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Abstract 

We derive, in a new way, the discrete symmetry groups for (i) the 4–base set U, C, A, G , (ii) the 16–doublet 
set and (iii) the 64–codon set, as collections of adjacency matrices of selected graphs on the Wittmann sub–sets 
of the above respective sets. In the case of the genetic code 64 codons system, we re–derive the chain of groups 
D8  V  C2 and show that the last member of the chain, C2, leaves 16 codons of type GNN invariant and this 
invariance is maintained across all species with respect to their “non–standard” use of the genetic code, including 
nuclear genomes as well as mitochondrial genomes. Moreover, we show that this symmetry is suited, in fact it 
fits, the “bisections” of the set of 64 codons, used by Shcherbak to derive many striking arithmetical regularities 
and balances, involving the nucleon numbers in the amino acids. Besides the symmetry aspects, our next new 
result concerns the derivation, using only the concept of matrix–norms in traditional linear algebra, of some 
(striking) numbers which appear to be characteristic of the genetic code. Finally, by using only the RNA–
components, i.e., the four nitrogenous bases mentioned above, we introduce matrices encoding the hydrogen–
bond attribute and other matrices encoding a certain “molecular size index” for the bases and derive the ratio of 
their trace, and of their norms, which appear to be equal in both cases to Shcherbak’s “Prime Quantum” 037. 
Keywords. Genetic code; symmetry; Rumer transformation; invariant codons; Wittmann multiplets; matrix–
norms; autopoietic numbers. 

1 INTRODUCTION 

When the writing of the results, corresponding to part of this work, was made the first cut in, we 
were focusing on symmetry aspects of the genetic code (Rumer symmetry), and were far from 
imagining that the final aspect of this invited paper, dedicated to Professor Nenad Trinajsti  on the 
occasion of his 65th birthday, was going to become richer by the addition of a new section. The 
reason is the recent publishing in Biosystems of an important paper by Shcherbak, summing up 
some fifteen years of published research leading to the mentioned paper entitled “Arithmetic inside
the universal genetic code” [1], in which the author describes striking arithmetical regularities in the 
genetic code, revealed when certain partitions of the 64–codon set are made. We shall, in section 4, 

                                                          
# Dedicated to Professor Nenad Trinajsti  on the occasion of the 65th birthday. 
* Correspondence author; E–mail: tidjani_negadi@yahoo.com. 
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return to the work of Shcherbak but let us say only that Rumer’s symmetry plays an important role 
in revealing these regularities. Moreover, we take the opportunity given by the added section to (i)
present the derivation of some (no less striking) numbers we have found, appearing to be 
characteristic of the genetic code, which results would have been presented elsewhere1 and (ii) to 
propose a simple derivation of Shcherbak’s “Prime Quantum” 037, a distinguished (decimal) 
number which plays an important role in the work of Shcherbak where it is associated to a Prime
Quantum Divisibility feature. 

In this paper, which is a continuation of recent works [2,3,4], we shall present, in a new way, the 
symmetries associated to the four fundamental nitrogenous bases, uracil, cytosine, adenine and 
guanine, the building blocks of RNA, and to the k–plet sets constructed out of them: the set of 16 
doublets (k = 2) and the set of 64 triplets or codons (k = 3). (A k–plet set is also called, in the 
computing science community, the kth extension of the quaternary alphabet {U/T, C, A, G} (Yockey 
[20]). Our construction, which was introduced in [2], starts with the constituents of the bases 
themselves: the atoms, written as 2 2 matrices and, as will be shown in section 2, these sets (for k = 
1, 2, 3) are obtained as matrices of dimension 2k  2k. They constitute our classification matrices. 
There exist also an “experimental” manner to construct all the members of these k–plet sets which 
goes back to Wittmann who, in the heroic days of the deciphering of the genetic code in the early 
sixties, used mutagens like nitrous acid to investigate the genetic code. In particular, in [5], he 
studied the genetic code in Tobacco Mosaic Virus and deduced the Octet Model in which the 64 
possible codons are partitioned into eight Octets of eight triplet–codons each (see section 3). 

As this is important for what follows, let us say some words on this construction. Wittmann, 
considering the phenomenon of deamination induced by nitrous acid, formulated the conversions of 
the bases as follows: U, unchanged, C U, G (X) G and A (H) G. X (xantine) and H 
(hypoxantine), are two minor bases both with very similar hydrogen bonding properties to guanine. 
Using these rules, one could start with sub–sets containing only A and/or C, i.e., bases whose 
deamination can produce a mutation and, for each member of these sub–sets, construct the other 
co–members by following the rules. 

As a simple example, in the case of the four–base set (k = 1), the sub–set is constituted by C and 
A. C will give U and A will give G so that the two Wittmann Doublets are C U and A G. For k = 
2, the sub–set has 22 = 4 base–doublets containing C and/or A: CC, CA, AC and AA. Take CA, for 
example. It produces UA and CG. UA could give only UG and CG could give only UG and, the 
process stops. The four Wittmann Quartets Qi (i = 1, 2, 3, 4) are shown below (Figure 1). 

                                                          
1 In the Congress “Festival Symmetry” 2003 (Budapest, August, 16–22, 2003) or in the “Third International 
Symposium on Quantum Theory and Symmetries”, Cincinnati, Sept. 10 – 14, 2003). These two invitations, and another 
one didn’t go, unfortunately, to an end because of the blindness of local rulers. 
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Figure 1. The four Wittmann Quartets Qi.

Finally, in the case k = 3, the starting sub–set contains eight (23) combinations of A and C: AAA, 
AAC, ACA, CAA, ACC, CAC, CCA and CCC. As above, each one of these triplets will be the first 
top member of a descending cascade governed by the Wittmann rules. One such Octet ( 2, top 
member AAC), as an example, could be visualized as presented in Figure 2.

Figure 2. One of the eight Wittmann Octets ( 2), see text. 

In this way, a total of eight Wittmann Octets ( i, i = 1, …, 8 ) are constructed comprising all 64 
codons; we have shown only one of them, 2. Now, our own way to construct these objects, which 
relies on a matrix representation of the base, doublet and codon sets, is linked to the Wittmann 
Doublets, Quartets and Octets in a very simple manner: the latter are the rows of our classification 
matrices, respectively for k = 1, 2, 3. This very fact will let us realize two objectives in this work: (i)
a guided search of the symmetries, through the use of permutation graphs between the Wittmann 
multiplets, and the use of the adjacency matrices of these graphs as transformation operators on our 
classification matrices (sections 2 and 3) and (ii) a mathematically correct establishment of certain 
striking numbers (mentioned briefly above), all relevant for (and characteristic of) the genetic code, 
which appear to be attached to certain matrices coding either the hydrogen bond attribute or a 
molecular–size–index relying on the total number of atoms in the bases, either as “norms”, sizing 
the matrices and, at the same time, sizing the Wittmann Doublets and Octets, or as invariants 
(traces). This will be done in section 4. Shcherbak [1], besides using the Rumer symmetry, has 
chosen another attribute, the number of nucleons of the amino acids and, in fact in his work, 
everything seems to be associated with a special number, he calls the “Quantum Prime” 037, which 
divides almost everything. We propose, briefly in the fourth section, a possible raison d’être for this 
number, which is not transparent in the above work. In particular, we show that it is independent of 
the amino acids. 

In the second section, we sum up the construction of our classification matrices. In the third, we 
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CUUC
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GG
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construct the symmetry groups which will act on the classification matrices. These matrix groups 
are obtained as collections of adjacency matrices for selected graphs on the Wittmann sets. In the 
fourth section, we use some tools supplied by linear algebra (matrix–norms and traces) to establish 
some interesting numbers. 

2 BASES, DINUCLEOTIDES AND CODONS

2.1 The base–matrix 
In [2], we have designed a 2 2 matrix representation of atoms and molecules, among them, the 

four nitrogenous bases U (uracil: C4N2H4O2), C (cytosine: C4N3H5O), A (adenine: C5N5H5) and G 
(guanine: C5N5H5O), the building blocks of RNA. Their particular (matrix) form, which is the 
consequence of their detailed atomic composition, is such that they could be easily united in the 
following base–matrix [2] 

(1)

where the numerical values are U = 647282 = 4064256, C = 64738 = 3556224, A = 6575 = 
130691232, G = 65758 = 1045529856 and are the products of the atomic numbers of the constituent 
atoms: carbon (Z = 6), nitrogen (Z = 7), oxygen (Z = 8) and hydrogen (Z = 1). Eq. (1) is the basis of 
the next constructions. 

2.2 The doublet–matrix 
The matrix of the 16 possible base–doublets is constructed using the (recently introduced) 

Kronecker product with concatenation2 [3], which incorporates the non–commutativity of the bases, 
unlike the ordinary Kronecker product. From Eq. (1), we have: 

(2)

The numerical value of each one of the 16 base–doublets, the matrix elements in the form XY, is 
obtained by concatenating the corresponding values X and Y from the values given above in Eq. 
(1). For example UG = 40642561045529856 is different from GU = 10455298564064256. In this 

                                                          
2 For two matrices M and N, with integer entries, this product is given by (M N)js,kt=Mjk Nst, and the computation is the 
same as for the ordinary Kronecker product except that the product of matrix elements is replaced by the concatenation
of these (see ref. [3]).The concatenation of any two integers a and b, a b, is just their juxtaposition ab.  

,B GA
CU

.
GGGAAGAA
GCGUACAU
CGCAUGUA
CCCUUCUU

BBD
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way the 16 objects are all numerically distinct. Recall that the four Wittmann Doublets, Qi, are 
respectively the four rows in Eq. (2). Also and importantly (see section 4), the doublets belonging to 
the same column have the same total number of hydrogen bonds (recall that U and A have both two 
hydrogen bonds while C and G have three each. 

2.3 The Codon–Matrix 
To obtain the matrix representing the 64 (triplet) codons of the genetic code, it is sufficient to 

repeat the operation on the base–doublet matrix in Eq. (2). One has: 

(3)

Here also, each codon, as a matrix element, has an associated value obtained by concatenating 
three numbers. For example, UUC = 406425640642563556224, UCU = 406425635562244064256, 
CUU = 355622440642564064256, so that the non–commutativity of the bases, in the codons, is 
also implemented. Here also, the rows in Eq. (3) are the eight Wittmann Octets and the triplets 
belonging to the same column have a constant total number of hydrogen bonds (see Eq. (21)). As 
said above, these two properties will gain all their importance in section 4. 

3 THE RUMER–KONOPEL’CHENKO SYMMETRY 

Now, we turn to symmetry considerations. In 1966 [7], Rumer introduced an interesting partition 
of the 64–codon set into two equal sub–sets with 32 codons each, by “breaking” the degeneracy 
number six (see below). The two sets, we call them M1 and M2, are exchanged under the Rumer 
transformation UCAG – GACU. We shall, in the following three sub–sections, build a group 
theoretical framework for the Rumer symmetry and its extensions, following Konopel’chenko and 
Rumer [8] (Cf. [1]). 

3.1 C2 Rumer–symmetry for B 
This is the simplest case. In order to find a symmetry (matrix) transformation for B, we consider 

the two Wittmann Doublets, WD1 and WD2 which, as we have said, are the rows in the matrix in 
Eq. (1). Alternatively, we can consider the columns of this matrix which contain complementary 
bases, with fixed number of hydrogen bonds, respectively two and three, and forming the sets {U, 
A} and {C, G}. Now with two objects, here the Wittmann Doublets, WD1 and WD2, we can 

.BDC

GGGGGAGAGGAAAGGAGAAAGAAA
GGCGGUGACGAUAGCAGUAACAAU
GCGGCAGUGGUAACGACAAUGAUA
GCCGCUGUCGUUACCACUAUCAUU
CGGCGACAGCAAUGGUGAUAGUAA
CGCCGUCACCAUUGCUGUUACUAU
CAGCCACUGCUAUCGUCAUUGUUA
CCCCCUCUCCUUUCCUCUUUCUUU
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consider the two graphs shown below (self–loops allowed), representing links, or transformations, 
between these two objects (see figure 3, below) 

WD1     WD2              WD1   WD2

Figure 3. The two possible graphs representing transformations between the two Wittmann Doublets WD1 and WD2.

In the first, we have the identity, while in the second, WD1 and WD2 are exchanged. The 
adjacency matrices for these two graphs are given respectively by: 

(4)

Recall the adjacency matrix for a graph (V, E) with n = V  vertices is an n n matrix M such 
that Mij is 1 if and only if there is an edge from vertex i to vertex j; otherwise Mij is zero. The set {e,

} close under matrix multiplication ( 2=e) and constitutes the simplest group with two elements, 
the cyclic group C2. From the point of view of graph theory, this set is also what is called a cellular
algebra or Bose–Mesner algebra (in fact the simplest) verifying e+ =J, with J the all–1 matrix. 
Now, as we have explained in the introduction, these two matrices, obtained as adjacency matrices 
of graphs on the Wittmann multiplets (or, alternatively, graphs on the columns), will be used as 
symmetry transformations for the matrix B. For e, one has the identity and, for  ( –1= ), one gets 

(5)

We see therefore that the transformation , which acts as a similarity transformation, exchanges 
pyrimidines and purines: U – G and C – A. It exchanges at the same time the rows (the two 
Wittmann Doublets WD1 and WD2) and the columns. This is the Rumer transformation, mentioned 
above and noted UCAG –  GACU. There exist also a combined transformation UCAG – CUGA
and UCAG – AGUC, equivalent to the Rumer transformation UCAG –  GACU, [9, 10]. The 
latter two transformations do not really exist individually but, jointly, they reconstitute the Rumer 
transformation. (They are sometimes called secondary Rumer transformations.) This could be seen 
with the aid of the second graph, above. This graph means, as we have said, that the two rows and
the two columns are exchanged (or permuted) which is just the result of applying one time the 
matrix , see Eq. (5). Below, we shall meet this kind of transformations and shall call them simply 
transitions, for UCAG – CUGA, and transversions, for UCAG – AGUC. Note that the Rumer 
transformation is a transversion. 

.,e 01
10

10
01

UC
AG1B
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3.2 Rumer and Rumer–Konopel’chenko Symmetry for D 
Since the seminal work by Rumer, many people have studied (and still do today) the structure of 

the genetic code in terms of the 16–doublet set (see, only but a few examples [11,12,13]). This 
corresponds to what Shcherbak calls the “compressed” representation of the genetic code at scale 1 
with known symmetries. In this sub–section, we shall describe these symmetries in terms of a small 
discrete group, known as the Klein group V. Danckwert and Neubert [11], already in 1975, used 
this group but in a formal way, i.e., without a concrete representation. Here, we shall define 
concretely two Klein groups with different actions on the set of doublets. 

We take, as a starting set, the four Wittmann Quartets which are the four rows in matrix (2); four 
is the required number of objects to get 4 4 adjacency matrices able to act on our 4 4 matrix D.
Now, we have found two different graph–sets of four graphs each. The first one is given by the 
following four graphs (Figure 4), symbolizing the transformations (the nodes represent the 
Wittmann Quartets numbered from 1 to 4 from left to right and from top to bottom) 

Figure 4. The first graph–set for the four Wittmann’s Quartets (see text). 

The adjacency matrices for these graphs are given respectively by: 

(6)

Note that theses matrices are also permutation matrices. It has been shown in [3] that the set T1,
T2, T3, T4  close under matrix multiplication and constitute a commutative group, the four group V, 
also known as Klein’s 4–group3; call it V1. The second set of graphs, comprising the same identity 
transformation (the first graph above) which we do not duplicate below, is the following (Figure 5): 

Figure 5. The second graph–set for the four Wittmann’s Quartets. 

Here, the adjacency matrices are the following: 

                                                          
3 The Klein group V could be defined, for example, via the following permutations on four objects, 1, (12)(34), 
(13)(24), (14)(23)  or simply by its Cayley table (elements e, a, b, c): a2= b2= c2=e, ab=ba=c, ac=ca=b, bc=cb=a. 

1 2
3 4

,T:V
1000
0100
0010
0001

1 1 ,T
0100
1000
0001
0010

2 ,T
0010
0001
1000
0100

3 .T
0001
0010
0100
1000

4
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(7)

In this case, the set S1, S2, S3, S4  also close under matrix multiplication and constitute a second 
Klein’s 4–group, V2, as it could be easily verified from (7). Note that the first set, T1, T2, T3, T4

is a cellular algebra while it is not the case for the set S1, S2, S3, S4 . We reproduce for ease of 
comparison Eq. (2) as the following representation: 

UU UC CU CC

UA UG CA CG

AU AC GU GC

AA AG GA GG

D, Eq. (2) 

We also add, before continuing, some comments on D which prepare us for the next sub–section. 
First, the set of 16 elements is partitioned in two sub–sets M1 (UC, CU, CC, CG, AC, GU, GC, GG) 
and M2 (UU, UA, UG, CA, AU, AA, AG, GA) the elements of which are exchanged by the Rumer 
transformation UCAG –  GACU and separated by the double lines. When going to the codon 
level (see below), all the codons from M1 will correspond to amino acids for which the third base is 
irrelevant (the quartets and the quartet part of the sextets), while those of M2, except for the singlets, 
will necessitate a third base (doublets, triplet). The idea to “break” the 64 codons set into two equal 
parts M1 and M2, by invoking the partition of the greatest degeneracy 6 as 4+2, goes back to Yuri
Borisovich Rumer, in 1966 [7]. (As a short historical note, Ginzburg, Mikha lov (Rumer) and 
Pokrovski  have written an entire paper, in 2001, on his life as a physicist and an untiring teacher 
and also on his contribution to biology, in Physics Uspekhi 2001, 44, 1075–1081. They say, for 
example, “He wrote a paper on the classification of codons in the genetic code using the symmetry 
principles and some linguistic arguments”.) Second, viewing otherwise, D could be partitioned into 
four sub–sets, of four doublets each, harboring the same first base.We shall call these sub–sets U(1),
C(1), A(1) and G(1) . Each of these sub–sets (one of the four quadrants) have doublets belonging to 
codons sharing the same first base and, therefore, are related by biosynthetic pathways [14], (see 
also [4,6]). There exist another partitioning where these sub–sets correspond to doublets (codons) 
sharing the same second base and being related by similar physico–chemical properties [14] (see 
below, Eq. (8), and in the sequel for the codon set). We shall return later to these various “views”. 

,S:V
1000
0100
0010
0001

2 1 ,S
1000
0100
0001
0010

2 ,S
0100
1000
0010
0001

3 .S
0100
1000
0001
0010

4
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Let us now consider the action of our groups. For the first set, the transformations act as follows: 

UG UA CG CA GU GC AU AC GG GA AG AA 

UC UU CC CU GA GG AA AG GC GU AC AU

AG AA GG GA CU CC UU UC CG CA UG UA 

AC AU GC GG CA CG UA UG CC CU UC UU

V1 :  (T2)-1T2D                           (T3)-1T3D (T4)-1 T4D

In this case, the Rumer transformation is implemented in all cases by V1. T2 leaves U(1), C(1) , 
A(1) and G(1) globally invariant by implementing the Rumer transformation at the second position. 
T3 at the same time exchanges U(1), C(1) , A(1) and G(1), according to the Rumer transformation, and 
implements this latter only at the first position. T4 acts as T3 but, here, the two positions are 
concerned. Importantly, T4 exchanges M1 and M2 and the Rumer transformation acts on both 
positions. Now, let us consider the action of the second group V2. We have in this case: 

UG UA CA CG UU UC CC CU UG UA CG CA 

UC UU CU CC UA UG CG CA UC UU CC CU 

AC AU GU GC AA AG GG GA AG AA GG GA 

AG AA GA GG AU AC GC GU AC AU GC GU 

V2 : (S2)-1DS2                           (S3)-1DS3                              (S4)-1DS4

Here, the situation is different from the preceding one. In all three cases, U(1), C(1) , A(1) and G(1)

are globally conserved (first base invariant) with a specific action on each one of them at the second
base position: 

S2: conserves strictly G(1), implements UCAG – CUGA in A(1) and UCAG – AGUC in C(1)

and the Rumer transformation in U(1).

S3: conserve strictly U(1), implements UCAG – CUGA in C(1) and UCAG – AGUC in A(1) and
the Rumer transformation in G(1).

S4: implements the Rumer transformation in all cases. 

Finally, and for later use, we consider the action of V2 on the following transformed form of D,
D', which classifies together the doublets sharing the same second base: 
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(8)

The group V2 act as follows on D': 

Here, the situation is analogous to the preceding one, but the roles of the base–position are 
exchanged, i.e., U(2), C(2) , A(2) and G(2) are globally conserved (second base invariant) with a 
specific action on each one of them at the first base position. We have in the detail 

S2: conserves strictly G(2), implements UCAG – CUGA in A(2) and UCAG – AGUC in C(2)

and the Rumer transformation in U(2).
S3: conserve strictly U(2), implements UCAG – CUGA in C(2) and UCAG – AGUC in A(2) and

the Rumer transformation in G(2).
S4: implements the Rumer transformation in all cases. 

3.3 Rumer and Rumer–Konopel’chenko symmetry for C 
Now, we turn to the 64 codons matrix in Eq. (3), and study its symmetries. As for the set of 

doublets, we consider the eight Wittmann Octets (WO), which are the eight rows in Eq. (3) 
numbered from 1 to 8, from top to bottom. From the many ways to define graphs between these 
WOs, we have retained the ones below because first, the eight graphs contain one, the adjacency 
matrix of which corresponds to the Rumer transformation, a basic transformation. Second, the 
adjacency matrices of these graphs constitute a symmetry group which is a dihedral group D8 with 
eight elements containing, as symmetry sub–groups, a Klein group V and a cyclic group with two 
elements C2. We find again, in a new way, a result [6] that this end–of–the–chain group C2 could 
describe an invariant part of the 64–codon set, more exactly 16 codons, which appear to be invariant 
across all species with respect to their use, in their respective genetic codes (see the end of this 
section). Third, these symmetry groups seem to fit nicely into the Rumer–division and the “5’–
bisections” of the 64–codon set used by Shcherbak, (see [1] and the references therein), to establish 
the many arithmetical regularities inside the genetic code. We shall return to this latter point in 
section 4. Consider now the following eight graphs, Gi (i = 1, 2, …, 8): 

GU AU AC GC UU CU CC UC GU AU GC AC 

CU UU UC CC AU GU GC AC CU UU CC UC 

CA UA UG CG AA GA GG AG GA AA GG AG 

GA AA AG GG UA CA CG UG CA UA CG UG 

V2 : (S2)-1D’U2                          (S3)-1D’S3 (S4)-1 D’S4

,XDXD'

GGAGGAAA
CGUGCAUA
GCACGUAU
CCUCCUUU

1
1

1 .X
1000
0010
0100
0001

1
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Figure 6. Graph–set for the eight Wittmann’s Octets (see text). 

These are permutation graphs on the eight Wittmann Octets. For example G2 corresponds to the 
permutation (7 8 2 1)(5 6 4 3) and G6 to the permutation (2 1)(4 3)(5 6 7 8). It is immediate to write 
down the adjacency matrices for these graphs. They are: 

(9.1)

(9.2)

With respect to the ordinary matrix product, we obtain the following multiplication table (Table 
1) of these matrices, or the Cayley table, as it is called in group theory. 

1
2
345

6
7

8

G1 G2 G3 G4 G5

G6 G7 G8

,R1

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

,R2

00000001
00000010
00000100
00001000
00100000
00010000
10000000
01000000

,R3

01000000
10000000
00010000
00100000
00000100
00001000
00000001
00000010

,R4

00000010
00000001
00001000
00000100
00010000
00100000
01000000
10000000

,R5

00000010
00000001
00001000
00000100
00100000
00010000
10000000
01000000

,R6

10000000
01000000
00100000
00010000
00000100
00001000
00000001
00000010

,R7

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

.R8

01000000
10000000
00010000
00100000
00001000
00000100
00000010
00000001
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Table 1. Multiplication table for the eight matrices Ri
 R1 R2 R3 R4 R5 R6 R7 R8
R1 R1 R2 R3 R4 R5 R6 R7 R8
R2 R2 R3 R4 R1 R8 R5 R6 R7
R3 R3 R4 R1 R2 R7 R8 R5 R6
R4 R4 R1 R2 R3 R6 R7 R8 R5
R5 R5 R6 R7 R8 R1 R2 R3 R4
R6 R6 R7 R8 R5 R4 R1 R2 R3
R7 R7 R8 R5 R6 R3 R4 R1 R2
R8 R8 R5 R6 R7 R2 R3 R4 R1

This is the Cayley table of the dihedral group with eight elements D8. Consider now the codon–
matrix C, in Eq. (3), which we reproduce below (for ease of comparison) as table C (R1 is the 
identity so it corresponds to C). In the other seven tableaux, we show the action of the remaining 
seven transformation matrices. They are the following: 

UUU UUC UCU UCC CUU CUC CCU CCC UUG UUA UCG UCA CUA CUG CCA CCG

UUA UUG UCA UCG CUA CUG CCA CCG UUC UUU UCC UCU CUU CUC CCU CCC

UAU UAC UGU UGC CAU CAC CGU CGC UAG UAA UGG UGA CAA CAG CGA CGG

UAA UAG UGA UGG CAA CAG CGA CGG UAC UAU UGC UGU CAU CAC CGU CGC

AUU AUC ACU ACC GUU GUC GCU GCC AUC AUU ACC ACU GUU GUC GCU GCC

AUA AUG ACA ACG GUA GUG GCA GCG AUG AUA ACG ACA GUA GUG GCA GCG

AAU AAC AGU AGC GAU GAC GGU GGC AAC AAU AGC AGU GAU GAC GGU GGC

AAA AAG AGA AGG GAA GAG GGA GGG AAG AAA AGG AGA GAA GAG GGA GGG

C                                                                               (R6) -1C R6

UUU UUC UCU UCC CUC CUU CCC CCU UUG UUA UCG UCA CUG CUA CCG CCA

UUA UUG UCA UCG CUG CUA CCG CCA UUC UUU UCC UCU CUC CUU CCC CCU

UAU UAC UGU UGC CAC CAU CGC CGU UAG UAA UGG UGA CAG CAA CGG CGA

UAA UAG UGA UGG CAG CAA CGG CGA UAC UAU UGC UGU CAC CAU CGC CGU

AUA AUG ACA ACG GUG GUA GCG GCA AUG AUA ACG ACA GUG GUA GCG GCA

AUU AUC ACU ACC GUC GUU GCC GCU AUC AUU ACC ACU GUC GUU GCC GCU

AAA AAG AGA AGG GAG GAA GGG GGA AAG AAA AGG AGA GAG GAA GGG GGA

AAU AAC AGU AGC GAC GAU GGC GGU AAC AAU AGC AGU GAC GAU GGC GGU

(R8) -1CR8 (R3) -1C R3
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GGG GGA GAG GAA AGG AGA AAG AAA GGG GGA GAG GAA AGA AGG AAA AAG

GGC GGU GAC GAU AGC AGU AAC AAU GGC GGU GAC GAU AGU AGC AAU AAC

GCG GCA GUG GUA ACG ACA AUG AUA GCG GCA GUG GUA ACA ACG AUA AUG

GCC GCU GUC GUU ACC ACU AUC AUU GCC GCU GUC GUU ACU ACC AUU AUC

CGG CGA CAG CAA UGG UGA UAG UAA CGC CGU CAC CAU UGU UGC UAU UAC

CGC CGU CAC CAU UGC UGU UAC UAU CGG CGA CAG CAA UGA UGG UAA UAG

CCG CCA CUG CUA UCG UCA UUG UUA CCC CCU CUC CUU UCU UCC UUU UUC

CCC CCU CUC CUU UCC UCU UUC UUU CCG CCA CUG CUA UCA UCG UUA UUG

(R7) -1CR7      (R2)-1CR2

GGU GGC GAU GAC AGC AGU AAC AAU GGU GGC GAU GAC AGU AGC AAU AAC

GGA GGG GAA GAG AGG AGA AAG AAA GGA GGG GAA GAG AGA AGG AAA AAG

GCU GCC GUU GUC ACC ACU AUC AUU GCU GCC GUU GUC ACU ACC AUU AUC

GCA GCG GUA GUG ACG ACA AUG AUA GCA GCG GUA GUG ACA ACG AUA AUG

CGA CGG CAA CAG UGG UGA UAG UAA CGU CGC CAU CAC UGU UGC UAU UAC

CGU CGC CAU CAC UGC UGU UAC UAU CGA CGG CAA CAG UGA UGG UAA UAG

CCA CCG CUA CUG UCG UCA UUG UUA CCC CCU CUC CUU UCU UCC UUU UUC

CCU CCC CUU CUC UCC UCU UUC UUU CCG CCA CUG CUA UCA UCG UUA UUG

(R4) -1CR4      (R5)-1CR5

In this sub–section, we shall continue to use M1 and M2 to name the two members of the Rumer 
bisection, see section 3, (M1 is in gray). Now, from the above tables, we see that the general action 
is concentrated mainly at the third base–position, and the Rumer transformation, acting exclusively, 
concerns only the first and second base–positions. The group D8 has, as an interesting sub–group, 
the Klein group V with elements R1, R3, R6, R8 . This latter group leaves M1 and M2 invariant 
and, consequently, leaves also invariant all 16 “family boxes”, i.e., all quartets of (four) codons 
sharing the same first two bases (separated from each other by small dashed lines in the tableaux). 
Thus, this means that, possibly, only the third base will be altered. Next, the transformation R7

implements the Rumer transformation UCAG – GACU at all three base–positions. As for the 
other three transformations, R2, R4 and R5 of D8, they alter the first two base–positions according to 
the Rumer transformation with, possibly, full invariance or alteration by the (secondary Rumer 
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transformations mentioned in section 3.1) at the third base–position, see the tableaux. As in section 
3.2, we could consider either the Bio–Synthetic Classes or Physico–Chemical Classes, using the 
same notation as for the doublets in the last section: U(1), C(1) , A(1) and G(1) and U(2), C(2) , A(2) and 
G(2), respectively. For the former, we shall unit the four Bio–Synthetic Classes into two big ones, 
the Pyrimidine Bio–Synthetic Class (Pyr–BC), made of U(1) and C(1), and the Purine Bio–Synthetic 
Class (Pur–BC), made of A(1) and G(1). The first class occupies the four top rows, in matrix (3), and 
the second class occupy the last four. In this way, the transformations induced by the matrices Ri act 
as follows: R1, R3, R6, R8, the sub–group V, conserve (globally) Pyr–BC and Pur–BC while R2, R4

and R5 exchange them. Moreover, R6 conserves strictly the 16 codons of G(1) and R8 conserves 
strictly the 16 codons of U(1). For the latter, it is interesting to transform the codon–matrix C as 
follows: 

(10)

where X is given by (see Eq. (8)): 

(11)

Here, the symbol  is for the usual Kronecker product of matrices. In (10), U(2), C(2), A(2) and 
G(2) occupy the four quadrants and we could apply the transformations Ri, as for C. The 
transformation patterns are the same. Proceeding as before, we have that the Physico–Chemical 
Classes Pyr–PC and Pur–PC, which are invariant under the action of R3, R6, R8, are exchanged by 
R7, R2, R4 and R5. (Alternatively, we could let the transformations defined recently in reference [6] 
act directly on the matrix C and we obtain the same results.) Concerning the physico–chemical 
properties, Pelc, in 1965 ([22], see also [23]), analyzed the correlation between the triplets codons 
and the structure of the amino acids and found that codons with U or C, as a second base, 
correspond mainly to hydrophobic and weakly polar amino acids, whereas those containing A or G, 
as a second base, involve strongly polar amino acids. To close this section, let us give a last 
example of a symmetry group for C in which the family boxes of a given Bio–Synthetic Class are 
mixed. Consider the transformations corresponding to the permutations (1)(23)(45678), 
(123458)(67) and (their product) (1458)(23)(67) of the Wittmann Octets. As adjacency matrices of 
the corresponding graphs (not drawn here) they read, respectively (without the identity W1):

,XCXC 1'

GGGGGAAGGAGAGAGGAAAAGAAA
GGCGGUAGCAGUGACGAUAACAAU
CGGCGAUGGUGACAGCAAUAGUAA
CGCCGUUGCUGUCACCAUUACUAU
GCGGCAACGACAGUGGUAAUGAUA
GCCGCUACCACUGUCGUUAUCAUU
CCGCCAUCGUCACUGCUAUUGUUA
CCCCCUUCCUCUCUCCUUUUCUUU

.10
01

1000
0010
0100
0001

X
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(12)

The set {W1, W2, W3, W4} constitutes also a Klein group V. This group acts analogously to R3,
R6, R8 but, here, W2, W3 leave invariant 36 codons and W4 only 16. The Rumer sets become mixed 
but the Bio–Synthetic Classes U(1), C(1), A(1) and G(1) are globally conserved with possible mixing 
between family boxes. The group above acts as follows (compare to the action of the first group V, 
in Eq. (9.2)): 

UUU UUC UCU UCC CUU CUC CCU CCC UUU UCU UUC UCC CUU CUC CCU CCC

UUA UUG UCA UCG CUA CUG CCA CCG UAU UGU UAC UGC CAU CAC CGU CGC

UAU UAC UGU UGC CAU CAC CGU CGC UUA UCA UUG UCG CUA CUG CCA CCG

UAA UAG UGA UGG CAA CAG CGA CGG UAA UGA UAG UGG CAA CAG CGA CGG

AUU AUC ACU ACC GUU GUC GCU GCC AUU ACU AUC ACC GUU GUC GCU GCC

AUA AUG ACA ACG GUA GUG GCA GCG AUA ACA AUG ACG GUA GUG GCA GCG

AAU AAC AGU AGC GAU GAC GGU GGC AAU AGU AAC AGC GAU GAC GGU GGC

AAA AAG AGA AGG GAA GAG GGA GGG AAA AGA AAG AGG GAA GAG GGA GGG

C (W2)-1C W2

UUU UUC UCU UCC CUU CUU CUC CCC UUU UCU UUC UCC CUU CCU CUC CCC

UUA UUG UCA UCG CUA CCA CUG CCG UAU UGU UAC UGC CAU CGU CAC CGC

UAU UAC UGU UGC CAU CGU CAC CGC UUA UCA UUG UCG CUA CCA CUG CCG

UAA UAG UGA UGG CAA CGA CAG CGG UAA UGA UAG UGG CAA CGA CAG CGG

AUU AUC ACU ACC GUU GCU GUC GCC AUU ACU AUC ACC GUU GCU GUC GCC

AAU AAC AGU AGC GAU GGU GAC GGC AAU AGU AAC AGC GAU GGU GAC GGC

AUA AUG ACA ACG GUA GCA GUG GCG AUA ACA AUG ACG GUA GCA GUG GCG

AAA AAG AGA AGG GAA GGA GAG GGG AAA AGA AAG AGG GAA GGA GAG GGG

(W3) -1CW3 (W4) -1C W4

,W2

10000000
01000000
00100000
00010000
00001000
00000010
00000100
00000001

,W3

10000000
00100000
01000000
00010000
00001000
00000100
00000010
00000001

.W4

10000000
00100000
01000000
00010000
00001000
00000010
00000100
00000001
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We see that the Bio–Synthetic Classes keep their individuality (globally invariant) and the 
codons of the amino acids of a given class get exchanged in various manners. Take W2 for example. 
It acts in U(1) in such a way that it reproduce the action of X1 in Eq. (8): the exchanges are vertical, 
horizontal and diagonal. The exchanges in C(1) are only vertical and in A(1) only horizontal. As for 
G(1), its 16 codons are strictly conserved, as with the action of R6 (see above). A similar analysis 
could be made with W3 and W4. Before closing this section, let us return to our first Klein group V: 
R1, R3, R6, R8 . As we have mentioned in the introduction, the manner we have built these 

transformations is guided. In reference [6], we were motivated by the search of transformation 
groups that lead to invariance of groups of codons across all species. It is well known that some 
living species use differently the genetic code. They use a variant form of the “standard” genetic 
code where, in general and in each case, only few codons are concerned and there are several 
known variants, see [15,16]. These variant codons code evidently for a different amino acid, other 
than the one in the above table which is the standard form The table below (Table 2), represents Eq. 
(3) of section 2.3 with the additional information about the amino acids and their molecular weights 
or total number of nucleons. The codons which are subject to variations, considering all (known) 
genomes, nuclear and mitochondrial, and taken from [16], are underlined. Examining the above 
table reveals that the Bio–Synthetic Class G(1), and only this class among the four, has 16 codons 
which are never subject to variations, [6]. The authors of reference [15] explain that there are 
several reasons why the codons in the form GNN (N: any base, U, C, A and G) are thought to be the 
most primitive. Loomis, [17], in the beautiful article entitled “Origin of life” mentions also the five 
amino acids glycine, valine, alanine, aspartic acid and glutamic acid (those of class G(1)) when 
discussing the appearance of the hypercycles in the pre–biotic soup. 

Table 2. The standard genetic code table 
UUU 
Phe

UUC 
165

UCU UCC CUU CUC CCU CCC

Leu
UUA 

_131 
UUG 

Ser
UCA 

_105 
UCG

Leu
CUA

_131 
CUG

Pro
CCA 

115
CCG 

UAU 
Tyr

UAC
181

UGU 
Cys

UGC
121

CAU
His

CAC 
155

CGU CGC

Stop1
UAA

Stop2
UAG

Stop3
UGA

Trp204
UGG

Gln
CAA 

_146 
CAG

Arg 
CGA

_174 
CGG

AUU 
Ile

AUC
131

ACU
Thr

ACC 
119

GUU
Val

GUC
117

GCU
Ala

GCC
89

AUA
Met149
AUG ACA ACG GUA GUG GCA GCG

AAU 
Asn

AAC 
132

AGU 
Ser

AGC
 105 

GAU 
Asp

GAC
133

GGU GGC

Lys
AAA

_146 
AAG 

 Arg 
AGA

_174 
AGG

Glu
GAA

_147 
GAG

Gly 
GGA

75
GGG 
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As a result, we have [6], that the cyclic group C2, a sub–group of a certain Klein group, itself 
sub–group of a dihedral group D8 according to the chain D8  V  C2, as an end–of–chain group 
implements the invariance of the above mentioned 16 codons of G(1). In the context of the present 
work, the group C2 corresponds to the set R1, R6 , sub–group of V (R1, R3 R6, R8), itself sub–
group of D8 (Ri, i = 1, 2, …, 8). 

The guiding idea, in considering this problem, was to define graphs with a maximum of four 
invariant rows, and their variations. For example, in the graph G6, of section 3.3, the nodes 5, 6, 7 
and 8 are connected only to themselves (the self–loops) while the nodes 1, 2, 3 and 4 are subject to 
permutations with an edge between the nodes 1 and 2, in the one hand and 3 and 4, on the other. 
Furthermore, as we explained in section 2, these transformations between nodes concern at the same 
time the rows and the columns. In this way, we constructed the corresponding adjacency matrix, R6,
which gives us, in this case, strict invariance in G(1) and transitions in A(1), both belonging to the 
four last rows and only transversions in U(1) and C(1), both belonging to the first four rows. For all 
other transformations in this work, we proceeded analogously. 

4 MATRIX–NORMS, TRACES, AND SHCHERBAK’S QUANTUM PRIME 037 

As mentioned in the introduction, we end this article by presenting some (striking) numbers 
which arise by “sizing” our classification matrices for the 16 doublets and the 64 codons. Before 
giving these results let us, first, recall some numbers pertaining to the genetic code functioning. 
Besides the (ubiquitous) existence of 64 codons and 20 (canonical) amino acids, there is a total of 
44 degenerate codons (64–20) of which 24 are in M1 and 20 in M2 (counting the three stop codons). 
Note that not including the latter reduces this number to 41, see below. 

Another (complementary) manner to reckon, which goes back to the physicist Georges Gamow 
(1954) see [1], is based on the division of the 64 triplet codons set into three sub–sets, depending on 
their composition (identical and unique base) regardless of their types and positions in the codons. 
This partitioning is shown in Tables 3–5 (in the first three rows in each table) 

Table 3. The “36” Family (two identical bases) 

CUU UUA UUG CUC CCA CCG AAU AAC AGA GGU GGC AGG

UCU AUU GUU CCU ACC GCC UAA CAA AAG UGG CGG GAG

UUC UAU UGU UCC CAC CGC AUA ACA GAA GUG GCG GGA

444 555 666 555 777 888 777 888 1110 999 1110 1221
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Table 4. The “24” Family one unique base) 

CAU CUA CUG GUC UGA AGU AGC ACG

UCA ACU GCU CGU AUG UAG CAG GAC

AUC UAC UGC UCG GAU GUA GCA CGA

666 666 777 777 888 888 999 999

Table 5. The “4” Family (three identical bases) 

UUU CCC AAA GGG

111 222 333 444

There are therefore 36 codons in the “36” Family (Table 3), 24 codons in the “24” Family (Table 
4) and 4 codons in the “4” Family (Table 5). Note that 60 (36 + 24) is also an important number 
which arise in the combinatorial necklace model of the genetic code [18], where the structure 
consists of 64 beads (the codons) of four colors (the bases) and the colored beads form hanging 
vertical decorations or chains of three (x = 3) beads. In this model, there are y = 43 distinct vertical 
chains. The total number of possible vertical decorations containing at least two colors each is yx – y
= 60 and y = 4 decorations are of the same color. 

Now, we turn to our results. We have found interesting to assign attributes to the bases and 
norms to the (classification) matrices. Let us begin by the norms, more exactly the matrix–norms. 
(The latter, are widely used in many applications of linear algebra, and have been termed the 
“yardsticks”. Also, they are often used in matrix–based algorithms.) These norms capture the 
essential notions of size and distance in vector spaces. The matrix–norms of a matrix A, we shall 
use in this paper, are the 1–norm, A 1, which is equal to the maximum column sum and the –
norm, A , which is equal to the maximum row sum. They are defined as follows 

(13)

where the modules in the sums are vector norms. We have therefore a mean to compare the rows 
between themselves and the columns between themselves. Now, concerning the attributes of the 
bases, we shall concentrate on their “molecular size” and also on their hydrogen bonding properties. 
We shall take as the “molecular size index” of a given base the following expression 

(14)

n

i
ij

nj
aN

111 max
n

j
ij

nj
aN

11
max

2nnn2 OCN )(
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Where the numbers refer to the number of nitrogen, carbon and oxygen atoms, respectively, in a 
given base (U, C, A and G). This formula has been introduced in 1991 by Rosen [19], (see also [2]). 
The size index, , captures the monotonic size gradation of the four bases: U = 0, C = 1, A = 2, 
G = 3 (see section 2.1). This ordering, among others, is often considered (see [13] for a recent 
example). As for the hydrogen bond attribute, it is unambiguous: U = A = 2 and C = G = 3. Now, 
let us gather these numbers into the two following simple 2 2 matrices, respectively  and h.

(15)

We have slightly translated the (would–be) matrix  by one unit by adding the matrix J, the all–1 
2 2 matrix, mentioned in section 3.1, just to avoid the zero. This is justified because this “attribute” 
is certainly rough but, as we shall see, it has interesting consequences. Let us begin by considering 
the set of 16 doublets, in Eq. (2). In this case, the rows which are sized by A , are the 
Wittmann Doublets and the columns which are compared by A 1 are the sub–sets of doublets 
sharing the same total number of hydrogen bonds. The matrix encoding the sizes of the doublets is 
computed as follows: 

(16)

Were J is the 2 2 all–1 matrix mentioned above. For the second attribute, the following matrix 
gives the total number of hydrogen bonds in each doublet. 

(17)

For these matrices we have: 

(18)

Note that the traces of the matrices (16) and (17) are both equal to 20. It is also interesting to 
compute the sum of the (hydrogen bond) attribute over the sets M1 and M2 (see the above sections). 
We have: 

(19)

,J 43
21

32
10 .h 32

32

.JJ)ms(

8776
6554
6554
4332

.hJJh)hb(

6554
6554
6554
6554

,)( 24ms
1

,)( 28ms ,)( 24hb
1

,)( 20hb .)()( 44hbhb
1

)( ,hb
M1

44 )( .hb
M2

36
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Now, for the codons, we have: 

(20)

and

(21)

It is important to carry out the products in the order displayed, to reproduce the correct number 
of the sum of the molecular indices or the total number of hydrogen bonds in all the 64 codons. In 
both definitions (20) and (21), the first term gives the contribution of the first base, the second that 
of the second base and finally the third term adds the contribution of the third base. This is also true 
for the doublet matrices in Eqs. (16) and (17) with only two bases. For the matrix in (20), we have 

(ms)
1 = 72, (ms) = 84, and Tr( (ms)) = 60. For the one in Eq. (21), we obtain (hb)

1 = 72, (hb) = 60, and Tr( (hb)) = 60. It is interesting to note that the last number, 60, 
plays also an important role in the work on the genetic code by Petoukhov [25], who constructed a 
similar matrix to matrix (21). We could also use, in place of the Kronecker product, the Kronecker 
product with concatenation (see section 2.2 and footnote 2) to obtain the interesting matrix (the 
double vertical bars are for concatenation): 

(22)

This operation, using the concatenation of matrix elements, has been introduced in [3] to make 

121111101110109
109989887
109989887
87767665

109989887
87767665
87767665
65545443

)( JJJJJJms

..

98878776
98878776
98878776
98878776
98878776
98878776
98878776
98878776

)( hJJJhJJJhhb

.

444443434433344343334333
442441432431342341332331
424423414413324323314313
422421412411322321312311
244243234233144143134133
242241232231142141132131
224223214213124123114113
222221212211122121112111

)(ms
c
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sure that the non–commutativity of the bases in the triplets is respected. For example, in the above 
matrix the triplets UUC, UCU and CUU (see Table 2) are assigned the numbers 112, 121 and 211, 
respectively, which are all different, as we want. In fact, all the 64 triplets are numerically distinct. 
Had we taken only the ordinary Kronecker product, these assignments would have been 2 in all 
three cases, because the latter product involves ordinary multiplication of numbers. Moreover, the 
codon–numbers, generated by concatenation are interesting because when they are grouped into 20 
triplets (of triplets codons) that is 12 triplets in the “36” Family and 8 triplets in the “24” Family, 
they show regular numerical patterns, see Tables 3–5 and below. Now, we have for the norms and 
the trace, in this case: 

c
(ms)

1 = 2664, c
(ms) = 3108, Tr( c

(ms)) = 2220. 

The comparison of the numbers in Eqs. (18) and (19) and those described at the beginning of this 
section is, at least, striking. Even the number 28, which was not yet mentioned, could possibly finds 
its place in the quasi 28–gon (or Icosikaioctagon) recent theory of the genetic code by Yang, which 
is based solely on the set of the 16 doublets [13]. What is really amazing is that if one permutes the 
two numbers, 3 and 4, in the second row of the first matrix ( ) in Eq. (15), which corresponds to 
another ordering of the bases (U = 0, C = 1, G = 2, A = 3, see above) chosen by Yang, and relying 
on another attribute, the sp2 N–atom number, where N is for nitrogen, then the obtained doublet–
matrix as in Eq. (16) has for its trace and norms Tr( (ms)) = 16, (ms)

1 = 20, by (ms) =
28, i.e., just the right three numbers in Yang’s theory, which we recall, is based solely on the set of 
16 doublets. Also the numbers 60 and 72 are interesting. From Eq. (21), we see that all the 
Wittmann Octets, the rows, have the same total number of hydrogen bonds which is 60. We have 
already shown the relevance of this number to the combinatorial necklace model [18]. As for the 
second, 72, interestingly, we have found in the recent literature connected with the use of graph 
theory to study the structural properties of the metabolic pathways (Fell and Wagner, [21]), that 72 
happens to be the total number of reactions in the nucleotide and nucleoside biosynthesis. At least, 
this could happen to be just a happy coincidence. 

Now, before ending this article, let us say some words on the work by Shcherbak, as promised in 
the introduction. Shcherbak, by using the Rumer–Konopel’chenko partitioning of the 64 codons and 
the number of nucleons in the amino acids, separating the side chain, which is variable, from the 
standard blocks (with 74 nucleons), which are the same for all amino acids, established several 
number of amazing exact balances and regularities. Let us mention only some representative ones, 
but there are many other interesting ones in [1]. First, by retaining the Rumer division, one has (see 
Table 2): 

Total number of nucleons (whole molecule) in M1: 925 
Total number of nucleons in the blocks, in M1: 592 
Total number of nucleons in the side chains, in M1: 333 
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Total number of nucleons in the side chains, in M2: 1110 
Total number of nucleons in the blocks, in M2: 1110 

For M2, there is exact balance. For M1, by invoquing the Prime Quantum Divisibility by 37, one 
is left with the first Pythagorean triple (3, 4, 5): 333/37 = 32, 592/37 = 42 and 925/37 = 52. As a 
second example, consider the Pyrimidine Bio–Synthetic Class (Pyr–BC), and the Purine Bio–
Synthetic Class (Pur–BC), considered in the last section. They correspond in [1] to the series with 
the 5'–pyrimidine bases (5' bisection) and to the series with the 5' purine bases, respectively. In the 
first cases there is again an exact balance: the sum of nucleons in the standard blocks is 814 and the 
sum in the side chains is also 814, with a grand total 1628. In the other case there is no balance but 
the total number of nucleons is 1517. Let us note that the above numbers, 1628 and 1517, like all 
others are both divisible by 37. We have that 1628/37 = 44 and 1517/37 = 41. We have already met 
these two numbers, 44 and 41 (see the beginning of this section). Note, importantly, that the 
difference between 44 and 41 (that is with or without the 3 stop–codons), is correctly “managed”: 
the stop–codons belong to the Pyrimidine Bio–Synthetic Class (Pyr–BC) or the 5' bisection, see 
Table 2. Shcherbak has shown also that the digital representation of the balances, as consequence of 
the criterion of divisibility by 37, acquires the unique form aaa with a = 1, 2,…, 9. It is interesting to 
note that similar forms arise also for the codons independently of the amino acids and the numbers 
of their nucleons, when they are grouped à la Gamow (see the “36”, “24” and “4” Families above), 
into triplets (of codons). The codons in the “36” Family are in bold characters, in Table 2. In the 
fourth rows of Tables 1, 2 and 3, we have computed the sum of the numbers of the codons from the 
matrix (22). There is nothing magical with these particular forms: they are simply a consequence of 
the mathematical fact that when one sums three three–digit decimal numbers by carrying out the 
(three) permutations, one obtains abc + cab + bac= 111  (a + b + c) which is, first, of the required 
form and, second, divisible by 37, as 111 is. Finally, let us show briefly that the number 37, which 
plays a basic role in the work of Shcherbak, could be derived with the help of the above size and 
hydrogen bond matrices. As a matter of fact, this number is obtained in two ways and independently 
of the amino acid nucleon numbers. In the first, it is obtained as the ratio of two traces (invariants): 

(23)

In the second, it is obtained as the ratio of homologous norms, one from the hydrogen bond–
matrix Eq. (22), and the other from the molecular size–matrix Eq. (20): 
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Note that one could also obtain 37 as the ratio of the total number of nucleons in the amino acids
in M2 (2220, see above or compute it from Table 2) and the trace of (ms) or (hb) of base–made–
codons matrices so that, while the (equational) symmetry is lost, the link between the nucleic acids 
and the amino acids is made. Note that fifteen amino acids are represented in M2, which is 75% of 
the total of 20. The present author would be almost prone to re–name the title of this last section as 
“autopoietic numbers in the 16 doublets and the 64 codons”. We stop here but we shall return to 
these questions in a following publication [24]. 

Note added. One may wonder, as suggested by the reviewers, if there could be any applications 
of the above numerical relations (in section 4). This is a delicate but nevertheless an interesting 
question. Independently of (possible) applications, one tempting occurrence would be to look at 
these numbers as some (new) kind of numeric genetic information appearing “written” on the 
physical basic units of life (RNA–DNA, amino acids) and revealed when these are arranged into 
definite sets with patterns exhibiting symmetry, see reference [26], for a recent work. Now, since 
the submission of this paper and, perhaps, as a beginning answer in the direction of applications, we 
have derived, for example, explicitly, the number 37 which has a tantamount importance in 
Shcherbak’s work, by considering a real system (RNA–and–DNA components), in place of just 
deriving it from abstract matrices and norms, as we did in the present work. In fact, we did more 
than this: we have established a connection between Shcherbak’s work, with its ubiquitous (and 
omnipresent) number 37, and the recent 28–gon polyhedral theory of the genetic code by Yang, 
[24].
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