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Abstract 

Motivation. A QSPR analysis has been conducted on the half–wave reduction potential (E1/2) of a diverse set of 
organic compounds by means of principal component regression (PCR) and principal component–artificial 
neural network (PC–ANN) modeling method. Genetic algorithm was employed as a factor selection procedure 
for both modeling methods. The results were compared with two other factor selection methods namely 
eigenvalue ranking (EV) and correlation ranking (CR) procedures. 
Method. By using the Dragon software more than 1000 structural descriptors were calculated for each molecule. 
The descriptor data matrix was subjected to principal component analysis and the most significant principal 
components (PC) were extracted. Multiple linear regression and artificial neural network were employed for the 
respective linear and nonlinear modeling between the extracted principal components and E1/2. First, the 
principal components were ranked by decreasing eigenvalues and entered successively to each modeling method 
separately. In addition, the factors were ranked by their corresponding correlation (linear correlation for PCR and 
nonlinear correlation for PC–ANN models) with the half–wave potentials and entered to the models. Finally, 
genetic algorithm (GA) was also employed to select the best set of factors for both models. 
Results. The 96% of variances in the descriptor data matrix could be explained by 30 first extracted PCs. Among 
these, 10, 6 and 10 PCs were selected by EV, CR and GA, respectively, for PCR, while for the ANN model, 7 
PCs were selected by all of the factor selection procedures. The ANN model with EV, CR and GA factor 
selection procedures could explain 78.4%, 94.3% and 96% of variances in the E1/2 data, respectively, while the 
respective values obtained from different PCR procedures were 52.9%, 58.2% and 74.4%. 
Conclusions. The results of this project showed that factor selection by correlation ranking and genetic 
algorithm gives superior results relative to those obtained by eigenvalue ranking. This confirms that the 
magnitude of the eigenvalue of a PC is not necessarily a measure of its significance in calibration. Moreover, it 
was found that for PCR method, the results obtained by GA has a major difference with those by EV and CR 
procedures, while, the GA and CR factor selection methods give results close to each other. 
Keywords. Half–wave potential; quantitative structure–property relationships; QSPR; genetic algorithm; 
principal component; neural network; correlation ranking; eigenvalue ranking. 

Abbreviations and notations 
ANN, artificial neural network PC–ANN, principal component–artificial neural network 
GA, genetic algorithm CR, correlation ranking 
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PLS, partial least squares QSAR, quantitative structure–activity relationships 
PCR, principal component regression QSPR, quantitative structure–property relationships 
EV, eigenvalue ranking E1/2, half–wave reduction potential 

1 INTRODUCTION 

With the development of experimental chemistry, a large number of new compounds are 
synthesized every year. However, a large part of these compounds are not tested for fundamental or 
relevant thermodynamic and physicochemical properties or biological activities, which still remain 
unknown due to unavailability or no easily handling (toxic, odorous, etc.). A procedure able to 
predict, within a reasonable error margin, the physicochemical properties and biological activities of 
untested compounds is required to evaluate these molecular features in a fast and inexpensive way 
[1]. In recent years, numerous QSAR/QSPR models have been introduced for calculating the 
physicochemical properties with various numerical descriptors of chemical structures. These 
relationships derive correlations between the similarities of individual compounds and their 
biological activity/chemical property [2–4]. 

In QSAR/QSPR studies, a regression model of the form y = X b + e may be used to describe a 
set of predictor variables (X) with a predicted variable (y) by means of a regression vector (b).
However, the collinearity, which often existed between independent variables, creates a severe 
problem in certain types of mathematical treatment such as matrix inversion [5]. A better predictive 
model can be obtained by ortogonalization of the variables by means of principal component 
analysis (PCA) and the consequent method is called principal component regression (PCR) [6–8]. 
In order to reduce the dimensionality of the independent variable space, a limited number of 
principal components (PCs) is used and therefore a major question will arise after the PCA is how 
many and which PCs constitute a good subset for predictive purposes? Hence, the selection of 
significant and informative PCs is the main problem in almost all PCA–based calibration methods 
[9–13].

Different methods have been addressed to select the significant PCs for calibration purposes. The 
simplest and most common one is a top–down variable selection where the factors are ranked in the 
order of decreasing eigenvalues. The factor with highest eigenvalue is considered as the most 
significant one and, subsequently, the factors are introduced into the calibration model until no 
further improvement of the calibration model is obtained. However, the magnitude of an eigenvalue 
is not necessarily a measure of its significance for the calibration (see Ref. [12] and references 
therein).

In another method, called correlation ranking, the factors are ranked by their correlation 
coefficient with the property to be correlated (i.e., a dependent variable) and selected by the 
procedure discussed for eigenvalue ranking [13]. Better results are often achieved by this method. 
Very recently, search algorithms such as genetic algorithm (GA) have been applied for the selection 
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of variables in PCR. A GA is a stochastic method to solve optimization problems defined by a 
fitness criterion applying the evolution hypothesis of Darwin and different genetic functions, i.e.
crossover and mutation [14–16]. 

Artificial neural networks (ANN) are nonparametric nonlinear modeling techniques that have 
attracted increasing interest in recent years [17–19]. Nonlinear multivariate maps use a nonlinear 
transformation of the input variable space to project inputs onto the designated attribute values in 
output space. The strength of modeling with layered, feed–forward artificial neural networks lies in 
the flexibility of the distributed soft model defined by the weight of the network. Both linear and 
nonlinear mapping functions may be modeled by suitable configuring of the network. Multilayer 
feed–forward neural networks trained with a back–propagation learning algorithm have become 
increasingly popular techniques [20–22]. The flexibility of ANN for discovering more complex 
relationships lead this method to find a wide application in QSAR/QSPR studies, as recently 
reviewed by Schneider and Wrede [23]. 

A principal component–artificial neural network (PC–ANN) system, which combines the PCA 
with ANN, is another PCA–based calibration technique for nonlinear modeling between the PCs 
and dependent variables [24,25]. The problem of PC selection in PC–ANN is more serious than 
PCR because of the unknown and complex relationships between PCs and dependent variables. A 
routine method for the selection of factors in PC–ANN is the eigenvalue ranking. In our previous 
work, we proposed a new PC–ANN algorithm called PC–GA–ANN and found that the selection of 
PCs by GA for PC–ANN gives better results than the eigenvalue ranking method [26]. Here, we 
aimed to compare three different PC selection methods (i.e., eigenvalue ranking, correlation ranking 
and genetic algorithm selection) for PC–ANN and PCR methods. The data set we used was the 
half–wave potential of 72 different organic compounds. 

Half–wave potential (E1/2) is an important electrochemical property of organic compounds. This 
property, which is a characteristic constant for a reversible oxidation–reduction system, can be 
useful for predicting other electrochemical properties of organic compounds [27]. There are some 
different electrochemical methods which permit determination of the half–wave potential of wide 
variety of organic, inorganic and organometallic compounds [28]. A successful strategy for 
prediction of the reduction potentials is construction of the QSPR models. 

Tompe et al. have reported a quantitative structure–electrochemistry relationship study on the 
half–wave potential of , –unsaturated ketones in nongaseous acetonitrile solution [29]. They 
found a linear relationship between the electronic substituent constants and E1/2. Li and coworkers 
used some topological indices to correlate with the half–wave potential of different classes of 
organic compounds, separately [30]. However, they could not extent their model to all of the 
organic compounds they used. In this paper, we employed PCR and PC–ANN models to conduct a 
QSPR study using theoretical descriptors on the data set of Li et al. [30]. 



Quantitative Structure–Electrochemistry Relationship Study of Some Organic Compounds Using PC–ANN and PCR 
Internet Electronic Journal of Molecular Design 2004, 3, 316–334 

319 
BioChem Press http://www.biochempress.com

Table 1. The experimental half wave potentials and the predicted values by different PCR models 
Pred. (V) 

No. Compound Exp. (V) EV–PCR CR–PCR GA–PCR 
1 Anthraquinone –0.54 –0.389 –0.944 –0.641 
2 Benzoquinone 0.15 –1.155 –0.558 –0.062 
3 2,3–Dimethyl naphtoquinone –0.22 –0.113 –0.590 –0.610 
4 Duroquinone –0.09 –0.047 –0.575 –0.119 
5 2–Methyl–1,4–naphtoquinone –0.17 –0.378 –0.652 –0.554 
6 Toluquinone 0.09 –0.822 –0.682 –0.092 
7 Azobenzene –0.33 –1.137 –0.468 –0.485 
8 Benzenediazonium chloride –0.67 –1.372 –1.168 –1.137 
9 m–Dinitobenzene –0.26 –0.149 –0.318 0.0109 

10 Methyl o–nitrobenzoate –0.25 –0.013 –0.099 –0.641 
11 Methyl m–nitrobenzoate –0.24 –0.012 –0.188 –0.162 
12 Methyl p–nitrobenzoate –0.20 –0.029 –0.232 –0.263 
13 p–Nitoaniline –0.36 –0.623 –0.522 –0.695 
14 o–Nitroaniline –0.29 –0.517 –0.125 –0.383 
15 p–Nitroanisole –0.35 –0.374 –0.212 0.105 
16 m–Nitrobenzaldehyde –0.28 –0.505 –0.660 –0.507 
17 o–Nitobenzoic acid –0.23 –0.335 –0.166 0.0734 
18 m–Nitobenzoic acid –0.20 –0.279 –0.506 –0.479 
19 p–Nitobenzoic acid –0.17 –0.252 –0.691 –0.534 
20 o–Nitrophenol –0.23 –0.679 –0.611 –0.236 
21 m–Nitrophenol –0.37 –0.686 –0.544 –0.629 
22 p–Nitrophenol –0.35 –0.644 –0.520 –0.683 
23 o–Nitrotoluene –0.26 –0.615 –0.404 –0.658 
24 m–Nitrotoluene –0.22 –0.607 –0.404 –0.654 
25 p–Nitrotoluene –0.24 –0.570 –0.386 –0.532 
26 Acetaldehyde –1.89 –1.439 –1.400 –1.622 
27 Acrolein –1.36 –1.488 –1.388 –1.564 
28 Benzaldehyde –0.94 –1.304 –1.312 –1.583 
29 Crotonaldehyde –0.92 –1.484 –1.403 –1.020 
30 Formaldehyde –1.59 –1.476 –1.693 –2.092 
31 Furfural –1.06 –1.409 –1.413 –1.046 
32 Glyoxal –1.41 –1.353 –1.708 –1.246 
33 p–Hydroxybenzalhedyde –1.16 –1.038 –1.011 –1.116 
34 o–Methoxybenzaldehyde –1.03 –0.740 –0.593 –0.773 
35 p–Methoxybenzaldehyde –1.07 –0.766 –0.648 –0.598 
36 Methyl glyoxal –0.83 –1.083 –0.974 –1.095 
37 Salicylaldehyde –1.02 –1.044 –1.028 –1.097 
38 Acridine –0.80 –0.885 –0.607 –0.332 
39 8–Hydroxyquinoline –1.39 –0.971 –1.024 –0.867 
40 Nicotinamide –1.56 –0.985 –1.020 –1.476 
41 Pyridine –1.49 –1.581 –1.338 –1.975 
42 Quinaldinic acid –0.86 –0.651 –0.884 –0.436 
43 Quinoline –1.23 –1.258 –1.240 –0.959 
44 Quinoline–8–carboxylic acid –1.11 –0.592 –0.861 –0.597 
45 Saccharin –1.77 –0.662 –1.227 –1.868 
46 Acrilonitrile –1.94 –1.577 –1.509 –1.542 
47 Ascorbic acid –0.17 –0.628 –0.019 –0.101 
48 Bromoacetic acid –0.54 –1.401 –1.107 –0.180 
49 –Bromopropionic acid –0.39 –1.284 –0.762 –0.322 
50 Crotonic acid –1.94 –1.131 –1.087 –2.064 
51 Dibromoacetic acid –0.03 –0.472 –0.068 0.0459 
52 Diethyl fumarate –0.84 –0.560 –0.593 –0.625 
53 Diethyl maleate –0.95 –0.622 –0.797 –0.887 
54 Ethyl dichloroacetate –0.86 –0.827 –1.088 –1.110 
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Table 1. (Continued) 
Pred. (V) No. Compound Exp. (V) EV–PCR CR–PCR GA–PCR 

55 Fumaric acid –1.60 –0.914 –1.304 –1.288 
56 Maleic acid –1.36 –0.914 –1.304 –1.288 
57 Methylacrylonitrile –2.07 –1.276 –1.359 –1.997 
58 Pyruvic acid –0.86 –0.897 –0.724 –0.932 
59 Trichloroacetic acid –0.84 –0.637 –1.355 –1.072 
60 Allyl chloride –1.91 –1.661 –1.539 –1.617 
61 Allyl bromide –1.29 –1.844 –1.750 –1.784 
62 Benzal chloride –1.81 –1.242 –1.096 –2.220 
63 Benzotrichloride –0.68 –1.113 –1.277 –1.234 
64 Benzyl chloride –1.94 –1.302 –1.107 –2.047 
65 Bromobenzene –2.32 –1.838 –1.729 –2.366 
66 n–Butyl bromide –2.27 –1.900 –1.914 –2.453 
67 p–Dibromobenzene –0.78 –2.001 –1.652 –2.311 
68 m–Dichlorobenzene –0.30 –1.402 –1.728 –2.480 
69 Nitromethane –0.83 –0.389 –0.944 –0.641 

2 MATERIALS AND METHODS 

2.1 Chemical Data and Descriptors 
The half–wave reduction potentials of 68 organic compounds were collected from a paper by Li 

et al. [30]. The E1/2 values (in mV) of these compounds are included in Table 1. 

Molecular descriptors define the molecular structure and physicochemical properties of 
molecules by a single number. A wide variety of descriptors have been reported in the literature for 
use in the QSAR analyses [31–36]. There is a recently increased use of theoretical descriptors in 
QSAR studies. In this work, about 1200 descriptors including constitutional descriptors [31], 
topological indices [32,33], topological charge indices [35], geometrical descriptors [32], molecular 
walk counts [34], Burden eigenvalue descriptors [35], autocorrelation descriptors [36], and 
physicochemical parameters and liquid properties [31] were generated for each compound. The 
molecular structures were drawn by the HyperChem Software [37] and saved without geometry 
optimization. The descriptors were calculated for each molecule using Dragon software [38]. 

2.2 Principal Component Analysis
In order to decrease the redundancy existed in the descriptors data matrix, the correlation of 

descriptors with each other and with the E1/2 of the molecules was examined and collinear 
descriptors (i.e., r > 0.9) were detected. Among the collinear descriptors, one with the lowest 
correlation with the half–wave potential was removed from the data matrix. In addition, the 
descriptors were analyzed for the existence of constant or near constant variables and those found 
were removed. The remaining descriptors were gathered in a new data matrix (D). The data set was 
classified into calibration (Dc) and prediction (Dp) sets, randomly (the number of molecules used in 
the calibration and prediction sets was 45 and 23, respectively). The same classification was done 
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on the potential data. The descriptors were autoscaled to zero means and unit variance before 
performing PCA or any other modeling. 

Table 2. The results of application of PCA on the descriptors data matrix 
PC No. Log of 

Eigenvalue 
% of explained variance Cumulative percent 

of variances 
Real error Correlation 

coefficient
PC1 4.4527 36.6760 36.6760 0.7958 0.526 
PC2 3.9158 10.6548 47.3309 0.7731 –0.032 
PC3 3.7667 7.5584 54.8893 0.681 –0.011 
PC4 3.6181 5.3682 60.2574 0.6450 0.407 
PC5 3.5465 4.5521 64.8095 0.6118 –0.040 
PC6 3.4434 3.5898 68.3994 0.5844 –0.196 
PC7 3.3656 3.0012 71.4006 0.5605 0.121 
PC8 3.2863 2.5006 73.9012 0.5398 0.123 
PC9 3.2335 2.2141 76.1153 0.5208 0.065 

PC10 3.1657 1.8940 78.0093 0.5040 –0.108 
PC11 3.1181 1.6976 79.7069 0.4884 0.201 
PC12 3.0932 1.6029 81.3097 0.4729 0.01 
PC13 3.0152 1.3393 82.6490 0.4597 –0.106 
PC14 3.0068 1.3138 83.9629 0.4461 0.097 
PC15 2.9532 1.1612 85.1240 0.4337 0.007 
PC16 2.9131 1.0587 86.1827 0.4219 –0.131 
PC17 2.9056 1.0408 87.2235 0.4097 0.048 
PC18 2.8564 0.9293 88.1528 0.3984 0.210 
PC19 2.8275 0.8693 89.0221 0.3874 –0.049 
PC20 2.8055 0.8265 89.8486 0.3764 –0.073 
PC21 2.7562 0.7377 90.5863 0.3663 –0.150 
PC22 2.7298 0.6943 91.2806 0.3564 0.068 
PC23 2.6999 0.6480 91.9286 0.3467 0.172 
PC24 2.6564 0.5864 92.5149 0.3376 0.067 
PC25 2.6108 0.5278 93.0428 0.3292 –0.266 
PC26 2.6043 0.5200 93.5628 0.3205 0.092 
PC27 2.5767 0.4880 94.0507 0.3118 –0.158 
PC28 2.5441 0.4527 94.5034 0.3034 –0.140 
PC29 2.5226 0.4309 94.9343 0.2950 –0.052 
PC30 2.4884 0.3982 95.3325 0.2869 0.104 
PC31 2.4534 0.3674 95.6999 0.2790 0.043 
PC32 2.4255 0.3446 96.0445 0.2713 –0.040 
PC33 2.4192 0.3396 96.3840 0.2631 –0.071 

The calibration data matrix was subjected to PCA using the singular value decomposition 
procedure (SVD) [39]: 

Dc = Uc St Vt
T (1)

where Uc and Vc are the orthonormal matrices spanned the respective row and column spaces of the 
data matrix (Dc). Sc is a diagonal matrix whose elements are the square root of the eigenvalues. The 
superscript “T” denote the transpose of the matrix. The eigenvectors included in Uc are named as 
principal components (PC). The PCs of the prediction set were calculated by the equation: 

Up = Dp St
–1 Vt (2)

The first 30 PCs were found to process more than 95% of variances in the original descriptors 
data matrix. The extracted PCs were used as the predictor variables (input) for PCR and neural 
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network model. 

2.3 Genetic Algorithm 
A genetic algorithm is a problem solving method that uses generic rules such as reproduction, 

crossover and mutation to build pseudo organisms that are then selected, based on a fitness criteria, 
to survive and pass information on to the next generation. The GA used here was the same as we 
used previously [20,26,40]. The GA used a binary bit string representation as the coding technique 
for a given problem; the presence or absence of a descriptor or its second power in a chromosome is 
coded by 1 or 0 [14–16]. A string is composed of several genes that represent a specific 
characteristic to be studied. In the present case, a string is composed of 30 genes, representing the 
presence or absence of a PC. The GA performs its optimization by variation and selection via the 
evaluation of the fitness function. The fitness function was the inverse of the PRESS, which was 
calculated from the cross–validation procedure. The operators used here were crossover and 
mutation. The probability for the application of these operators was varied linearly with the 
generation renewal. 

2.4 Principal Component Regressions 
Three types PCR analysis were employed including eigenvalue ranking based PCR (EV–PCR), 

correlation raking based–PCR (CR–PCR) and GA–based PC selection PCR (GA–PCR). In the EV–
PCR procedure, the PCs were entered to the PCR model consecutively based on their decreasing 
eigenvalue. In each step, leave–four–out cross validation was used to estimate the performances of 
the model by calculating the PRESS. Meanwhile, the E1/2 of the prediction set compounds was 
estimated in each step and the relative error of prediction (REP) was calculated. The optimum 
number of factors was obtained by minimum PRESS and REP. The procedure for the CR–PCR 
method was similar to that discussed for the eigenvalue method, except that the stepwise entrance of 
the PCs was based on their decreasing correlation with the E1/2. In the GA–PCR method, the 
selected PCs (genes) at each string were used to build the PCR model and calculating the regression 
vector, b. This vector was then used for the calculation of the E1/2 of the leave out compounds in the 
cross validation procedure. After this, the PRESS was calculated for the cross validated compounds 
(i.e. PRESSCV). Therefore, each string had an associated PRESSCV value that measures its fitness. 

2.5 Artificial Neural Network Modeling 

A feed–forward neural network with back–propagation of error algorithm was constructed to 
model the structure activity relationship. Our network had an input layer, a hidden layer and an 
output layer. The input vectors were the set of PCs which selected by three different procedures 
namely eigenvalue ranking, correlation ranking and GA–based selection. Number of nodes in the 
input layer was depended on the number of PCs introduced in the network. A bias unit with a 
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constant activation of unity was connected to each unit in the hidden and output layers. The ANN 
models confined to a single hidden layer, because the network with more than one hidden layer 
would be harder to train. The number of nodes in the hidden layer was optimized through learning 
procedure. There was only one node in the output layer. The training and prediction data sets were 
used to optimize the network performance. To ensure that the over–fitting and under fitting of the 
ANN model did not occur, for each configuration, the fitness function ( ), calculated from both the 
root mean square errors of training and prediction (i.e., RMSET and RMSEP, respectively) was 
used to evaluate the performance of each neuron. This fitness function, recently proposed by 
Depczynski et al. [10], was used in this paper: 

 = {[(mc – n –1) RMSEC2 + mp RMSEP2]/(mc + mp – n –1)}1/2 (3)

where mc and mp are the number of compounds in the training and prediction sets, respectively, and 
n represents the number of selected PCs. The training of each network was stopped after no 
improvement was observed for .

2.5.1 Eigenvalue ranking ANN

In the eigenvalue ranking ANN (EV–ANN), the PCs were successively introduced into the 
network based on their decreasing eigenvalue, and in each step, the number of nodes in the hidden 
layer was optimized. The best network structure was selected based on minimum fitness function, 

.

2.5.2 Correlation ranking ANN

Since in the ANN a specific hard model is not assumed between the input and output variables, 
the determination of the correlation between these two types of variables is a difficult task. Here, 30 
different ANN models were built for each PC separately, so that each network has a single variable 
(one PC) in its input layer. By the procedure discussed in section 2.5, the networks were trained to 
model the nonlinear relationship between an individual PC and the E1/2 of the calibration samples. 
The nonlinear correlation for each PC was obtained by plotting the E1/2 predicted by its 
corresponding ANN model against the experimental E1/2. After that, the PCs were ranked in the 
order of decreasing correlation. For the correlation ranking ANN (CR–ANN) a procedure similar to 
that discussed for the EV–ANN method was used. 

2.5.3 PC–GA–ANN model 

Previously, we described the principal of PC–GA–ANN modeling method [26]. Here, we 
represent only a short discussion about this model. The PCs selected on each string (genes with 
value 1) were used as input for the ANN. Each ANN model was trained to obtain the optimized 
relationship between the selected PCs and E1/2. Several network configurations were tested, each 
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with a different number of hidden layer elements. For each configuration, the fitness function ( )
was calculated from the calibration and prediction data. For each chromosome of the GA, the 
training was stopped after observing no improvement in the fitness. 
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Figure 1. Plot of the PRESS for cross–validation (open markers) and prediction (filled markers) as a function of the 
number of PC entered: A) EV–PCR and B) CR–PCR. 
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2.6 Software 
All calculations were run on a Pentium IV personal computer with windows XP operating 

system. The HyperChem software was used for drawing the molecular structures [37]. The 
descriptors were calculated by the Dragon software [38]. All the necessary programs for PCA, PCR, 
GA, ANN and other statistical analysis were written in MATLAB (ver. 6.5, MathWork Inc.). 

3 RESULTS AND DISCUSSION 

In Table 1 are represented the chemical structures of the compounds used in this study. As it is 
shown, a wide variety of organics including aliphatic, aromatic, halogenated, nitro, keto and acidic 
compounds are used. The experimental have–wave potentials are also included in Table 1. More 
than 1200 theoretical descriptors were calculated for each molecule. After the elimination of the 
constants and one of the collinear ones, 1150 descriptors remained. The results of the application of 
the PCA on the descriptors data matrix by SVD are given in Table 2. In this Table, the eigenvalues, 
the percent of variances explained by each eigenvalue and the cumulative percent of variances are 
represented. The real error in the reproduction of the original data matrix using the abstracted scores 
and loading are also included in Table 2. As it is seen, the first 30 PCs can explain 95.33% of the 
variances in the original descriptors data matrix. Therefore, we restricted the next studies to these 
30 PCs. 

Table 3. Results of EV–PCR in the presence of different entered PCs 
PC entered R2

CV PRESSCV R2
P PRESSP R2

C SEC F 
PC1 0.277 25.72 0.284 24.02 0.351 0.592 25.31 
PC1+PC2 0.278 24.82 0.294 23.33 0.397 0.596 12.52 
PC1 to PC3 0.341 24.24 0.368 23.02 0.440 0.601 8.22 
PC1 to PC4 0.444 21.186 0.484 20.08 0.511 0.532 12.55 
PC1 to PC5 0.445 20.023 0.520 19.44 0.588 0.535 9.94 
PC1 to PC6 0.484 19.735 0.532 19.11 0.601 0.521 9.51 
PC1 to PC7 0.499 19.665 0.589 17.89 0.642 0.517 8.52 
PC1 to PC8 0.513 19.537 0.631 17.43 0.692 0.514 7.77 
PC1 to PC9 0.518 19.459 0.639 16.77 0.709 0.516 6.91 
PC1 to PC10 0.529 18.349 0.683 16.07 0.731 0.514 6.41 
PC1 to PC11 0.570 18.532 0.701 15.98 0.782 0.496 6.73 
PC1 to PC12 0.570 18.534 0.700 15.97 0.790 0.500 6.01 
PC1 to PC13 0.581 18.291 0.704 15.94 0.802 0.498 5.76 
PC1 to PC14 0.590 18.310 0.710 15.95 0.808 0.498 5.45 

3.1 PCR Modeling 
The results of the EV–PCR are summarized in Table 3. In this Table, the coefficients of 

determination for the cross validation, prediction and calibration are represented by R2
CV, R2

P and 
R2

C, respectively. In addition, the PRESSCV, PRESSP and standard error of calibration (SEC) are 
also included in Table 3. Meanwhile, F denotes the Fisher’s F–ratio. The plot of PRESSCV and 
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PRESSP against the number of factors are shown in Figure 1A. 

The results confirm that 10 first PCs are needed for the PCR modeling. The R2 of cross–
validation, prediction and calibration are 0.529, 0.683, and 0.731, respectively, which means at least 
52.9% of variances in the reduction potentials are explained by the first 10 PCs of the descriptors 
data matrix. In Table 1, the predicted E1/2 values obtained by EV–PCR using 10 first PCs are also 
included.

In the last column of Table 2, the correlation coefficient between each one of the PCs and E1/2 is 
included. The eigenvalues denote the amount of variances in the independent variables (descriptors 
data matrix), which can be explained by the corresponding eigenvector (i.e. PC). In the other hand, 
the correlation coefficient is a part of the variance in the dependent variables (E1/2) which is 
explained by a PC. As it is seen from Table 2, the changes in the correlation coefficients are not in 
the same trend as the eigenvalues. This means that none of the extracted PCs has information 
content about the dependent variables. 

PCs with higher correlation coefficients have greater information about the variation in the E1/2.
The order of decreasing of the correlation coefficient of PCs with E1/2 is: PC1 > PC4 > PC18 > 
PC11 > PC23 > PC7 > PC8 > PC26 > PC22 > PC24>PC9>…. This trend shows that PC2 and PC3 
which have high information content about the descriptors do not have useful information about 
E1/2. Therefore, it seems reasonable to select the PCs based on their information contents about 
dependent variables (called correlation ranking) instead of their information contents about 
independent variables (called eigenvalue ranking). 

The results obtained with the CR–PCR method are presented in Table 4. First of all, it should be 
noted the statistical quality of the results obtained here are better than those found by the EV–PCR 
method. 

Table 4. Results of CR–PCR and GA–PCR in the presence of different entered PCs 
No PC entered R2

CV PRESSCV R2
P PRESSP R2

C SEC F 
1 PC1 a 0.277 25.72 0.284 24.02 0.351 0.592 25.31
2 PC1+PC4 a 0.442 19.36 0.511 19.05 0.397 0.545 25.78
3 PC1+PC4+PC18 a 0.487 18.61 0.552 18.43 0.579 0.507 20.22
4 PC1+PC4+PC18+PC11 a 0.527 18.11 0.608 18.02 0.637 0.490 17.54
5 PC1+PC4+PC18+PC11+PC23 a 0.556 17.55 0.668 17.12 0.709 0.478 15.55
6 PC1+PC4+PC18+PC11+PC23+PC8 a 0.582 17.21 0.744 17.01 0.781 0.474 13.56
7 PC1+PC4+PC18+PC11+PC23+PC8+PC7 a 0.589 17.23 0.752 17.89 0.787 0.470 12.41
8 PC1+PC4+PC18+PC11+PC23+PC8+PC7+PC26 a 0.595 18.09 0.758 17.84 0.790 0.469 10.82
9 PC1+PC4+PC18+PC11+PC23+PC8 +PC7+PC26+ PC22 a 0.599 18.64 0.760 17.86 0.795 0.470 9.64
10 PC1+PC4+PC18+PC11+PC23+PC8 +PC7+PC26+ PC22 a 0.599 18.64 0.760 17.86 0.795 0.470 9.64
11 PC1+PC4+PC18+PC11+PC23+PC8 +PC7+PC26+ PC22+PC24 a 0.604 19.35 0.763 18.02 0.799 0.472 8.68
12 PC1+PC4+PC6+PC11+PC18+PC21 +PC23 +PC25+PC27+PC28 b 0.733 11.81 0.857 12.09 0.893 0.387 15.60
13 PC1+PC4+PC6+PC11+PC18+PC21 +PC25+PC28 b 0.684 13.19 0.818 13.65 0.799 0.414 15.93
a The results obtained by CR–PCR 
b The results obtained by GA–PCR 
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Figure 2. Plot of the predicted potential against the experimental potential for A) GA–PCR and B) GA–ANN. 

The plots of PRESS against the number of PC entered are shown in Figure 1B. As it is seen, the 
values of PRESS for the cross–validation and prediction are decreased by increasing number of PCs 
up to 6, and after that, the PRESS values are gradually increased. The R2 values for the cross–
validation, prediction and calibration are 0.589, 0.744, and 0.781, respectively, which means that 
the six PCs selected by correlation ranking procedure can explain at least 58.9% variances in E1/2. A 
comparison of the F–values obtained from the two PCR methods revealed that the models obtained 
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by the CR–PCR have greater F–values than those obtained by the EV–PCR method, indicating that 
the CR–PCR method gives statistically more significant models than the EV–PCR method. The 
predicted values of E1/2 by the means of the best CR–PCR (model number 6 of Table 4) are 
included in Table 1. 

In the GA–PCR method, different GAs with different set of initial population and different 
number of populations in each generation were run. Almost all of the models give relatively the 
same results. In Table 4, the two best models are represented. As it is obvious, the quality of the 
results obtained by GA–PCR method is superior to that found by the two other PCR models. A 
comparison of the PCs selected by different procedures reveals that the PCs selected by GA are 
close to those selected by the correlation ranking. Five PCs (i.e., PC1, PC4, PC18, PC11 and PC23) are
selected by both GA and CR procedures. The models number 12 and 13 in Table 4 demonstrate that 
more than 73% and 68% of variances in the E1/2 data can be explained by 10 and 8 PCs, selected by 
GA, respectively. In Figure 2A are shown the plots of predicted E1/2 obtained by using the GA–PCR 
(model number 12 of Tables 4) against the experimental E1/2, and the predicted E1/2 values are 
included, in Table 1. 

3.2 ANN Modeling 
A three–layered feed–forward ANN model with back–propagation learning algorithm [41] was 

employed in this work. We have already used this algorithm for different QSAR studies [20, 26, 40] 
and some multi–component analysis [21, 42]. Since the ANN modeling by using GA for feature 
selection is a complex and time consuming procedure, the ANN model was confined to a single 
hidden layer and a sigmoid transfer function, as a more versatile transfer function, was used in this 
layer. The number of nodes in the hidden layer was optimized through the learning procedure. The 
results of the eigenvalue ranking ANN model are given in Table 5. 

Table 5. Results of EV–ANN in the presence of different entered PCs 
PC entered nH RMSEp R2

P RMSEc R2
C

PC1 2 0.321 0.341 0.301 0.388 0.307 
PC1+PC2 2 0.270 0.389 0.239 0.422 0.251 
PC1 to PC3 4 0.230 0.461 0.204 0.481 0.211 
PC1 to PC4 3 0.192 0.598 0.158 0.610 0.171 
PC1 to PC5 2 0.159 0.675 0.121 0.678 0.136 
PC1 to PC6 4 0.147 0.722 0.120 0.741 0.131 
PC1 to PC7 4 0.138 0.784 0.120 0.823 0.127 
PC1 to PC8 2 0.132 0.799 0.105 0.829 0.116 
PC1 to PC9 3 0.135 0.804 0.100 0.849 0.115 
PC1 to PC10 5 0.130 0.814 0.104 0.863 0.115 
PC1 to PC11 4 0.128 0.825 0.103 0.884 0.114 
PC1 to PC12 5 0.141 0.830 0.091 0.891 0.113 
PC1 to PC13 4 0.137 0.832 0.078 0.894 0.109 
PC1 to PC14 4 0.136 0.832 0.089 0.890 0.112 
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In this method, the eigenvalues were entered step by step to the network based on their 
decreasing eigenvalues. In each step, the ANN architecture (i.e., the number of nodes in the hidden 
layer; nH) and parameters (i.e., learning rate and momentum) were optimized to reach the lowest 
fitness (Eq. 3). The performance of the resulted models was evaluated by the fitness function ( ), 
which was calculated based on the root mean square error of both calibration and prediction data. A 
plot of fitness as a function of number of PCs entered is shown in Figure 3. 
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Figure 3. Plot of the variation of fitness as a function of the number of PC for the EA–ANN and CR–ANN models. 

The results indicate that an ANN with 7 PCs as input variables resulted in the optimum network 
model. This model has 2 nodes in its hidden layer and the percent of variances which can be 
explained by this model is 79.9% and 82.9% for the prediction and calibration, respectively. The 
predicted values of E1/2 resulted from this ANN model are shown in Table 6. The major difference 
between the EV–PCR and EV–ANN is that the latter used lower number of PCs, while it explains 
more variance in the E1/2 than the former. This is due to the nonlinear relationship between the PCs 
and E1/2.

In order to apply the correlation ranking–neural network (CR–ANN) model, the ANN was used 
to model the nonlinear relationship between each one of the PCs and the E1/2 data. Therefore, 
separate ANN models were optimized for each PC and the PCs were ranked by the variances in 
E1/2, which could be explained by each of them. 
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Table 6. The predicted values of E1/2 by different ANN models 
Pred. E1/2 Pred. E1/2No a Exp. E1/2 EV CR GA No a Exp. E1/2 EV CR GA 

1 –0.54 –0.641 –0.621 –0.548 35 –1.07 –0.857 –0.985 –1.209 
2 0.146 0.040 0.137 0.139 36 –0.83 –1.096 –0.845 –0.979 
3 –0.216 –0.460 –0.387 –0.371 37 –1.02 –1.200 –0.980 –1.110 
4 –0.093 –0.309 –0.264 –0.169 38 –0.80 –0.538 –0.946 –0.909 
5 –0.17 –0.420 –0.365 –0.186 39 –1.39 –1.019 –1.281 –1.282 
6 0.09 0.055 0.059 0.055 40 –1.56 –1.477 –1.470 –1.661 
7 –0.33 –0.486 –0.480 –0.445 41 –1.49 –1.656 –1.652 –1.443 
8 –0.67 –0.761 –0.868 –0.789 42 –0.86 –0.650 –0.817 –0.890 
9 –0.26 0.011 –0.253 –0.250 43 –1.23 –0.960 –1.214 –1.219 

10 –0.25 –0.642 –0.476 –0.440 44 –1.11 –1.158 –1.281 –1.186 
11 –0.24 –0.169 –0.178 –0.415 45 –1.77 –1.958 –1.844 –1.835 
12 –0.20 –0.261 –0.230 –0.261 46 –1.94 –2.001 –2.004 –1.963 
13 –0.36 –0.320 –0.326 –0.342 47 –0.17 –0.052 –0.152 –0.160 
14 –0.29 –0.384 –0.465 –0.312 48 –0.54 –0.532 –0.543 –0.594 
15 –0.35 –0.370 –0.247 –0.521 49 –0.39 –0.323 –0.325 –0.387 
16 –0.28 –0.236 –0.320 –0.320 50 –1.94 –2.204 –1.919 –1.925 
17 –0.23 –0.100 –0.186 –0.197 51 –0.03 –0.281 –0.204 –0.113 
18 –0.20 –0.480 –0.362 –0.381 52 –0.84 –0.625 –1.047 –0.980 
19 –0.17 –0.242 –0.191 –0.188 53 –0.95 –0.888 –0.889 –0.991 
20 –0.23 –0.236 –0.235 –0.236 54 –0.86 –0.957 –0.934 –0.957 
21 –0.37 –0.630 –0.527 –0.448 55 –1.60 –1.289 –1.511 –1.678 
22 –0.35 –0.684 –0.437 –0.413 56 –1.36 –1.289 –1.293 –1.303 
23 –0.26 –0.504 –0.428 –0.225 57 –2.07 –1.990 –2.209 –2.064 
24 –0.22 –0.219 –0.219 –0.223 58 –0.86 –1.041 –1.041 –0.905 
25 –0.24 –0.532 –0.412 –0.420 59 –0.84 –1.073 –1.002 –0.940 
26 –1.89 –1.623 –1.796 –1.941 60 –1.91 –1.618 –1.891 –1.900 
27 –1.36 –1.628 –1.354 –1.350 61 –1.29 –1.494 –1.421 –1.312 
28 –0.94 –1.287 –1.091 –1.073 62 –1.81 –2.002 –1.980 –1.812 
29 –0.92 –1.080 –1.080 –1.016 63 –0.68 –1.019 –0.672 –0.711 
30 –1.59 –1.561 –1.568 –1.577 64 –1.94 –1.924 –1.927 –2.042 
31 –1.06 –1.046 –1.047 –1.055 65 –2.32 –2.366 –2.341 –2.304 
32 –1.41 –1.247 –1.252 –1.522 66 –2.27 –2.454 –2.181 –2.293 
33 –1.16 –1.117 –1.326 –1.209 67 –2.10 –2.312 –2.075 –2.159 
34 –1.03 –0.774 –1.136 –1.119 68 –2.48 –2.481 –2.480 –2.461 

a The numbers refer to the compounds shown in Table 1 

Table 7. The results of ANN for modeling between each one of PCs and E1/2
PC nH R PC nH r

PC1 2 0.549 PC17 1 0.328 
PC2 2 0.232 PC18 4 0.488 
PC3 3 0.421 PC19 3 0.069 
PC4 2 0.642 PC20 2 0.331 
PC5 4 0.180 PC21 5 0.154 
PC6 1 0.208 PC22 2 0.083 
PC7 3 0.280 PC23 1 0.199 
PC8 2 0.138 PC24 3 0.152 
PC9 2 0.094 PC25 3 0.404 
PC10 2 0.105 PC26 4 0.095 
PC11 3 0.237 PC27 4 0.154 
PC12 2 0.030 PC28 2 0.149 
PC13 3 0.114 PC29 3 0.163 
PC14 3 0.276 PC30 1 0.110 
PC15 4 0.066 PC31 4 0.048 
PC16 2 0.144 PC32 5 0.056 
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The results are summarized in Table 7. As it is obvious from this Table, the correlation 
coefficient obtained for most PCs by ANN is higher than that found by the linear model (i.e. PCR), 
which it is an indication for a nonlinear relationship between the extracted PCs and the E1/2 data. 
The correlation coefficients reported in Table 7 were used to perform the CR–ANN. The EV–ANN 
procedure was repeated for the CR–ANN except that the PCs were entered into the ANN model 
based on their decreasing correlation coefficient. 

The results are summarized in Tables 8. The modeling ability of the ANN was increased by 
introducing more PCs in the model, up to 7 PCs. 

Table 8. Results of CR–ANN and GA–ANN in the presence of different entered PCs 
PC entered nH RMSEp R2

P RMSEc R2
C

PC4 a 2 0.275 0.427 0.297 0.466 0.289
PC4+PC1 a 3 0.237 0.513 0.221 0.559 0.226
PC4+PC1+PC18 a 2 0.204 0.627 0.192 0.696 0.196
PC4+PC1+PC18+PC3 a 4 0.131 0.772 0.102 0.803 0.113
PC4+PC1+PC18+PC3+PC25 a 3 0.103 0.864 0.094 0.875 0.097
PC4+PC1+PC18+PC3+PC25+PC20 a 4 0.089 0.898 0.082 0.907 0.084
PC4+PC1+PC18+PC3+PC25+PC20+PC17 a 3 0.081 0.943 0.077 0.972 0.078
PC4+PC1+PC18+PC3+PC25+PC20+PC17+PC7 a 2 0.081 0.945 0.075 0.978 0.077
PC4+PC1+PC18+PC3+PC25+PC20+PC17+PC7+PC20 a 3 0.082 0.948 0.074 0.980 0.077
PC4+PC1+PC18+PC3+PC25+PC20+PC17+PC7+PC20+PC14 a 4 0.083 0.952 0.072 0.984 0.076
PC4+PC1+PC18+PC3+PC25+PC20+PC17+PC7+PC20+PC14+PC11 a 2 0.081 0.955 0.071 0.984 0.077
PC4+PC1+PC18+PC3+PC25+PC20+PC17+PC7+PC20+PC14+PC11+PC2 a 4 0.084 0.954 0.072 0.983 0.076
PC1+PC3+PC4+PC18+PC14+PC26+ PC20 b 3 0.068 0.967 0.065 0.971 0.066
a The results obtained by CR–ANN 
b The results obtained by GA–ANN 

No improvement in the modeling power of the ANN was observed when more PCs were 
introduced to the network. A plot of the fitness function as a function of the number of PCs entered 
is shown in Figure 3. Thus, the resulted optimum CR–ANN model contained seven PCs (i.e., PC4, 
PC1, PC18, PC3, PC25, PC5, and PC7). This model which used 3 nodes in its hidden layer could 
explain more than 94% of variances in the half–wave potential data with a fitness function equal to 
0.078. The predicted E1/2 values obtained by this model are also included in Table 6. Referring to 
the data shown in Tables 5 and 8, which obtained from the respective EV–ANN and CR–ANN, 
reveals that both models used the same number of PCs as the input (i.e. 7 PCs) with 3 common PCs 
(i.e., PCs 1, 3 and 4); however, the latter could model the structure–electrochemistry relationship 
better, than the former one. 

In order to enhance the modeling ability of ANN, the genetic algorithm was also used for 
selection of PCs. In the GA procedure, the population of the first generation was selected randomly. 
The number of genes with the value 1 was kept relatively low to have a small subset of descriptors 
in the ANN modeling method, i.e., the probability of generating 0 for a gene was set greater than 
the value 1. The operators used here were crossover and mutation. The probability for the 
application of these operators was varied linearly with the generation renewal (0–1% for mutation 
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and 60–90% for crossover). The population size was varied between 50 and 250 for different GA 
runs. For a typical run, the evolution of the generation was stopped when 90% of the generations 
took the same fitness, Eq. (3). The best GA–ANN model is summarized in the last row of Table 8. 
As it is observed, this model with 7 PCs has a fitness function equal to 0.066, which is lower than 
that obtained by the other two ANN models and could explain more than 96% of variances in the 
E1/2 data. The PC1, PC3, PC4, PC18, PC14, PC26 and PC21 selected by GA are used as the input 
variables in ANN. These selected PCs are closer to those selected by CR–ANN, relative to the 
selected PCs by the EA–ANN model. In addition, the results of the CR– and GA–based factor 
selection method in ANN modeling method are closer to each other than the PCR method. The 
predicted E1/2 data obtained by the GA–ANN are given in Table 6, and a plot of the predicted 
potentials by GA–ANN against the experimental potentials is shown in Figure 2B. 

4 CONCLUSIONS 

A quantitative–electrochemistry relationship analysis has been conducted on the half–wave 
potential of 69 different organic compounds by using the principal component regression and 
principal component–artificial neural network modeling methods, with application of three different 
factor selection procedures GA, CR and EV. The genetic algorithm–based factor selection gave 
results superior to those found by the eigenvalue ranking and the correlation ranking procedures. 
Meanwhile, the results of correlation ranking and genetic algorithm selection were more close to 
each other, especially for ANN modeling method. Thus, it can be concluded that the factor selection 
for ANN by correlation ranking is more straightforward than genetic algorithm due to the 
complexity of the principal component–genetic algorithm–artificial neural network model. 
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