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Abstract 

Motivation. Structure–activity relationships are characterized by large dimensions and conventional procedures 
become protracted while modeling these relationships. To enhance the modeling abilities in terms of reduced 
computational costs motivates the use of recently developed tools in machine learning. 
Method. Newly developed locally linear embedding is used in reducing the nonlinear dimensions in QSPR and 
QSAR. The reduced set is subsequently modeled with robust regressors, namely lazy learning and support vector 
regression. 
Results. Both the datasets show improved results with the reduced dimensions as compared to their original 
dimension counterparts. 
Conclusions. Locally linear embedding for nonlinear dimensionality reduction coupled with robust regressors 
such as lazy learning and support vector regression seems to be a promising option in analyzing the nonlinear 
datasets. 
Keywords. Locally linear embedding; lazy learning; support vector regression; QSPR; quantitative structure–
property relationships; QSAR; quantitative structure–activity relationships. 

Abbreviations and notations 
LLE, locally linear embedding RBF, radial basis function 
MSE, mean squared error QSAR, quantitative structure–activity relationships 
PCA, principal component analysis QSPR, quantitative structure–property relationships 
PRESS, prediction sum of squares SVM, support vector machine 
QP, quadratic programming SVR, support vector regression 

1 INTRODUCTION 

Development of structure–activity relationships (QSPR and QSAR) is one of the most common 
problems involved in development of new materials with desirable properties. The problem is 
encountered in synthesis of advanced materials such as a catalyst, polymer composites, 
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pharmaceutical data analysis for drug design etc. The conventional approach uses variations of the 
classical multivariate regression techniques and principal component analysis. More recently neural 
network based paradigms have been used to capture the highly nonlinear and complex structure–
activity relationships [1]. Owing to certain disadvantages like long training times, overfitting the 
training data etc., researchers are continuously looking for more accurate and informative 
techniques [1–3]. The present work explores combinations of some of the newly developed 
computational tools in machine learning to build robust QSPR and QSAR models. More 
specifically, the recently developed Locally linear embedding technique has been employed for 
reducing the dimensionality of data which is subsequently modeled with (a) adaptive memory based 
local learning (i.e. lazy learning) and (b) support vector regression techniques. 

The paper is organized as follows. First we explain the chemical data considered followed by 
basic locally linear embedding, lazy learning and support vector regression algorithms in Section 2. 
Section 3 on results and discussion confers the salient features of the algorithm. Finally, section 4 
on conclusions summarizes the results. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 
Datasets considered in the analysis are taken from literature and include the quantitative structure 

property relationships for predicting boiling points of alkanes and quantitative structure activity 
relationships for predicting biological activity. We give a brief account of these datasets. 

2.1.1 Quantitative structure property relationship data 

QSPRs correlate and estimate the physical properties of the organic compounds. Specifically, 
they correlate physicochemical properties with molecular structural characteristics (geometric and 
electronic) expressed in terms of appropriate molecular descriptors. Various descriptors such as 
electronic (dipole moments etc.), lipophilic (partition coefficients), topological (molecular 
connectivity indices and other geometric parameters) as well as molecular parameters (molar 
volume, parachor, etc.) can be used for correlating structural parameters with physicochemical 
properties. The data used in the present work is taken from Trinajsti et al. [4] wherein different 
descriptors based on distance indices and two connectivity indices for the first 150 alkanes are 
reported [5–6]. 

2.1.2 Quantitative structure activity relationship data 

QSAR analysis is based on the assumption that there exists relationship between the biological 
activity within a group of molecular compounds with the variation of their respective structural and 
chemical features. So based on these physicochemical descriptors, analyst tries to predict the 
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molecule’s activity. The benchmark data set under consideration is taken from Selwood et al. [7] 
where they developed a series of analogues of the mammalian electron transport inhibitor antimycin 
A1 as potential anitfilarials in order to design new antifilarial drugs. 

The other set under consideration is steroids data set. It mainly deals with a problem to model the 
corticosteroid binding globulin (CBG) receptor activity with autocorrelation of molecular surface 
properties. Wagener et al. [8] modified this particular dataset from its earlier version to form in all 
31 steroids with 1248 descriptors to model CBG receptor activity. 

With this, we now briefly describe the algorithms employed in this work to develop data driven 
models for predicting QSARs and QSPRs. We first provide a gist of the basic locally linear 
embedding algorithm for nonlinear dimensionality reduction. Finally we proceed to give an outline 
of the two frequently used robust regression algorithms, namely lazy learning and support vector 
regression.

2.2 Locally Linear Embedding (LLE) Algorithm
The LLE algorithm is based on simple geometrical considerations [9]. Let the data set 

DX N1,2.......i}{  be sampled from some smooth underlying manifold. Provided the manifold is 

well sampled (i.e., there is enough data), we expect each data point and its neighbors lie on or close 
to a locally linear patch of the manifold. Thus we can approximate the non–linear manifold in the 
vicinity of Xi by the linear hyperplane passing through its nearest neighbors. 

Based on this simple idea, the LLE algorithm consist of a three step process: 

(1) Identify K nearest neighbors for every data point, as measured by Euclidean distance (Other 
notions of “closeness” are also possible, such as all points within a certain radius, or by using 
more sophisticated rules based on local metrics.) 

(2) Compute the weights Wij that best linearly reconstruct each Xi from its K neighbors. Here we 
are required to minimize the reconstruction error as measured by the cost function 

i
j jiji XWXW

2

)( (1)

subject to two constraints: 

(a) Each data point iX  is reconstructed only from its neighbors, enforcing Wij = 0 if iX  does 

not belong to this set and 

(b)
j ijW 1 for every i.

The weights Wij signify the contribution of the jth data point to the ith reconstruction. The optimal 
weights Wij subject to these constraints are found by solving a least squares problem, as discussed in 



Structure–Activity Relationships using Locally Linear Embedding Assisted by Support Vector and Lazy Learning 
Internet Electronic Journal of Molecular Design 2004, 3, 118–133 

121 
BioChem Press http://www.biochempress.com

Appendix 1. 

The constrained weights that minimize these reconstruction errors characterize intrinsic 
geometric properties of each neighborhood, as opposed to properties that depend on a particular 
frame of reference. This is due to the fact that for any particular data point, the weights are invariant 
to rotations, rescalings, and translations of that data point and its neighbors. The invariance to 
rotations and rescalings results from the form of Eq. (1); the invariance to translations is imposed by 
the sum–to–one constraint (b).

Since the data lie on or near a smooth nonlinear manifold of dimensionality d << D, there exists 
a linear mapping (comprising a translation, rotation, and rescaling) that maps the high dimensional 
coordinates of each neighborhood to global internal coordinates on the manifold. Thus 
reconstruction weights Wij, invariant to such transformations, should characterize the local 
geometry to same extent, both in the original data space and local patches on the manifold. In 
particular, the same weights Wij that reconstruct the ith data point in D dimensions should also 
reconstruct its embedded manifold coordinates in d dimensions. This forms the basis of third step of 
algorithm. 

(3) Find the d–dimensional vectors iY  that best match those reconstruction weights W. Here we 

are required to minimize the reconstruction errors as measured by embedding cost function: 
2

)(
i

j jiji YWYY (2)

To ensure the uniqueness of the solution the following two constraints are imposed: translation 

invariance by requiring the coordinates to be centered on the origin i.e. 0
i

iY  and we constrain 

the embedding vectors to have unit covariance, 

i
i

i YY
N

.1

where I is the d×d identity matrix. 

These constraints do not affect the generality of the solutions as )(Y  is invariant to translation, 

rotations and homogeneous rescalings. The additional constraint that the covariance is equal to the 
identity matrix expresses an assumption that reconstruction errors for different coordinates in the 
embedding space should be measured on the same scale. 

The optimal embedding d
Ni RY ......2,1  is given by eigenvectors associated with the smallest d

+1 eigenvalues of the matrix M [10]: 

)()( WW (3)



R. Kumar, A. Kulkarni, V. K. Jayaraman, and B. D. Kulkarni 
Internet Electronic Journal of Molecular Design 2004, 3, 118–133 

122 
BioChem Press http://www.biochempress.com

The bottom eigenvector of this matrix is discarded, as it is a vector composed of all ones, with 
zero as eigenvalue. Discarding this eigenvector enforces the constraint that the embeddings have 
zero mean, as the components of other eigenvectors must sum to zero, by virtue of orthogonality. 
The remaining d eigenvectors of size N give the final embedding Y.

Although the reconstruction weights for each data point are computed from its local 
neighborhood independently, the embedding coordinates are computed by an N×N eigen solver, a 
global operation that couples all data points in connected components of the graph defined by the 
weight matrix. The different dimensions in the embedding space can be computed successively; this 
is done simply by computing the bottom eigenvectors from Eq. (2) one at a time. 

In situations where data is not available in vector form iX , but only as the measurements of 
dissimilarity or pair wise distance between different data points, a simple variation of LLE can be 
applied. The nearest neighbors are identified by the smallest non–zero elements of each row in the 
distance matrix. As described in Appendix 1, the reconstruction weights calculation for each data 
point requires computing the local covariance matrix Cjk between its nearest neighbors. This is done 
by exploiting the usual relation between pair wise distances and dot products that form the basis of 
metric MDS [11]. Therefore, for a particular data point 

)(
2
1

0DDDDC jkkjjk (4)

where Djk is the squared distance between the jth and ith neighbors, 

z zDD  and 
jk jkDD0

The rest of the algorithm proceeds as usual. The procedure as described above leads to nonlinear 
dimensionality reduction of data. 

2.2.1 Parameters 

In order to get a good LLE mapping, two parameters viz. the dimensionality, d, and the number 
of neighbors, K, need attention. If d is set too high, the mapping will enhance noise (due to the 
constraint 1/nYYT = I); if it is set too low, distinct parts of the data set might be mapped on top of 
each other. If K is set too small, the mapping will not reflect any global properties; if it is too high, 
the mapping will lose its nonlinear character and behave like traditional PCA, as the entire data set 
is seen as local neighborhood. In the present work dimensionality d is chosen according to the 
criteria: d + 1 should be less than or equal to the number of eigen values of M that are close to zero 
[10–11].

The nearest neighbor parameter K is a measure of the “quality” of input–output mapping (i.e.,
how well the high–dimensional structure is represented in the embedded space) and is selected 
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based on the residual variance [12]. It is defined as 21
yxDD  where  is the standard linear 

correlation coefficient, computed over all entries of Dx and Dy; Dx and Dy are the matrices of 
Euclidean distances (between pairs of points) in X and Y (Y was computed in Step 3 above), 
respectively. The lower the residual variance is, the better the high–dimensional data are 
represented in the embedded space. Hence, the optimal value for K, Kopt can be determined as: 

)1(minarg 2
yx DDKoptK (5)

Although a few techniques are given in literature [13] like linear interpolations and training a 
neural network or RBF network for mapping a new (previously unseen) sample, we have preferred 
a simple strategy of concatenating the new sample with given samples and repeating the whole LLE 
procedure. This preference is based on our observation that the LLE algorithm takes only few 
seconds of time to run, retaining non–linear mapping even for query point. Whereas the approaches 
like Neural or RBF networks are hard to train and linear interpolations will lose the non– linearity 
of data. 

2.3 Lazy Learning
Lazy learning is a memory based local learning method using local selection of parameters [14]. 

It is a query based technique and defers all the computations till a query is received for prediction. It 
answers the query point by interpolating locally the relevant examples according to a distance 
measure. The local modeling procedure used in prediction of the query point consists of parametric 
and structural identification. Given a model structure, parametric identification optimizes the 
parameters of the local approximator. The structural identification, on the other hand, selects a 
family of local appproximators, a metric to evaluate relevant examples and bandwidth that indicates 
the size of the region in which the data are correctly modeled by the members of the local 
approximators chosen earlier [15]. Being a memory–based technique, separate training is not 
required to answer the query points, which greatly improves the speed of implementation. Secondly, 
it predicts by locally interpolating the relevant points based on a distance measure. This is 
particularly useful when limited amount of input/output data is available and an accurate prediction
is required. Lastly, it is less susceptible to the noise contamination. All these features greatly 
improve the overall performance of the learning from input/output data as compared to other 
parametric as well as nonparametric methods. A brief introduction on the working of algorithm is as 
follows. 

Consider two variables mx and y  for unknown input–output mapping mf :
known through a set of n examples n

iii y 1,x . Let this mapping be represented as: 

iii fy x (6)

where ii, is a random variable such that 0iE  and ijE ji ,0 , and such that 
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2, rE ir
r
i x , where r  is the unknown rth moment of distribution of i and is defined 

as a function of xi.

Now given a query point xq, the parameter  of a local linear approximation of f  in a 

neighborhood of xq is obtained by solving the local polynomial regression: 
n

i

qi
ii h

D
Ky

1

2 ),(
)(

xx
x (7)

where, given a metric on the space m , d (xi, xq) is the distance from the query point to the ith

example, K (.) is weight function, and h is the bandwidth. To consider a constant term in the 
regression, a constant value of 1 is appended to each input vector xi.

The solution of the above weighted least squares problem to find  is 

yWWXXWWX 1ˆ (8)

where X is a matrix whose ith row is ix , y is a vector whose ith element is yi, W is a diagonal matrix 

whose ith diagonal element is 

)/),(( hdKw qiii xx (9)

Replacing, Z = X W and v = W y in Eq. (8) 

vZPvZZZ 1ˆ (10)

It is assumed that matrix P is nonsingular so that its inverse is defined. 

Once the local linear polynomial approximation is obtained, a prediction of yq = f (xq) is given by 
ˆˆ qqy x (11)

The cross–validation procedure gives the assessment of the mean–squared–error as 
2)ˆ( qq yyEmse (12)

Cross–validation requires a large computational effort to be performed due to the series of 
training steps. Instead, the PRESS statistic, which returns the leave–one–out cross validation error 
at the reduced computational effort, is used extensively in case of linear models. The PRESS 
statistic [16] is given by: 

jjj
CV
j ye ˆx (13)

where CV
je  is the leave–one–out–error and j

ˆ is the estimated regression parameter with the jth

sample removed from the available set of examples. Thus, PRESS statistics returns LOO cross 
validation error at reduced computational cost and ensures that best model is selected for prediction. 

The above equation can be simplified as: 
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jj

jj

jj

jj

h
y

P
vZPy

1

ˆ

1
x

zz
x

(14)

where

jjjj w xz (15)

which is nothing but the jth row of Z.

The term hjj is the jth diagonal matrix of the Hat matrix, H, given as 

ZPZH (16)

From Eq. (14), it is evident that it is possible to calculate leave–one–out error without having to 
explicitly identifying j

ˆ . This simplification greatly reduces the computations making the lazy 

learning regression algorithm very robust and competitive. 

The extension of this general procedure to estimate the parameters, to obtain the leave–one–out 
errors and to generate local models, recursively is also proposed. The recursive algorithm helps in 
adaptively selecting the best number of nearest neighbors by calculating the corresponding leave–
one–out errors without any computational load [17–19]. Once the local models are generated 
recursively, the best model is selected based on either winner–takes–all (competitive) approach or 
using local combinations (cooperative) of models. 

Winner–takes–all, which is adopted in the present work, selects the best approximator based on 
some given criterion, mean–squared–error (mse) being the most convenient and classical one. So, 
prediction obtained for each value of k is compared based on mean squared error and the final 
prediction is done as: 

ky qq
ˆˆˆ x (17)

with,

)(minargˆ kmsek cv

Sk
(18)

where S is a range from which the optimal number of neighbors are selected. 

The form of local constant models used in the present work is as follows [15]: 

)(1)1(ˆ1)(ˆ ,0,0 ky
k

ky
k

kky qq (19)

and the corresponding mse is calculated as: 

2
,003

2

0 ))1(ˆ)((
1

1)1(
)1(
)2()( kyky

k
kmse

k
kkkmse q

cvcv (20)

where recursion on mse is started for k = 2. Eqs. (19) and (20) computes the leave–one–out mean 
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squared error, without explicitly computing each single cross–validation error. 

Lazy learning with local constant model as an approximator, incorporating Euclidean distance as 
a metric to find the number of nearest neighbors, is used in all the examples considered. 

2.4 Support Vector Regression
The applications in which support vector machines (SVMs) have been used are wide including 

molecular modeling [20–21]. As the theory of support vector machines for classification and 
regression is well developed and a number of good research papers have been published, only a 
brief description of the support vector regression formalism is presented below. 

In support vector regression the idea is to map the input data into a high dimensional feature 
space and subsequently carry out the linear regression in the feature space [22]. Thus, the input–
output pairs of training data of size l

yyyy n
ll ,,,.......,,,, 2211 xxxx

can be expressed as 

bf ))(( xwx (21)

where w is a weight vector of dimension 1l ,  is the function mapping the input data in the 
feature space, )(xw is the dot product and b is bias. w is calculated by minimizing [22]: 

2

1
wx

l

i
iireg yfCfR (22)

where fRreg  is the empirical risk, 2w  is the complexity term, is a regularization constant and 

C (.) is a cost function. 

The above quadratic programming problem has a unique solution and the weight vector w can be 
expressed as the following expansion: 

l

i
iii

1
* xw (23)

where i , *i  is the solution of the quadratic programming problem [23–25]. 

Substituting Eq. (23) in Eq. (21), we have, 

bf
l

i
iii )()(*

1
xxx (24)

The difficulty of carrying out the computations in a high dimensional space is judiciously 
circumvented by defining an appropriate kernel function in the input space in place of the dot 
product in the feature space [23]. It has been shown that kernels satisfying certain requirements 
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(Mercer’s theorem) can be defined connecting the dot products of the feature vectors to the vectors 
in the input space [22]: 

)()(),( xxxx iiK

By substituting the kernel function in the quadratic programming equation the entire problem can 
be solved in the input space itself: 

bKf iii

s

i
),(*)(

1
xxx (25)

where s, (s < the total number of input–output pairs) is the number of input data having nonzero 
values of ( *, ii ).

This means that while we approximate any nonlinear function by training with l numbers of data, 
we can characterize the function with only s number of data vectors. These vectors are known as the 
support vectors and hence the name Support vector machines. Among the existing popular kernels, 
the Gaussian radial basis function (RBF) kernel is very useful and we have employed this kernel in 
our computations. This kernel can be defined as 

2

2

2
exp, ji

jiK
xx

xx

where  is the kernel width parameter. Vapnik’s –insensitive loss function, which produces 
sparseness in the support vectors, is used in the present work and is given by: 

otherwise
yfforyfyfC

0
)(,)()( xxx

(26)

where  is a prescribed parameter. This loss function does not penalize errors below some  > 0, 
chosen a priori. To get good approximation, the value of  is usually kept small (of the order of 10–3

to 10–5).

Support vector regression minimizes the Vapnik’s –insensitive loss function, which defines a 
hyperplane with width  around the estimate [23]. The approximations, which fall within its 
boundary, do not contribute to the error and considered as well estimated. Those, which lie outside 
the tube, contribute to the loss. 

With the definition of the loss function given by Eq. (26), the quadratic programming (QP) 
problem to find i , *i  has the following final form [23–25], 

l

i
iiii

l

i

l

j
jijjii yyK

11 1*,
*,**

2
1min xx (27)

subject to the constraints: 
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l

i
ii

ii

*

l,.....,i,*,

1
0

110

By solving above equation with standard QP solvers, values of i , *i  are found out. Then only 
the non–zero values of i , *i  are used in Eq. (25) to calculate the function value. The value of 

bias b, in Eq. (25) is calculated as [22–23]: 
l

i
siriii KKb

1
,,*

2
1 xxxx

where xr and xs are the support vectors. 

The next section describes the results obtained at length and discusses pros and cons of these 
algorithms. 

3 RESULTS AND DISCUSSION 

The algorithms explained above are used for developing data driven models for the three datasets 
under consideration. We first explain the methodology and follow it by providing the detailed 
discussion of results. 

We followed two approaches. (i) we directly employed lazy learning and support vector 
regression (SVR) without resorting to LLE dimensionality reduction. (ii) We first used locally 
linear embedding (LLE) for nonlinear dimensionality reduction and subsequently predicted the 
properties using the regressors under consideration. For the sake of comparison, we also carried out 
simulations with principal component analysis (PCA). In case of QSPR dataset, root mean squared 
error (RMSE) was used as performance criterion in final prediction, whereas in case of QSAR 
datasets, usual QSAR statistics (R and S) were calculated. Randomly selected (approximately) 80% 
of the total data formed the training set and remaining 20% data were used as test set. Lazy learning 
being a memory–based technique does not require separate training. So these 20% data were used 
as query points. The results reported are based on average of 20 simulations (i.e. 20 times different 
query points are tried). In case of SVR, we used n–fold cross validation (10–fold in QSPR and 5–
fold in QSAR) to minimize the training error. We have extensively used Gaussian Radial Basis 
Function (RBF) kernel in the simulations. The trained SVR is then used in final prediction of the 
test set. For the QSAR datasets, we used multiple linear regression (MLR) also. The final results for 
all the datasets and regressors are presented in Tables 1–5. The results reported for all the cases are 
based on test set. Our aim was to compare the nonlinear dimension reduction techniques and not the 
regressors. We were mainly concerned with the errors obtained with the data with all the features 
and the errors with the transformed features. The algorithm codes for analyzing these datasets were 
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developed in house. The data were mean centered before furnishing it to the regressors for analysis. 

Table 1. Results for three individual descriptors in QSPR 
Prediction RMSE  No. Regressor used 

2–TI 3–TI Connectivity index 
1 Lazy Learning (with local constant model) 1.8845 0.7054 0.6022 
2 Support vector regression 2.1342 0.9327 0.7374 

Table 2. Results for all the descriptors in QSPR 
No Regressor Original 

dimension 
Prediction 

RMSE
Reduced 

dimension: LLE
Prediction 

RMSE
Reduced 

dimension: PCA 
Prediction 

RMSE
1 Lazy Learning 12 17.08 2 (Var. 0.99) 7.5381 4 (Var. 0.99) 11.124 
2 Support Vector 

Regression 
12 17.71 2 (Var. 0.99) 17.237 4 (Var. 0.99) 22.234 

Table 3. Results for QSAR datasets using Multiple Linear Regression 
QSAR statistics 

R S 
Dataset

Without 
dimension 
reduction 

Dimension 
reduction 
with LLE 

Dimension 
reduction 
with PCA 

Without 
dimension 
reduction  

Dimension 
reduction 
with LLE 

Dimension 
reduction 
with PCA 

Selwood 0.77 (N×53) 0.76 (N×9) 0.76 (N×9) 0.61 (N×53) 0.60 (N×9) 0.60 (N×9) 
Steroids 0.839 (N×1248) 0.821 (N×6) 0.8013 (N×28) 1.17 (N×1248) 1.19 (N×6) 2.25 (N×28) 

Table 4. Results for QSAR datasets using Lazy learning (with local constant model) 
QSAR statistics 

R S 
Dataset

Without 
dimension 
reduction 

Dimension 
reduction 
with LLE 

Dimension 
reduction 
with PCA 

Without 
dimension 
reduction 

Dimension 
reduction 
with LLE 

Dimension 
reduction 
with PCA 

Selwood 0.78 (N×53) 0.79 (N×9) 0.74 (N×9) 0.64 (N×53) 0.5925 (N×9) 0.69 (N×9) 
Steroids 0.8385 (N×1248) 0.8621 (N×6) 0.7925 (N×28) 1.1718 (N×1248) 1.216 (N×6) 2.315 (N×28) 

Table 5. Results for QSAR datasets using Support Vector Regression 
QSAR statistics 

R S 
Dataset

Without 
dimension 
reduction 

Dimension 
reduction 
with LLE 

Dimension 
reduction 
with PCA 

Without 
dimension 
reduction 

Dimension 
reduction 
with LLE 

Dimension 
reduction 
with PCA 

Selwood 0.80 (N×53) 0.82 (N×9) 0.80 (N×9) 0.56 (N×53) 0.543 (N×9) 0.56 (N×9) 
Steroids 0.848 (N×1248) 0.883 (N×6) 0.81 (N×28) 1.067 (N×1248) 1.19 (N×6) 1.287 (N×28) 

QSPR data involve the use of 10 molecular descriptors based on distance indices and 2 
connectivity indices, forming in all 12 features. These descriptors are used in predicting the boiling 
points of alkanes. Trinajsti et al. [4] developed the mathematical relationships between each of 12 
features individually to predict the boiling points of alkanes and then compared the results among 
them. To test the robustness of the regressors, in our analysis, we first considered the three 
descriptors viz. (i) two dimensional topological index (2–TI) (ii) three dimensional topological 
index (3–TI) based on determinant of adjacency plus distance matrix and (iii) connectivity index, 
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individually. The details of calculating these indices are given in Trinajsti et al. [4]. Though it is 
known that in case of alkanes, N0.5 (where N is number of carbon atoms) correlates better than 
topological index, we analyzed the available data in the form of topological and connectivity 
indices. Results for both the lazy learning and SVR are presented in Table 1. It can be seen from 
Table 1 that both the regressors performed well. In case of connectivity index, Trinajsti et al. [4] 
observed that this index correlates better than any other distance indices. In our analysis, we also 
found the same to be true with 0.6022 as RMSE in lazy learning and 0.7371 in SVR. However, in 
case of 3–TI, both the regressors predicted less RMSE as compared to 2–TI; exactly opposite to 
what Trinajsti et al. [4] observed. 

Next in our analysis, we considered all the distance indices and connectivity indices together for 
predicting the boiling points. From Table 2, it is observed that combining the descriptors to predict 
boiling points does not help to improve the results further. This may be attributed to a large degree 
of variability in the data due to the presence of some unnecessary features making the data more 
noisy, nonlinear and difficult to correlate. 

Further we applied LLE for nonlinear dimensionality reduction of data. The data set after 
application of the algorithm reduces to just 2 transformed features while retaining 99% variance. 
From Table 2, it can be seen that as compared to the data with original dimension, reduced set 
correlates better with both the regressors. 

Even though there exists strong correlations among some of the descriptors considered in the 
problem [4], our results reveal that LLE helps in preserving the information content with a small 
number (in this case, 2 features) of transformed features. This result has the following implications. 
First, it may be possible to build data driven models by employing LLE even when there is a very 
strong intercorrelation between features. Secondly, it is very useful to employ LLE where it is 
difficult to extract useful information from the correlation matrix. We also carried out simulations 
with one of the extensively used dimension reduction technique viz. principal component analysis. 
From Table 2, it can be observed that PCA require more number of features to capture the same 
variance as captured by LLE. Moreover, the errors are found to be more as compared to LLE. This 
may be attributed to some information loss while reducing the dataset. 

The same methodology is followed for QSAR data set also. The first set (Selwood et al.) consists 
of 53 initial physicochemical descriptor set of 31 chemical compounds. The method of computing 
these descriptors is described in Selwood et al. [7]. In this case too LLE performed well as 
compared to PCA (cf. Tables 3–5). However, among the regressors, all the three regressors 
performed almost same on all the sets with original features as well as transformed features. The 
QSAR statistics reported is based on test set. The second set (Steroids set) consists of 31 steroids 
with 1248 descriptors. The problem is to model the corticosteroid binding globulin (CBG) receptor 
activity with autocorrelation of molecular surface properties. In this case also, LLE found to be 
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performing well compared to PCA (cf. Tables 3–5). For the training set, for both the datasets, we 
got R–value consistently between 0.9 and 0.95 for all the regressors. LLE thus retains the important 
information in the data. In short, as can be seen from the results, all the regressors correlate well. 

It can now be concluded that LLE performs equally well on the datasets comprising the features, 
which are not strongly correlated. This suitability of LLE to deal with correlated as well as 
decorrelated data equally well makes it appealing in QSAR and QSPR modeling problems. 

In summary, LLE is found to preserve the important information in the data in a better way while 
simultaneously doing the nonlinear dimensionality reduction. This, when combined with robust 
regressors like lazy learning and SVR, can improve the performance in analyzing the nonlinear data 
like QSPR and QSAR with reduced computational costs. 

4 CONCLUSIONS 

The article presents a hybrid method for analyzing quantitative structure property and 
quantitative structure activity relationships. Large dimensionality characterizes these types of data. 
To this end, nonlinear dimensionality reduction by locally linear embedding coupled with robust 
regressors like lazy learning and support vector regression seems to be a promising option. 

Acknowledgment 
Financial support from Department of Science and Technology (DST), New Delhi is gratefully acknowledged. 

Appendix 1 
Optimal reconstruction weight calculation

Eq. (1) has a closed form solution [11], which determines the optimal weights Wij that best reconstruct each data 

point from its neighbors. Suppose a particular data point x  with neighbors Kj ,....2,1  and reconstruction weights 

Kj .........2,1  satisfying 
j

j 1.

Thus the cost function (giving reconstruction error) to be minimized is:
2

j jjx

as
j

j 1

2

)(
j jj x

Now introducing local covariance matrix

).()( kjjk xxC
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we have

jk jkkj C

This error can be minimized in closed form with constraint 
j jw 1. In terms of the inverse local covariance 

matrix, the optimal weights are given by:

lm lm

k jk
j C

C
1

1

Thus solution involves the inversion of local covariance matrix (symmetric and semi positive definite). If the 

covariance matrix is singular or nearly singular (e.g. when there are more neighbors than input dimensions [K>D]; or 

when the data points are not in general position), it can be conditioned by adding a constant to the diagonal of Cjk

(which is small relative to its trace).
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