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Today speaking on sciences describing nature is always, in some ways, speaking on symmetries (and about 
symmetry breaking) (E. Castellani, Simmetria e Realtà, ‘Le Scienze quaderni’, n. 118, February 2001) 

Internet Electron. J.Mol. Des. 2004, 3 (7), 412–425 
Abstract 

Motivation. The pulled chain–ends problem, where external forces are applied at both ends of a linear chain, is 
of general interest in the behavior of macromolecules in rubber networks, during the elastic deformation process. 
The present work approaches the biopolymer elasticity and the non–linearity of its dynamics. In particular, the 
constrained dynamics of an elastic repeat motif of elastin, the rubber protein of vertebrates, interesting also as a 
biomaterial in medicine, is considered. Four models with external forces for the hydrated elastin flexible 
sequence Gly–Leu–Gly–Gly have been developed. The free molecule represents the chain in the relaxed state of 
the elastomeric network (unperturbed model) in fact, on microscopic length scales individual chains move 
essentially freely as in a polymer solution. The forced ones model the chain in the elastin strained states 
(stretched models). The applied constrains take implicitly into account the effect transmitted down to both the 
ends inside the stressed polymer network. In such a way the attention is focused to the internal changes induced 
in the stretched chain. 
Method. In this framework the elastin oligopeptide Ac–Gly–Leu–Gly–Gly–NMe has been modeled in aqueous 
solution by nearly 8 ns of MD on parallel computers. The chain dynamics was carefully analyzed in terms of 
probability density distributions, time correlation functions, fast Fourier transforms, Hurst critical exponent, 
according to the classical theory of the rubber elasticity. The end–to–end distance and the gyration radius 
describing conformational motions, the mass–center displacement describing translational motions and the 
configurational 3N–dimensional vector Rq, whose components are the Cartesian coordinates of chain atoms, 
describing the global displacement of the peptide was considered. 
Results. In all cases an anomalous diffusion with H < 1/2, typical of the fractional Brownian motions of Self–
Organized Criticality in poor–solvent solution, has been observed. The global mobility of unstrained or strained 
chains is similar, although due to strongly different effects. In fact, in the unperturbed system the motion is 
equidistributed among all internal degree–of–freedom, in contrast, on stretching, the symmetry breaking of the 
internal motions is observed and the dynamics concentrates in the few slower collective modes with large 
fluctuations of the mass–center. This behavior typical of nonlinear complex systems is at the basis of the self–
organized dynamics. 
Conclusions. The proposed mechanism of Chaos–Symmetry–Breaking, in agreement with the previous 
mechanism of Transition–to–Chaos would be at the basis of the entropic drop and retractile force of the rubber 
elasticity. As expected, the entropy change in the proposed mechanism is proportional to the density of the 
cross–links and models the dynamics of constrained chains in the non–ideal rubber. 
Keywords. Molecular dynamics simulations; biomaterials; protein rubbers; time series nonlinear analysis; 
chaos; theory of rubber elasticity. 
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Abbreviations and notations 
MD, Molecular Dynamics Simulations SOC, Self–Organized Criticality 
RW, Random Walks BW, Brownian Walks 
FBW, Fractional Brownian Walks  

1 INTRODUCTION 

The most important question of the rubber elasticity is how the macroscopic deformation of the 
network is transmitted down to the individual chains [1]. In other words, which is the dynamics of 
strained chains in rubber networks? 

Generally, the rubber deformation occurs at a constant volume, and, in the case of the simple 
uniaxial elongation, we observe a compensating contraction along the directions orthogonal to that 
of stretching. According to the rubber molecular theories of elasticity [2,3], to such macroscopic 
modifications, the variation of the density distribution of the cross–linked chain end–to–end 
distances corresponds at a microscopic level. The mean value distribution is shifted to higher values 
along the stretch axis and to lower ones along the orthogonal axes, with respect to the unperturbed 
values. The extent of the mean value and the fluctuations amplitude changes remain controversial 
[4]. In the classical theories, the microscopic affine deformation and the conservation of the 
isotropic Brownian motion of the chain are assumed for small deformations. 

In the present work, the deformed state of an elastin oligopeptide has been represented by 
elongated chains, constrained at the ends through a harmonic potential, simulating a stretched chain 
as in Wasserman–Salemme [5] and Li–Alonso–Bennion–Daggett [6] works about elastin–based 
biopolymers as the Urry’s polypentapeptide (VPGVG)n.

If we imagine pulling a flexible phantom chain at both ends [7], then the symmetry due to 
thermal agitation is broken and the free energy A is given by: 

A= 3kTR2/2R0
2 (1.1)

and the elastic force arises: 
F= – 3kT R/R0

2 (1.2)

where R is the end–to–end vector, kT the thermal energy factor and R0
2 the mean square end–to–end 

distance. These are the fundamental formula of ideal chains. 

The free energy per unit volume of an ideal rubber network [8,9] is obtained through the 
generalization of paste equations and reads 

A= 3 kT< R2/R0
2>/2 (1.3)

where the average is over  crosslinked chains. For a generic constant volume deformation, in the 
classical affine assumption, we can write the constitutive equation of ideal rubber: 

A= kT(  1
2+  2

2+  3
2)/2 (1.4)
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For the uniaxial deformation the constitutive equation becomes 

A = kT(  2+ 2/ )/2 (1.5)

and the engineering stress  reads: 

= kT( /  2) (1.6)

Three basic complex behaviors are ignored by the classical theory of rubber elasticity: the finite 
extendibility of the chains, the entanglements and knots of the non–ideal rubber. The so–called 
Mooney effect, from the ratio plot exp/ vs. –1, is due to these simplifications. 

In elastin, different repeating sequences are present, some of which seem to have an important 
role in the elasticity mechanism [10]. The elastin oligopeptide Ac–Gly–Leu–Gly–Gly–NMe whose 
dynamic behavior is analyzed, is one of the better–studied repeating sequences. 

The glycine–rich hydrophobic segments have been in–depth studied both experimentally and 
through molecular modeling [11–18]. Nevertheless, the behavior of folded or extended 
conformations in the presence of external forces applied at the end–groups, have been only 
marginally examined, although the polypeptide chain in the protein experiences them in 
correspondence of the deformed states, according to the rubber elasticity theories. MD of the 
glycine–rich tetrapeptide Ac–Gly–Leu–Gly–Gly–NMe in aqueous solution, applying external 
forces to the end–carbon atoms – constrained chain–end models – contribute to fill this gap. 

The tetrapeptide was simulated in conditions of elongational deformation, by varying the force 
constant K of the harmonic potential applied to the peptide end–atoms. In this way, the applied 
force constant was used as a control parameter through which different possible stretching 
conditions were simulated. 

In the past [14], we have hypothesized that the conformational changes, on passing from the 
stretched to the relaxed state, are accomplished by a dynamics transition: the relaxed state presents a 
diffusive–chaotic motion, while the stretched a vibrational–solitonic one. These states are 
characterized by a different entropy, higher for the relaxed than for the stretched state. This agrees 
with what expected for nonlinear systems, which can experience different kinds of motions, 
depending upon the oscillation amplitude. In fact the stretched state gives high frequency and low 
amplitude motions, and the application of an external force implies a decrease of the volume of the 
phase space accessible to the system. In contrast, the relaxed state can experience a larger region in 
the phase space, due to the larger amplitude motions. The results obtained for short sequences are 
thought to be extended to elastin and it has been proposed the transition–to–chaos mechanism [14] 
for the elasticity and the soft–solution model [19] for the rubber protein morphology. 
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2 METHODS

Potential energy was calculated by the Cornell et al. [20] force field, where the energy partition 
is assumed, as a sum stretching, bending, dihedral, nonbonded pairs interactions terms. 

The water molecules were explicitly considered, according to Jorgensen et al. [21] TIP3P model, 
in which the molecules are considered as rigid, and Lennard–Jones and electrostatic interaction 
taken into account. 

In order the molecular system can be adequately treated it was necessary to take into account a 
realistic model, that in our case is a dilute aqueous solution of the Ac–Gly–Leu–Gly–Gly–NMe 
tetrapeptide in 852 water molecules at room conditions (300 K and 1 atm). The usual periodic 
boundary conditions were applied. 

The MD at constant temperature and pressure by means of the method of Berendsen et al. [22] 
was accomplished by coupling the system to external baths by the time constants T = P  0.2 ps. 

The motion equations were integrated in Cartesian coordinates by means of the Verlet leapfrog 
algorithm [23]. The integration step t was set as 1 fs and the system trajectories sampled every t=
0.04 ps. 

To perform the constrained simulations the end carbon atoms strained by a harmonic force with a 
force constant K of 100 kcal/molÅ2 (value corresponding to a bending deformation, e.g. K = 80 
kcal/mol deg2 for N–C–O), 10 and 1 was considered. 

Four models of the elastin oligopeptide have been elaborated. The unperturbed state, without 
external forces, has been obtained starting from the results of a previous Simulated Annealing of the 
aqueous solution towards the normal conditions, as described in the literature [15]. A highly 
perturbed state has been considered by straining through an external harmonic force, having a force 
constant K = 100 kcal/molÅ2 the ends of the fully extended chains, extending a previously 
published simulation [18]. This worst stretched case has been assumed as reference limit. Two cases 
of moderate stretching have been selected. The first has been obtained by constraining the final state 
of the unperturbed dynamics using K = 10; the second constraining the final state of the previous 
dynamics using K = 1. In our intention, the free molecule represents the corresponding chain 
segment in the relaxed protein. In fact, in such conditions the protein chain, although crosslinked, 
behaves as a usual molecule in solution [7]. In contrast, the strained and partially extended models 
represent possible chain states during the process of elastic deformation of the parent protein. 

The system evolution has been analyzed by taking into account the about 200,000 points (nearly 
8 ns) of the system trajectory stored during these simulations. 

The dynamic behavior of the peptide in aqueous solution has been characterized by time series 
linear and nonlinear analysis methods of the following structural parameters: the end–to–end 
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distance between the end–carbon atoms of the chain, the gyration radius, the displacement of the 
mass–center and the global displacement Rq, the 3N–dimensional configurational vector. Its 
components are the Cartesian coordinates of each peptide atoms, whose modulus Rq has been 
evaluated through the extended Pythagorean theorem. 

From the viewpoint of the end–to–end vector, the molecular detail is ignored and the system 
reduced to the dynamics of a vector, implicit function of the 3N – 6 internal degrees–of–freedom. 
This variable describes the fluctuations of the crosslinks in the classical theories of the rubber 
elasticity. In the estimate of the gyration radius the molecular system is reduced to a spherical 
surface with the same inertial momentum, whose radius is a function of the internal variables. 

From the configurational point of view, the system is reduced to the motion of the representative 
point in the 3N–dimensional spatial section of the phase space. 

Then, end–to–end distance and gyration radius take into account the internal dynamics and the 
global displacement Rq takes into account the global dynamics of the examined system. 

The Hurst exponent is a measure of the long–time correlations in a time series [24] and allows 
the classification of time series since it is able to distinguish the existence of correlations from 
random noise. In the rescaled range analysis or R/S analysis, the span of a random process is 
divided by its variance, resulting in a new variable that depends on the length of the data recorded. 
Let us define the average of the time series L(t) over the time interval :

<L> = ( t=1 L(t) ) / (2.1)

Let us also define the accumulated departure A(t, ) of L(t) from the mean as: 

A(t, )= u=1 ( L(u) – <L> ) (2.2)

So that the span of the process S( ) is defined by: 

S( )= max1<t< A(t, ) – min1<t< A(t, ) (2.3)

Let us also introduce the standard expression for the variance V( ):

V( )= ( t=1  (L(t) – <L> )2 /  )1/2 (2.4)

The rescaled Hurst analysis consists in studying the properties of the ratio: 

R( ) = S( ) / V( ) (2.5)

The dependence of R( on the number of data points follow an empirical power law described 
as R( ) = R0

H obtained over a wide range of time lengths , where 0 < H < 1 is the Hurst exponent. 
The fractal dimension of the trace can then be calculated from the relationship D = 2 – H.

If H = 1/2 Brownian motions with short–range correlation occur. According to Mandelbrot [22], 
processes with H = 1/2 are defined fractional and show long–range correlations. Fractional 
Brownian motions are divided into two families: if H > 1/2, the positive correlation among the 
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increments of motion implies the persistence in the trajectory of the induced motion. In contrast, if 
H < 1/2, the anticorrelation on a large scale generates an antipersistent behavior. 

The Power Spectrum method for estimation of Hurst exponent uses the properties of self–affine 
trace. In practice, to obtain an estimate of Hurst exponent, one calculates the power spectrum I( ),
where  is the frequency, and plots the logarithm of I( ) versus the logarithms of . If the trace is 
self–affine, this plot should follow a straight line with a negative slope – . This value is related to 
the Hurst exponent as = 2H+ 1. 

The time series are analyzed as time normalized autocorrelation functions, according to the 
following equation: 

Cx( ) = x(t) x(t + )  / 2x(t) (3.1)

where x is the selected variable,  the correlation time and 

x(t) = x(t) x(t) (3.2)
2x(t) = [x(t) x(t) ]2 (3.3)

This function gives an assessment of the dependence upon coupling among time neighboring 
points. The correlation time 0 defines the time when the correlation function assumes the value 1/e.

Highly random time series are not correlated: the correlation function goes abruptly to zero with 
a very short correlation time. Highly correlated data, as in harmonic vibrations, have oscillating 
correlation functions, with a slow varying trend. Chaos from nonlinear differential equations, as the 
motion equations of MD, can be correlated in a complex way. 

2.1 Computer Software 
The MD was performed using the AMBER [25] software developed by Kollman et al., under the 

UNIX operating system on a cluster of parallel computers. The data analysis has been carried out 
using BENOIT [26], TISEAN [27] and homemade FORTRAN software. 

3 RESULTS AND DISCUSSION 

In Figure 1 the strong changes of the dynamics in the presence of the end–constrains are evident 
even from a qualitative examination of the trajectories of the different selected variables. In 
particular, as expected, the fluctuation amplitude of the end–to–end distance is inversely 
proportional to the intensity of the applied constrain and a similar, although less evident, trend is 
observed for the gyration radius. In all cases, an increase in the mass–center displacement of the 
system is observed in the presence of external forces. Nevertheless, the system configurational 
mobility of the strained systems is lower or similar than that of the free one. 
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Figure 1. Trajectories of the end–to–end distance Dee, the gyration radius Rgr, the mass–center displacement Dmc and 
the global displacement Rq. Only the first 10,000 steps, corresponding to 0.4 ns, are plotted. Å are used. As in all the 
following figures, the black curve corresponds to the unperturbed model and colored curves to constrained ones: blue 
for K = 1 kcal/molÅ2, red for K = 10 and magenta for K = 100. 

The quantitative analysis of the previous observations is conduced in Figure 2, where the 
distributions of the probability density Px are shown, and in Table 1, where the mean and rms values 
of the selected variables are reported. From the statistical view–point, the unperturbed chain is in 
the Gaussian regime, as it is evidenced by the ratio of <Dee>/<Rgr> = 2.5, according to 
<Dee

2>/<Rgr
2> = 6 for the ideal chain [8]. So, the tetrapeptide is enough long (more than the 

persistence length of the chain) to be able to simulate the local mobility of the protein. In contrast, 
the constrained models are in the non–Gaussian regime, as it is evidenced by the ratio of 
<Dee>/<Rgr>  2.5, and their dynamics correlated to the non–ideal chain behavior. 

The narrowing of the histograms of end–to–end distance is evident, on passing from the free to 
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the forced system. In these last cases impressive Gaussian distributions are observed, typical of 
random highly uncorrelated motions. An analogous trend is observed for the hystograms of the 
gyration radius. This is in agreement with the expected configurational entropy reduction of flexible 
chains on the elastic deformation. In contrast, the histograms of the mass–center displacement are 
always larger in the presence of external constrains. This is in agreement with the presence of 
collective fluctuations on the external force. Finally, the position and the amplitude of the Rq
histograms, Pq, confirm that the global mobility, as well known, is invariant respect to the intensity 
of the applied constrains. 

Figure 2. Hystograms Pee, Pgr, Pmc and Pq of the whole trajectories (about 200,000 steps). 

A coherent picture emerges from the analysis of the correlation functions Cx( ) of Figure 3 and 
from the corresponding correlation times 0 of Table 2. In general, in the presence of the applied 
external force, we observe a decrease of the correlation–symmetry of the internal and global 
functions and a corresponding increase of the collective fluctuations with the mass–center 
displacement. 

In particular, the described trend is well evident in the case of Cee( ). For Cgr( ) a decrease in the 
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symmetry of the forced models with respect to the free ones is observed, nevertheless no significant 
differences are obtained between the forced cases with K = 1 or 10. Moreover the high correlation 
for K = 100 is anomalous. Likely, in this last case, being frozen the internal motions, external 
rotational motions take place. In the Rq correlation functions, Cq( ), the several motions interfere, 
evidencing the maximum correlation in the unperturbed model, essentially ruled by the independent 
internal motions, and collective effects for K = 10 and 100. 

Table 1. Mean and rms values of Dee, Rgr, Dmc and Rq. Å are used. 
 K 

Avr&rms 0 1 10 100 
10.36 13.15 13.35 17.26Dee 3.04 0.74 0.25
4.19 4.45 4.47 5.11Rgr 0.33 0.18 0.15 0.10
0.38 2.34 2.64 1.58Dmc 0.17 0.91 1.09 0.57

29.62 22.42 23.22 15.19Rq 5.42 4.07 5.55 3.21

Figure 3. Time normalized autocorrelation functions Cee, Cgr, Cmc and Cq. 50,000 steps correspond to 2 ns. 
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Table 2. Correlation times 0 corresponding to Cee( ), Cgr( ), Cmc( ) and Cq( ). Time is expressed as step=0.04 ps. 
 K 
0 0 1 10 100 
Dee 570 29 2 1 
Rgr 502 157 167 1425
Dmc 2 208 603 222 
Rq 1094 342 828 598 

Figure 4. (R/S)ee Log–Log plot.    Figure 5. Fast Fourier spectrum Iee.

Table 3. Hurst exponents Hee, Hgr, Hmc and Hq from R/S analysis. 
 K 
H 0 1 10 100
Dee 0.33 0.18 0.1 0.1 
Rgr 0.41 0.38 0.39 0.34
Dmc 0.13 0.36 0.37 0.30
Rq 0.41 0.38 0.39 0.34

Table 4. Hurst exponents Hee, Hgr, Hmc and Hq from Power spectrum analysis 
 K 
H 0 1 10 100
Dee 0.27 0 0 0 
Rgr 0.20 0 0 0 
Dmc 0 0.38 0.39 0.26
Rq 0.36 0.35 0.38 0.30

In Figure 4 – Table 3 and Figure 5 – Table 4 the outcome of Hurst exponent estimation of the 
time series by R/S and Power spectrum analysis are reported, respectively. The previous 
conclusions are confirmed in an evident way: the free chain possesses uncorrelated conformational 
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mobility, the end–constrained models concentrate their mobility in collective motions with mass–
center fluctuations. Globally the mobility of the free or strained chains is similar, but due to 
different origins. This, as previously said, has deep implications on the entropic changes, which 
occur in the presence of constrains, and is in agreement with the experimentally observed entropy 
loss in elastic macromolecules upon stretching. In other words, the conformational variables of the 
unperturbed system, show the character of Fractional Brownian Motions with 0 < H <0.5, dynamics 
which is typical of SOC [28] and chaotic, under the percolation threshold, systems. In the 
constrained systems, the variables have the character of RW with H = 0. As largely discussed 
elsewhere, this behavior is the resultant of the linear dynamics of the normal modes of vibration for 
a number of independent variables, which takes place reducing the motion amplitude. The situation 
inverts itself passing to mass–center fluctuations. For the unperturbed system we observe RW with 
H=0, and for the perturbed ones FBW. In the presence of the external forces, the low–frequency 
collective motions that imply the mass–center oscillations cannibalize in a hegemonic way [29] the 
remaining configurational motions, according to a typical mechanism for nonlinear systems, as 
already shown by Fermi–Pasta–Ulam [14,30]. 

We find again the transition to chaos mechanism for the rubber elasticity, that was previously 
proposed [14]. In such a way it is detailed by identifying the breaking of the high–entropy ergodic 
behavior of the unperturbed system in the presence of the external force, with few prevailing 
collective modes. Therefore, the low–entropy system is defined by a low number of degrees–of–
freedom in a similar way to the roller formation, to the instability condition in the convective 
motion of Benard’s cells [29] on increasing the control parameter, corresponding to the temperature 
difference. In our case the external force plays the role of the order parameter. Nevertheless, we 
observe that the global configurational mobility is invariant as expected at the thermodynamic 
equilibrium. 

4 CONCLUSIONS

A class of phenomena exists, which seem to escape the second principle of thermodynamics. 
They are the complex systems, which give spontaneous phenomena of differentiation and self–
organization. For example, in the Couette–Taylor experiment [31], two coaxial cylinders, 
containing a liquid are rotated. Above a critical value of applied rotation rate, in the moving liquid 
ordered and oscillating rolls are generated. A further example is given by the spontaneous formation 
of simple or complex crystalline structures, as snowflakes [32]. The self–organized processes imply 
a local entropy decrease, compensated by an increase of the ambient one. In such a way, the 
formation of dissipative structures occurs with an increase of the global entropy, as required by the 
second principle. From this point of view, the protein folding itself falls within the class of the self–
organized phenomena, and, in the light of the obtained results, also the macromolecular elasticity is 
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a similar process. For elastomers upon stretching a local decrease of entropy is observed, that can 
imply also crystallization phenomena (as in synthetic rubbers as polybutadiene or natural as 
polyisoprene, but not in protein rubbers). 

In conditions of instability, the symmetric systems show less symmetric behaviors [31]. Such 
phenomenon is observed during the deformation of a cylinder uniformly compressed along its axis: 
when the compression reaches a critical load, the undeformed state becomes unstable and the 
Yoshimura structure [33] appears with symmetrical wrinkle pattern. And the homogeneous flows 
generates the Karman vortex street of reduced symmetry behind a circular cylinder [34]. 

This is the mechanism of structure formation by the symmetry breaking. The typical result of the 
symmetry breaking is the formation of regular structures in a geometric sense. According to the 
extended Curie principle [31], the microscopic asymmetries, as the not eliminable thermal 
fluctuations, play the key role in the choice of the effective final result in the symmetric ensemble 
of the possible effects: the symmetry is more dispersed than lost. In this sense, the sensible 
dependence upon the initial conditions, typical of the chaotic systems, the breaking of the symmetry 
of the unstable systems and the second law of thermodynamics combine them. The concept of the 
symmetry breaking has an enormous interest and is applied in all the sciences, from biology to 
astronomy. 

In the case of the elastin polypeptide chain, the obtained results show that the unperturbed 
system presents a symmetrically dynamics of the internal freedom. For the stressed system, the 
entropy reduction is associated to the symmetry breaking of the chaotic motion: the transition from 
dynamics, which involves 3N–6 degrees–of–freedom to the few collective modes with a large 
displacement of the mass–center. 

This is a phenomenon of symmetry breaking in which, far from equilibrium in instability 
conditions, the energy equidistribution is lost and the motion is localized in the slower system 
variables at expense of the faster ones. At a macroscopic level the dynamics is determined by the 
macroscopic observables, called order parameters (in our case the external elastic force) with an 
enormous reduction of the degrees–of–freedom, as largely discussed in synergetics [35]. This 
phenomenology is similar to that observed in the Pasta–Ulam–Fermi problem, where the vibrational 
motion of a chain of nonlinear coupled and end–constrained oscillators is more localized in low–
frequency solitons than distributed according to the energy equipartition, as largely discussed 
elsewhere [14]. 

In our case, the system remaining disordered even under stretching, the transition is not strictly 
order–disorder or linear–nonlinear like. The observed dynamics is chaotic in all cases, nevertheless 
under stretching an enormous reduction of the degrees–of–freedom with respect to the nonlinear 
behavior with a consequent decrease of entropy in Lyapunov sense [16]. 
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Nevertheless, the global mobility of unperturbed or stretched chains is similar, although due to 
strongly different effects, according to the classical rubber theory of elasticity. Accordingly, to the 
described dynamic picture, the slower variables of the constrained chains prevail, under stretching, 
on the remaining degree–of–freedom of the system. The Chaos–Symmetry–Breaking mechanism, 
recognized by us for a short flexible chain of a rubber protein, could be generalized to the entropic 
mechanism of the rubber elasticity. 

In the light of the known experimental results and the equations of the classical theories, the 
entropy change under stretching is proportional to the crosslinks density, then inversely 
proportional to the crosslinked chain length. This result is in agreement with the proposed 
mechanism; in fact the extent of the expected effects will depend upon the number of the 
constrained chains. Moreover, our theory could take into account the non–ideal rubber dynamics at 
high deformations due to tighting of intrachain knots and interchain links [36] which involve an 
increase of short active non–Gaussian segments and the decrease of entropy according to the 
proposed Chaos–Symmetry–Breaking mechanism. 

The effort of quantifying the free energy changes as a function of the chain length, of the 
temperature and of the fluctuation amplitude of the unperturbed chain, is in progress. In such a way, 
the macromolecular elastic behavior is taken back to the framework of the self–organized 
behaviors, shown by the complex dynamical systems. 
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