its amino acid sequence [2,3], and the number of protein sequences entering into 
databanks has been rapidly increasing, thus, predicting the spatial structure based on a given protein 
primary sequence information could play a significant role, in conjunction with experimental 
methods. 

Some proteins consist of more than one polypeptide chain or subunit. These are also called 
multimeric proteins, and may be formed by several identical polypeptides or by different ones. 
Quaternary structure of a protein is refers to the class, number, spatial arrangement of subunits and 
interaction of non–covalently bound monomeric protein subunits to form oligomers. Such 
complexes are common in eukaryotic cells and are involved in many critical cellular processes, 
such as metabolism, cell signaling and chromosome replicating etc. Many previous studies are 
devoted to the analysis of the protein–protein interactions and the prediction of interaction sites 
from the known 3D structures and sequence profile [4–10]. Robert Garian studied the predicting of 
homodimers and non–homodimers using decision–tree models and got the result that protein 
primary sequence contains quaternary structure information [11]. The purpose of this study is to 
develop a reliable prediction system of homo–oligomers by introducing a new method of extracting 
feature from the protein sequences, the weighting pseudo–amino acid composition, and Vapnik’s 
Support Machines [12,13] to discriminate the homodimers, homotrimers, homotetramers and 
homohexamers. 

2 MATERIALS AND METHODS

2.1 Database
The database R was selected from Robert Garian’s database [11]. It was consisted of 1568 

homo–oligomeric protein sequences, 914 of which were homodimers (2EM), 139 homotrimers 
(3EM), 407 homotetramers (4EM) and 108 homohexamers (6EM). The database was obtained from 
Release 34 of the SWISS–PROT database [14] and limited to the prokaryotic, cytosolic subset of 
homo–oligomers in order to eliminate membrane proteins and other specialized proteins. 

2.2 Support Vector Machines
Support Vector Machines (SVM) is a new type of learning machines based on statistical learning 

theory, which is currently considered as one of the most efficient method in many real–world 
applications. Due to SVM powerful classification, it was applied with success in medicine, 
computational biology, and structure–activity relationships, including microarray gene expression 
data [15], translation initiation sites [16], protein class [17], membrane protein type [18], protein–
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protein interactions [10], aquatic toxicity mechanism [19], carcinogenic activity [20], structure–
odor relationship [21], protein subcellular localization [22–24], and protein fold [25]. 

The SVM works by mapping the data samples, which are points in the input space, into a higher–
dimensional space called the feature space. An optimal separating hyperplane (OSH) can then be 
defined in the feature space. The mapping function used only involves the relatively low–
dimensional vectors in the input space and dot products in the feature space. This dot product is 
represented by a kernel function in the input space. The separating hyperplane can be determined 
without having to represent the feature space explicitly. What follows is a brief description of the 
SVM algorithm. A more detailed description can be found in Vapnik’s book [13] and Cristianini’s 
book [26]. 

For a two–class classification problem, assume that we have a set of samples, i.e. a series of 
input vectors d

i Rx  (i = 1, 2,…, N), with corresponding labels 1,1iy  (i = 1, 2, …, N). Here, 

+1 and –1 indicate the two classes. The goal here is to construct one binary classifier or derive one 
decision function from the available samples, which has small probability of misclassifying a future 
sample. Both the basic linear separable case and the most useful linear non–separable case (for most 
real life problems) are considered here. 

For a linear separable case, there exists a separating hyperplane whose function is ,0bxw

which implies the following: 

1bxwy ii i=1, 2, …, N

By minimizing 2
2
1 w  subject to this constraint, the SVM approach tries to find a unique 

separating hyperplane, which maximizes the distance between the hyperplane and the nearest data 
points of each class. The classifier is called the largest margin classifier. 

By introducing Lagrange multipliers i, the SVM training procedure amounts to solving a 
convex quadratic programming (QP) problem. The solution is a unique globally optimized result, 
and can be shown as the following formula: 

N

i
iii xyw

1

Only if the corresponding i > 0, these xi are called Support Vectors. When a SVM is trained, the 
decision function can be written as: 

)sgn(
1

N

i
iii bxxyxf

For a linear non–separable case, in order to allow for training errors, this can be done by 
introducing positive slack variables i (i = 1,  2,…, N) in the constraints, which then become: 
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iii bxwy 1 ii ,0

We want to simultaneously maximize the margin and minimize the number of misclassifications. 
This can be achieved by changing the objective function from 2

2
1 w to

N

i

k
iCw

1

2
2
1

Minimize      
N

i

k
iCw

1

2
2
1

Subject to 01 iii bxwy  , Ni ,,2,1
0i Ni ,,2,1

The error weight C is a regularization parameter to be chosen by the user, it means the size of 
penalties assigned to errors. The optimization problem is convex for any positive integer k, for k = 1 
and k = 2 it is also a quadratic programming problem. This is called the Soft Margin Generalization 
of the OSH, while the original concept with no errors allowed is called Hard Margin. 

For a two–class nonlinear classification problem, SVM performs a nonlinear mapping (•) of the 
input vector x  from the input space Rd into a higher dimensional Hilbert space H, and constructs an 
Optimal Separating Hyperplane. In the linear separable case, we know that the algorithm only 
depends on inner products between training examples and test examples. So we can generalize to 
nonlinear case. The inner products are substituted by the kernel function jiji xxxxk ,  in the 

input space. Then, the decision function implemented by SVM can be written as: 

),sgn(
1

N

i
iii bxxkyxf

Two typical kernel functions are listed below; 

Polynomial function         d
jiji xxxxk 1),(

Radial basis function (RBF)   )exp(,
2

jiji xxxxk

The software used to implement SVM was SVMlight by Joachims [27] which can be freely 
downloaded from http://ais.gmd.de/~thorsten/svm_light/ for academic use. The core optimization 
method for solving the QP problem was based on the ‘LOQO’ algorithm [28]. 

2.3 Extracting the Sequence Descriptor
According to the studies of Nakashima [29], Klein [30] and Chou [31,32], the 20–D (dimension) 

attribute vector is used to represent a protein primary sequence, which defined as: 
Tfffx ],,,[ 2021

where fi (i = 1, 2,…, 20) are the occurrence frequencies of the 20 amino acids in the protein 
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concerned, arranged alphabetically according to their signal letter codes, and T means a transpose 
operator. 

Since the information within the primary sequence is greatly reduced by considering the amino 
acid composition alone, the sequence order of amino acids in the query protein should be taken into 
account. Thus a set of weighting sequences order–correlated factors based on the physicochemical 
properties of amino acid along the primary sequence of the query protein have been considered. In 
other words, in addition to the 20–D components of the amino acid frequencies, other m–D
components should be added to form a (20 + m)–D vector. The attribute vector is defined as: 

T
mrrrfffx ,,,,,,, 212021

where fi (i = 1, 2, …, 20) are the occurrence frequencies of the 20 amino acids in the protein 
concerned, rn (n = 1, 2,…, m) are the weighting sequences order–correlated factors, and m is an 
integer to be determined by the optimum prediction, and the (20 + m)–D vector was called pseudo–
amino acid composition vector [1]. The calculation of weighting sequences order–correlated factors 
will be shown as follows. 

Consider a protein chain of L amino acid residues: R1R2R3R4R5R6…RL. The weighting sequence 
order–correlated factors rn are defined as: 

nL

i
inin RHRH

nL
wr

1

2)]()([ n=1, 2, …, m (1)

where H(Ri+n), H(Ri) are the index values of amino acid Ri+n and Ri respectively, and w is weight 
factor. The index values of amino acid Ri+n and Ri can be selected from Kanehisa’s Amino Acid 
Index database [33], which may be accessed through the DBGET/LinkDB system at GenomeNet 
(http://www.genome.ad.jp/dbget) or may be downloaded by anonymous FTP 
(ftp://genome.ad.jp/db/genoment/aaindex). An amino acid index is a set of 20 numerical values 
representing any of the different physicochemical properties of the 20 amino acids. 

Table 1. Four datasets extracted from protein sequences 
Symbol Attribute parameter illustration 
COMP Amino acids composition 
PLIV 1 Pseudo–amino acid composition extracting from amino acid residue index of Pliska et al.
FAUJ 2 Pseudo–amino acid composition extracting from amino acid residue index of Fauchere et al.
MAXF 3 Pseudo–amino acid composition extracting from amino acid residue index of Maxfield–Scheraga 

1 PLIV810101 partition coefficient (Pliska et al., 1981); 2 FAUJ880103 normalized van der Waals volume 
(Fauchere et al., 1988); 3 MAXF760102 normalized frequency of extended structure (Maxfield–Scheraga, 1976) 

According to the amino acid frequencies and the weighting sequences order–correlated factors, 
we extracted four attribute parameter sets from the primary sequences, which are clearly shown in 
Table 1. As an example, protein FER_DESGI can be computed and represented by a vector in 43–D 
space: [10.34 10.34 13.79 15.52 1.72 1.72 0.00 8.62 1.72 1.72 3.45 5.17 6.90 0.00 1.72 5.17 0.00 
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12.07 0.00 0.00 7.05 6.94 7.97 7.16 7.77 7.53 6.09 6.96 6.31 6.46 7.51 7.21 5.73 8.34 6.99 7.66 
8.46 7.60 6.03 7.35 6.75 6.05 4.93]T in PLIV dataset, here, w = 10, m = 23. 

2.4 Design and Implementation of the Prediction System
Protein homo–oligomers prediction is a multi–class classification problem. Here, the class 

number is equal to 4. A simple strategy to handle the multi–class classification is to reduce the 
multi–classification to a series of binary classifications. For a k–class classification, k SVMs are 
constructed. The ith SVM will be trained with all of the samples in the ith class with positive labels 
and all other samples with negative labels. We refer to SVMs trained in this way as 1–v–r SVMs 
(short for one–versus–rest). Finally one unknown sample is classified into the class that corresponds 
to the 1–v–r SVM with the highest output value. This method was used to construct a prediction 
system (i.e. one 4–class classifier) for protein homo–oligomers. 

2.5 Classification of System Assessment
The classification quality can be examined using the jackknife test and 10–fold cross–validation 

(10CV) test, which are objective and rigorous testing procedures. The total prediction accuracy (Q), 
the prediction accuracy (Qi) and Matthew’s Correlation Coefficient (MCC(i)) [34] for each class of 
homo–oligomers calculated for assessment of the prediction system are given by: 

l

i

NipQ
1

)( )()( iobsipQi ))()())(()())(()())(()((
)()()()()(

ioiniuinioipiuip
ioiuinipiMCC

where N is the total number of sequences, l is the class number, obs(i) is the number of sequences 
observed in i class protein homo–oligomers, p(i) is the number of correctly predicted sequences of i
class protein homo–oligomers, n(i) is the number of correctly predicted sequences not of i class 
protein homo–oligomers, u(i) is the number of under–predicted sequences of i class protein homo–
oligomers and o(i) is the number of over–predicted sequences of i class protein homo–oligomers. 

3 RESULTS AND DISCUSSION 

3.1 The results with SVM in the 10CV Test
From table 2, we can see that the total accuracy of COMP based only on amino acid composition 

in 10CV test is 75.77%, and the total accuracy for PLIV, FAUJ and MAXF based on amino acid 
composition adding a set of weighting sequences order–correlated factors are 80.36%, 79.34%, 
79.02% respectively, which are 4.59%, 3.57%, 3.25% respectively higher than that of COMP set. 
The MCC of each class (2EM, 3EM, 4EM and 6EM) for the PLIV, FAUJ and MAXF is bigger than 
that of the corresponding class for COMP. These results indicate that the method of extracting 
feature from the protein sequences is effective and feasible, and the SVM can be applied to predict 
the protein homo–oligomers. 
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Table 2. The predictive results using RBF kernel function support vector machines (C = 1000) in 10CV test 
COMP

( = 0.04)
PLIV 

( = 0.03, w = 10, m = 23)
FAUJ

( = 0.03, w = 1, m = 29)
MAXF

( = 0.03, w = 100, m = 22)
Accuracy % MCC Accuracy % MCC Accuracy % MCC Accuracy % MCC 

2EM 89.28 0.5475 93.00 0.6210 92.23 0.6041 93.00 0.6005 
3EM 51.08 0.6565 58.27 0.7431 55.40 0.7028 53.24 0.6975 
4EM 62.65 0.5446 68.06 0.6535 65.85 0.6204 65.85 0.6267 
6EM 42.59 0.5550 48.15 0.6168 51.85 0.6625 43.52 0.5977 
Total accuracy % 75.77 – 80.36 – 79.34 – 79.02 – 

We have analyzed 472 sets of indices in AAindex Ver5.0. The total accuracy in 10CV test is 
used to evaluate the predictive ability of each amino acid index. Among 472 sets of data, about 80% 
could differently improve the classifying results. By the hierarchical clustering [35], the 472 indices 
can be divided into six major classes:  and turn propensities,  propensity, amino acid 
composition, hydrophobicity, physicochemical properties, and other properties. We found that most 
of hydrophobicity amino acid indices used for classifying have better performance than that of other 
five classes of amino acid index, suggesting that biologically relevant complex formation is driven 
predominantly by the hydrophobic effect [7]. The results listed in Table 2 are three typical examples 
of several indices. The amino acid indices of PLIV, FAUJ and MAXF belong to the class of 
hydrophobicity, physicochemical properties and  propensity respectively, which have the best 
performance in their each class. These results also imply that hydrophobic interactions are the 
greatest contribution to subunit interaction, hydrogen bonds and van der Waals interactions also 
contribute to the specificity of subunit interaction. In addition, we try to add up several different 
amino acid indices according to Chou’s method [1], but the classifying results have not been 
improved apparently. We think that adding up several different amino acid indices may exist the 
problem of information fusion. 
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Figure 1. The relationship between m used in the prediction (x–axis) and the total 
predictive accuracy (y–axis) in the 10Cv test. The highest accuracy is achieved at m = 23. 
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The number of the weighting sequence order–correlated factors used in PLIV, FAUJ and MAXF 
parameter sets is denoted by m in Eq. (1). The classifying results of the PLIV, FAUJ and MAXF 
parameter sets can be affected with different m values, thus we take PLIV set as an example to 
study the classifying result affected with different m values in the same condition w = 10. The 
results are clearly shown in Figure 1, were the x–axis represents the number of the weighting 
sequence order–correlated factors used in the prediction, whereas the y–axis represents the total 
accuracy in 10CV test. Obviously, there is an optimal value of m, for example, when m = 23, the 
best total accuracy 80.36% can be obtained. 

3.2 Comparison with the Covariant Discriminant Algorithm
The SVM method predictions were compared with the Covariant Discriminant algorithm 

[1,36,37] in a jackknife test. The results are shown in the Table 3. 

Table 3. The comparison of the RBF kernel function SVM and the Covariant Discriminant algorithm in jackknife test 
SVM (C=1000) Covariant Discriminant 

COMP
(  = 0.04) 

PLIV
(  = 0.03, w = 10, m = 23) COMP PLIV 

Accuracy % MCC Accuracy % MCC Accuracy % MCC Accuracy % MCC 
2EM 89.93 0.5825 93.22 0.6368 34.68 0.2663 59.74 0.3810 
3EM 57.55 0.6911 62.59 0.7623 59.71 0.4582 59.71 0.6470 
4EM 64.13 0.5715 68.55 0.6599 51.11 0.2489 77.15 0.4061 
6EM 46.30 0.5855 54.63 0.6829 68.52 0.2167 47.22 0.4663 

Total accuracy % 77.36 – 81.44 – 43.49 – 63.39 – 

Table 3 shows that the performance of the SVM method is superior to the covariant distriminant 
algorithm. In addition, the results of the PLIV are always better than that of COMP in both of 
algorithms. These results show that the weighting pseudo–amino acid composition may include 
some order information of the protein homo–oligomers. 

3.3 The Performance of the Predictive System Influenced by the Size of
Database and the Unbalance of Sample Numbers Between the Four Classes
To investigate the influence of the database size and the sample unbalance between the four 

classes, we established subset Database A. The Database A is randomly selected from the Database 
R, which consists of 432 homo–oligomeric protein sequences. Each class (2EM, 3EM, 4EM and 
6EM) has 108 protein sequences in the Database A. The results are shown in the Table 4. The 
results of the Database A are the mean of five random selections. It is seen that the database size 
and the sample unbalance between classes have great influence to the performance of the predictive 
system. Generally, increasing the number of the training set and decreasing the unbalance of the 
samples between classes can improve the performance of the predictive system, and enhance the 
system stability. In addition, we should see that the performance of PLIV is still better than that of 
COMP in Database A. This result demonstrates again that the weighting pseudo–amino acid 
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composition may present useful information and hence improve the prediction with properly joining 
the amino acid composition. 

Table 4. The performance of the predictive system influenced by the database size and the sample unbalance between 
the classes using RBF kernel function support vector machines (C = 1000) in the jackknife test 

Database R Database A 
COMP PLIV COMP PLIV 

Accuracy % MCC Accuracy % MCC Accuracy % MCC Accuracy % MCC 
2EM 89.93 0.5825 93.22 0.6368 48.52 0.3360 53.33 0.4014 
3EM 57.55 0.6911 62.59 0.7623 75.93 0.5948 77.41 0.6783 
4EM 64.13 0.5715 68.55 0.6599 57.59 0.4725 63.89 0.5377 
6EM 46.30 0.5855 54.63 0.6829 65.00 0.5537 74.07 0.6275 

Total accuracy % 77.36 – 81.44 – 61.76 – 67.18 – 

3.4 SVM Parameters Selection
SVM still has a few adjustable parameters that need to be determined. SVM training includes the 

selection of the proper kernel function and their parameters. Both of polynomial kernel and RBF 
kernel were selected to study, because the successful theoretical methods are not available for 
kernel function types and parameters selection. By studying, we found that the regularization 
parameter C  had little influence on the classifying performance for two types of kernel function, so 
we selected the default C = 1000 of SVMlight program. For polynomial kernel, the algorithm is 
divergence or the training speed is very slow, thus we did not select it for classification. The 
parameter  of RBF kernel has different effects on classification performance. Thus, we can select 
the best kernel types and parameters by computer operation for different datasets. 

4 CONCLUSIONS

The results of computation experiments have shown that the method of extracting feature by 
incorporating the weighting pseudo–amino acid composition is effective and feasible, and the SVM 
can be applied to predict the homo–oligomers from the protein sequences. The feature vectors 
composed of amino acid composition and pseudo–amino acid composition may contain protein 
quaternary structure information, and appear to capture essential information about the composition 
and hydrophobicity of residues in the surface patches that buried in the interfaces of associated 
subunits. Although these feature vectors can reflect protein quaternary structure information at a 
certain extent, but these methods of representing protein sequence have a certain limitation. Due to 
many amino acid indices and the selectivity of weight factor w and m values of sequences order–
correlated factors, there are many forms of amino acid composition integrating with sequences 
order–correlated factors. Thus, the best classifying result can be obtained for a given dataset by 
optimal selecting amino acid index, m value and weight factor w.
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