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Abstract 

DNA computing is a novel method of solving a class of intractable computational problem, in which the 
computing speeds up exponentially with problem size. Up to now, many accomplishments have been made to 
improve its performance and increase its reliability. In the paper, we solved the simple 0–1 programming 
problem with fluorescence labeling techniques based on surface chemistry by attempted to apply DNA 
computing to programming problem. Our method has some significant advantages such as simple encoding, low 
cost, and short operating time. 
Keywords. DNA computing; 0–1 programming problem; NP–complete problem. 

Abbreviations and notations 
DHPP, Directed Hamiltonian Path Problem  SAT, The Satisfiability Problem 

1 INTRODUCTION 

In 1961, Feynman gave a visionary talk describing the possibility of building computers that 
were sub–microscopic [1]. Despite remarkable progress in computer miniaturization, this goal has 
yet to be achieved. Computer scientists rank computational problems in three classes: easy, hard 
and incomputable [2]. About thirty years ago there was developed a conception designating a 
hierarchy of complexity classes for problems on finite sets. And so long as we use digital computers 
with finite memory storing discrete objects to resolve computational problems, it is relevant for any 
non–trivial algorithm designing. With the current state–of–the–art the most important complexity 
classes are P (problems solvable in polynomial time) and NP (problems whose solution certificate 
can be verified in polynomial time). The most fruitful result of the conception is that complexity 
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classes have so–called complete problems. A problem of a class is complete if you can solve any 
other problem of this class in polynomial time having a polynomial time algorithm for the first one. 
Hence complete problems are hardest in their own classes and as they exist we may choose any of 
them to advance solving techniques for the entire class. The concept of complete problems for a 
class is generalized to hard problems for the class by inclusion of all other problems, whose 
polynomial time algorithm gives polynomial time solvability for the class. So, there are NP–
complete and NP–hard problems [3,4]. One of the major achievements of computer science in the 
last two decades in the understanding that many important computational search problems are NP–
complete and thus are unlikely to have efficient algorithms that solve the problem exactly. Adleman 
(1994) showed that DNA can be used to solve a computationally hard problem, the directed 
hamiltonian path problem (DHPP), and demonstrated the potential power of parallel, high–density 
computation by molecules in solution [5]. This parallelism allows DNA computers to solve larger 
hard problems such as NP–complete problems in linearly increasing time, in contrast to the 
exponentially increasing time required by an electronically computer. After Adleman initiated the 
field of DNA computing in 1994, Lipton (1995) proposed DNA experiments to solve the 
satisfiability (SAT) problem [6]. In 1997, Ouyang et al. presented a molecular biology based 
experimental solution to the “maximal clique” problem [2]. In 2000, Liu et al. designed DNA 
model system; a multi–based encoding strategy is used in a one–word approach to surface–based 
DNA computation [7]. In 2001, Wu analyzed and improved their surface–based method [8]. In 
2002, Yin et al. gave a Chinese postman problem based on DNA computing [9]. All of these efforts 
made use of molecular biology and demonstrated the feasibility of carrying out computation at the 
molecular level. One of the formal frameworks for molecular computations is Tom Head’s splicing 
system, which gives a theoretical foundation for computing based on DNA recombination [10]. 0–1 
programming problem and the satisfiability problem are mutually related closely, and 0–1 
programming problem is a generalization of the satisfiability problem. Up to now, there have been 
many results for solving the satisfiability problem [6,7,11,12]. In 2002, Braich et al. solved a 20–
variable instance of the NP–Complete three–satisfiability problem on a simple DNA computer, and 
proposed this computational problem may be largest yet solved by nonelections means [13]. 
However, the model of 0–1 programming problem based on DNA computing has never been 
studied. In this paper, the simple form of the 0–1 programming problem was solved by fluorescence 
labelling techniques based on surface chemistry. Despite significant progress, several problems 
remain and need to be resolved. The first, for a complex issue, there is a need of a great amount of 
DNA in coding, which is hard to be achieved. Secondly, DNA computing is inaccurate, which can 
be caused by inaccurate hybridization, the effect of secondary structure of DNA molecule, the 
inaccuracy of experiment and large cost for biological lab experiments, all of these can affect the 
result of DNA computing. For terminologies and notations not defied in this paper, the readers are 
referred to Ref. [14]. 
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2. THE 0–1 PROGRAMMING PROBLEM

The 0–1 Programming Problem is a special form of an integer–programming problem, in which 
the value of the variable is only 0 or 1. In this condition, ix  can be referred to as either a “binary” or 

“0–1” variable. The general form of 0–1 programming problem is: 
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0–1 programming problem is an important problem in operational research and has very 
widespread application. A wide variety of algorithms have been written to solve the 0–1 
programming problem including methods of exhaustive calculation, invisible enumeration, and 
others [15]. But up to now, there doesn’t exist any good algorithm yet. In the paper, we solve the 
simple 0–1 programming problem as (2.2), which is a generalization of assignment problem, with 
DNA computing.  
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We designed the following algorithm to solve 0–1 Programming Problem corresponding to (2.2): 
Step 1: Generate all possible combinations of variable 0 or 1 in the given problem; 
Step 2: Reject infeasible solution according to constraint inequalities (reserved feasible solution); 
Step 3: Generate remaining solutions; 
Step 4: Repeat step 2, step 3. We can reject all infeasible solutions and obtain feasible solutions 

of the problem; 
Step 5: By comparing to value of object function corresponding to every feasible solution, we 

can obtain optimum solution. 

We also designed following biological algorithm of the above algorithm; 
Step 1: combine a set of single stranded DNA molecules representing all variables in the 

computational problem at hand. Synthesizing and placing samples in an addressed fashion on a 
surface, these single stranded DNA molecules are arranged by according to form of dot matrix. 
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Certain oligonucleotides are tagged with fluorescent as DNA probes; 
Step 2: For each inequality, adding the corresponding complementary strand to the surface, any 

solution, which satisfies this inequality will be hybridized at least (not exceeding) ib

complementary strand tagged with a fluorescent label. Further, we can determine the solution that 
satisfy (or does not satisfy) constraint conditions by a method of fluorescent–image; 

Step 3: The temperature is raised to separate all double–stranded DNA into single–strands by 
thermal denaturation. The surface is returned to the initial state by washing in buffer (without regard 
for infeasible solution determined in step 2); 

Step 4: Repeat step 2, step 3, we can reject all infeasible solution and obtain feasible solution of 
the problem; 

Step 5: By calculating and comparing the value of the object function corresponding to every 
feasible solution, an optimum solution can be obtained. 

Remark:  

When ija  is real number, both sides of the inequality are number of times to make every 
coefficient of a variable become an integer. When ija  is an integer, jxija is represented as 

jx jx jx (where the number of jx  is ija .

3. THE 0–1 PROGRAMMING PROBLEM MODEL SYSTEM 

For a system of equations that contains n  variables 1 2 nx x x  and m  equations, in order to 

implement step 1 of biological algorithm mentioned above, two steps are needed. One of them is to 
synthesis 3 n  oligonucleotides divided into 3 groups, which include n  oligonucleotides in each 
group. The oligonucleotides in the first group represent variable 1 2 nx x x respectively; the 
second represent variable 1 2 nx x x  respectively ( 1ix  if and only if 0)ix ; the third group 
represent complementary strands of the first group respectively, individual written as 1 2 nx x x .
We elect oligonucleotides 1 2 nx x x  and 1 2 nx x x  that they must be very different, and for 

evading misfit among them, at least 4 bp (base pairs) are diversity in oligonucleotides sequence 
(pay attention to oligonucleotide ix  represents variable ix  = 1 and oligonucleotide ix  represents 
variable ix  = 0). The other is to structure DNA probe with the former two group 2 n

oligonucleotides. The progress can be separated into five steps:

Constructing 2 n  probes corresponding to above single stranded DNA molecules 
(oligonucleotide) and tagging oligonucleotides 1 2 nx x x  with fluorescent; (2) fix untagged DNA 

strand on the surface by means of six to nine atoms where the DNA stands are arranged in 2n  rows 
representing all variables of the given computational problem. (3) To implement step 2, add the 
complementary strand corresponding to each variable of constraint equation to the surface. Any 
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solution satisfies this inequality will be hybridized at least (not exceeding) ib  complementary strand 

tagged with a fluorescent label. Further, we can determine the solution of satisfy (or does not 
satisfy) constraint equation by a method of fluorescence–image, and observe their color and record; 
(4) To implement step 3, the temperature is raised to separate all double–stranded DNA into single–
strands by thermal denaturation. The surface is returned to the initial state by washing in buffer 
(without regard for infeasible solution determined above); (5) To implement step 4, we can reject all 
infeasible solution and obtain feasible solution of the problem by repeating (2), (3); To implement 
step 5, comparing to value of object function corresponding every feasible solution, we can obtain 
optimum solution. We discuss in detail simple 0–1 programming problem as below:  

min 2 3 2u x y z
2

1
1
0 1

x y z
x z
x y

x y z

To discuss the 0–1 programming problem, the progress was separated into six steps:

(1) We first synthese 9 oligonucleotides divided into the same 3 groups. 3 oligonucleotides of the 
first group represent variable x y z  respectively;ones of second group represent variable x y z
respectively ( 1x  if and only if 0x , such as )y z ;ones of third group represent complementary 
strand of the first group respectively, individually written as x y z (see Table1) (pay attention to 
oligonucleotide x  represents variable x  = 1 and oligonucleotide x  represents variable x  = 0, y

and z  are also so). 

Table 1. 
x : 5’–AACCTGGT–3’ y : 5’–ACCATAGC–3’ z : 5’–AGAGTCTC–3’ 
x : 5’–CCAAGTTG–3’ y : 5’–GTTGGGTT–3’ z : 5’–AGCTTGCA–3’ 

x : 5’–TTGGACCA–3’ y : 5’–TGGTATCG–3’ z : 5’– TCTCAGAG–3’ 

(2) Then we structure DNA probes by respectively tagging 3 oligonucleotides x y z with

fluorescent, fixation of untagged DNA strands to the surface by means of a connection of 6 to 9 
atoms where the DNA strands are arranged in 3lines and 8 rows representing all variables of the 
given computational problem (see Figure 1). 

Figure 1. Fixed untagged DNA strands on the surface. 
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For the first constraint equation, we add the complementary strands x y and z  corresponding to 
variable x y z  to the surface. Any solution satisfied this inequality will be hybridized at least 2 

complementary strand tagged with a fluorescent label (at least 2 bright point), Further, we can 
determine the solution that satisfy constraint equation by a method of fluorescence–image, and 
observe their color and record (the feasible solution of the problem is “3,5,6,7”, see Figure 2). 

Figure 2. Hybridize figure of the first constraint equation. 

(3) The temperature is raised to separate all double–stranded DNA into single–strands by thermal 
denaturation. The surface is returned to the initial state by washing in buffer (without regard for 
infeasible solution determined above). 

(4) For second constraint equation, similar to step (2), (3) above by adding the complementary 
strands x z  corresponding to variable x z  to the surface, we can determine the solution of 

satisfying constraint equation by a method of fluorescence–image, and observe their color and 
record, Any solution satisfied this inequality will be hybridized at most 1 complementary strand 
tagged with a fluorescent (the feasible solution of the problem is “1,3,4,6”, see Figure 3), repeat 
step (2), (3) above. 

Figure 3. Hybridize figure of the second constraint equation. 

(5) For third constraint equation, similar to step (2), (3) above by adding the complementary 
strands x y  corresponding to variable x y  to the surface, any solution satisfied this inequality will 

be hybridized at least 1 complementary strand tagged with a fluorescent green (the feasible solution 
of the problem is “2,3,4, 5,6,7”, see Figure 4). 

Figure 4. Hybridize figure of the third constraint equation. 
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(6) There are two feasible solutions “3,6” in the problem, corresponding to variable value is 
(1,1,0), (0,1,1). By comparing to the value of the object function corresponding to every feasible 
solution,we can obtain optimum solution (0,1,1), and the minimum value of object function is 4. 

The experiment is not complicated and we can accomplish a result that is similar to the 
experiment performed by Wu [8]. 

4. CONCLUSIONS

Because computers have obvious limits in storage, speed, intelligence and miniaturization, 
recently, concerns regarding the methods of DNA computation have arisen, especially their efficient 
parallelism. In order to solve a practical issue, there are still some problems that need a farther study 
in biologic technology. In this article, we highlight a DNA computing model to solve a problem of 
the simple of 0–1 programming problem. 

The model we proposed has a potential to solve linear programming problem, which is an 
important issue in operational research. With the advance of the biologic technology and the 
molecule biology, the general linear programming problem will be solved. In our method, we adopt 
fluorescence marking technique and laser focus technique, and read solution by viewing 
fluorescence, the method of which has some significant advantages such as low cost, low error, 
short operating time, reusable surface and simple experimental steps. 
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