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Abstract 

Molecular graph descriptors are used in developing structure–property models, in drug design, virtual synthesis, 
similarity and diversity assessment. We present a new application of topological indices in computing similarity 
matrices that are subsequently used to develop quantitative structure–property relationship and quantitative 
structure–activity relationship models. The molecular structure is described by similarity matrices obtained from 
similarity indices calculations, when each molecule is compared to every other from the data set. Four similarity 
indices are introduced for the computation of the molecular similarity from a set of topological indices that 
numerically characterize the structure of chemical compounds. Using the multilinear regression model, the 
significant columns from the similarity matrices are selected as independent variables in a structure–activity 
study of anticonvulsant phenylacetanilides. The results obtained show that similarity matrices derived from 
molecular graph descriptors can provide the basis for the investigation of quantitative structure–activity 
relationships. 
Keywords. QSAR; quantitative structure–activity relationships; molecular similarity; similarity matrices; 
molecular graph; topological indices; molecular graph operators. 

1 INTRODUCTION 

Structural descriptors that express in numerical form the chemical structure are used in 
quantitative structure–property relationships (QSPR) and quantitative structure–activity 
relationships (QSAR) studies, in drug design, virtual synthesis, similarity and diversity assessment 
of combinatorial libraries. They belong to several classes of descriptors, depending on the model 
used to represent the chemical compounds, i.e. constitutional, graph–theoretical, topological, 
geometrical, electrostatic, quantum, and grid descriptors. Modern 3D QSAR techniques generate 
thousands of highly correlated grid descriptors that describe various molecular fields. The resulting 
QSAR data matrix, containing thousands of columns corresponding to individual grid points, cannot 
be correlated with the multilinear regression (MLR) method. Usually, the partial least squares (PLS) 
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method is used to extract from this data matrix the information regarding the ligand–receptor 
interactions and to generate a 3D QSAR. PLS extracts principal component–like vectors (latent 
variables) from the matrices of independent and dependent variables. This method takes a matrix 
containing a large number of potentially useful structural descriptors, which can be highly 
intercorrelated, and offers a correlation using the latent variables. 

A procedure for reducing the too large number of independent variables from grid 3D QSAR 
was developed using techniques from the similarity analysis. At a qualitative level, molecular 
similarity has played a fundamental role in chemistry due to the principle that similar structures 
have similar properties. Quantitative applications of this principle include molecular superposition, 
searching of common structural fragments, similarity searching in chemical databases, diversity 
(dissimilarity) selection in virtual combinatorial libraries, QSPR, and QSAR [1–5]. Several 
similarity indices are used in modern theoretical chemistry for defining molecular similarity 
measures computed from grid or field descriptors, quantum chemistry indices, molecular graph 
descriptors, or counts of various molecular subgraphs [6–8]. 

Carbó computed a quantum similarity index RAB by comparing the electron densities, A and B,
of two molecules A and B [9–12]: 
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where the integrations are considered over all space. Willett revealed that the Carbó index formula 
computed for a property distributed on a grid surrounding a molecule is essentially equivalent to the 
Cosine coefficient [6,8]. Hodgkin and Richards [13] pointed that in the Carbó index the 
denominator is a normalizing constant and RAB varies in the range 0 to 1. Such an index of 
similarity is required to have a value of 1 when the electron density distributions in the two 
molecules are identical. However, substitution of A = a B into the above equation, where a is a 
constant, gives an index of unity. Thus the Carbó index represents the similarity of the shapes of the 
density distributions but not of the magnitudes as well. 

Although originally proposed as a method of comparing molecules in terms of electron density, 
Hodgkin and Richards [13] proposed to use the formula of the Carbó index with other quantum 
properties, such as molecular electrostatic potential (MEP) or molecular electrostatic field (MEF). 
The use of electrostatic potentials and electrostatic fields is particularly attractive since they are 
better discriminators than charge and problems can be avoided if only values external to a van der 
Waals volume of the molecule are considered. The electrostatic potentials and electrostatic fields 
can be calculated over a grid of points surrounding a molecule. 

In an attempt to increase the magnitude sensitivity of similarity calculations, Hodgkin and 
Richards proposed the Hodgkin index [13]: 
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Analogously with the Carbó index, the Hodgkin index can be used with grid–based properties such 
as MEP or MEF, when its formula is identical with that of the Dice coefficient, as revealed by 
Willett [6,8]. Richards [14] proposed a linear index for the computation of grid–based molecular 
similarity descriptors, while Good [15] introduced a related formula to define an exponential 
similarity index. 

Good and Richards [16,17] developed 3D QSAR models from similarity matrices computed with 
the Carbó, Hodgkin, linear, and exponential similarity indices. The similarity matrices, derived 
from the shape and electrostatic potential molecular fields, are correlated with the biological 
activities of the molecules, using either neural networks or PLS models. So and Karplus [18,19] 
used the Carbó and Hodgkin similarity indices to compute shape and electrostatic similarity 
matrices. The 3D QSAR, developed with multi–layer feedforward neural networks, used structural 
descriptors (columns from the similarity matrices) selected with a genetic algorithm. Kubinyi [20] 
employed SEAL (Steric and Electrostatic ALignment) similarity matrices and SEAL–based fields 
(hydrophobic, electrostatic and steric) to compute distance and covariance matrices. PLS models 
derived with all these matrices showed good calibration and prediction results. 

The computation of the three–dimensional similarity of two molecules, irrespective of the 
similarity index or grid property, is a nonlinear optimization process that is computationally very 
expensive. Various time consuming procedures, such as the Simplex, Monte Carlo, or genetic 
algorithms were proposed for this task. On the other hand, molecular graph descriptors are 
particularly efficient in measuring the molecular similarity. Although several applications using 
graph similarity were published, this class of 2D similarity descriptors was not extensively used in 
QSPR and QSAR models studies [21–28]. 

Molecular path sequences and atomic identification numbers were used with success to compute 
molecular similarity indices based on the Euclidean distance and information theory [21–26]; this 
approach was found useful in selecting similar compounds on a rational basis and in ordering 
chemical compounds. Herndon computed similarity matrices based on the subgraphs count and 
various distance metrics, such as the Hamming, Manhattan, or Euclidean [27]. The similarity 
matrices of 47 steroids were used to obtain a MLR model for the binding affinity constants for 
human corticosteroid binding globulin [28]. In this approach, Rum and Herndon proposed a linear 
code for the molecular structure; the similarity of two molecules is computed by comparing the 
canonical notations of the two compounds. 

Topological indices (TI), representing an important class of structural descriptors, are derived 
from the molecular graph and encode in numerical form information regarding molecular size, 
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shape, branching, presence of heteroatoms and multiple bonds. Numerous articles [29–41] present 
the theory and applications of topological indices in developing QSPR and QSAR models. 
Although topological indices are important structural descriptors in QSPR and QSAR studies, they 
were not used in the computation of molecular similarity indices. In this paper we present an 
application of topological indices for the computation of similarity matrices; the columns of these 
matrices (describing the pairwise molecular similarity) are used as structural descriptors in MLR 
equations that model the anticonvulsant activity of a set of phenylacetanilides. 

2 MOLECULAR SIMILARITY INDICES 

The chemical structure of each molecule A is encoded into a set of n structural descriptors SD
collected into the vector X = X(A), X(A) = {SD1, SD2, SD3, …, SDn}. For a set M of m molecules, 
M = {A, B, C, …} all the structural descriptors are collected into an m×n matrix where each row 
corresponds to a molecule and each column corresponds to a particular structural descriptor. For the 
computation of the similarity indices the structural descriptors can be standardized by the Z_Score 
method [6] (autoscaling) that gives variables centered to have zero mean and scaled to unit 
variance. Each structural descriptor (column from the QSAR data table) is individually autoscaled. 
For a vector of N variables Y = {y1, y2, y3, …, yN} the autoscaling is performed with the formula: 

y
y y

si
i (3)

where y  is the mean of the variables: 
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and s = s(Y) is the standard deviation of the vector Y:

s V ( )Y (5)

i.e. the square root of the variance V = V(Y) of the vector Y:
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From the similarity indices used in 3D QSAR studies, we have selected four for the computation 
of the similarity matrices from vectors of molecular graph descriptors, namely the Cosine, Dice, 
Richards, and Good similarity indices. 

Cosine similarity index. The Cosine coefficient, CS, for the similarity between two molecules A
and B is given by: 
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with the property –1 CS  1. As pointed above, Carbó [9–12] used a form of the Cosine similarity 
index defined for an integral of electron densities over all space. The Cosine coefficient measures 
the deviation of two datasets from proportionality. 

Dice similarity index. The Dice coefficient, DS, for the similarity between two vectors of 
structural descriptors X(A) and X(B) is given by: 
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with the property –1 DS  1. 

Richards similarity index. The Richards similarity index is defined by the equation [14]: 
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where max(|X(A)i|,|X(B)i|) equals the larger absolute value at the position i of the two vectors X(A)
and X(B) that collect the structural descriptors for molecules A and B.

Good similarity index. The Good similarity index is an exponential variant of the Richards 
index [15]: 
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Usually, the above four similarity indices were used with three–dimensional grid descriptors to 
compute the similarity of steric, electrostatic, or lipophilic fields. The first practical application of 
3D similarity indices is for the alignment (superposition) of the molecules, which is an important 
step in any 3D QSAR study. A second application is the computation of similarity descriptors used 
to develop a 3D QSAR equation. In this paper we use these four similarity indices to compute 
molecular similarity matrices from a 2D numerical characterization of the chemical structure 
represented by a set of topological indices. An important advantage of the computation of the 
molecular similarity from graph descriptors is the straightforward application of Eqs. (7)–(10) and 
the elimination of the optimization (maximization) of the similarity indices. The molecular graph 
operators that are relevant for the present paper are introduced in the next section. 
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3 MOLECULAR GRAPH DESCRIPTORS 

In this paper chemical structures are represented as molecular graphs. By removing all hydrogen 
atoms from the chemical formula of a compound containing covalent bonds one obtains the 
hydrogen–depleted (or hydrogen–suppressed) molecular graph of that compound, whose vertices 
correspond to non–hydrogen atoms and whose edges correspond to covalent bonds [1]. A graph G = 
G(V,E) is an ordered pair consisting of two sets V = V(G) and E = E(G). Elements of the set V(G)
are called vertices and elements of the set E(G), involving the binary relation between the vertices, 
are called edges. The number of vertices N represents the number of elements in V(G), N = |V(G)|,
and the number of edges M represents the number of elements in E(G), M = |E(G)|. The graph 
vertices are labeled from 1 to N, V(G) = {v1, v2, ..., vN}, and the edge connecting vertices vi and vj is 
denoted by eij.

Using graph theory, an organic compound containing heteroatoms and/or multiple bonds can be 
represented as a vertex– and edge–weighted molecular graph. A vertex– and edge–weighted (VEW) 
molecular graph G = G(V,E,Sy,Bo,Vw,Ew,w) consists of a vertex set V = V(G), an edge set E = 
E(G), a set of chemical symbols of the vertices Sy = Sy(G), a set of topological bond orders of the 
edges Bo = Bo(G), a vertex weight set Vw(w) = Vw(w,G), and an edge weight set Ew(w) = Ew(G).
The elements of the vertex and edge weight sets are computed with the weighting scheme w.
Usually, hydrogen atoms are not considered in the molecular graph, and in a VEW graph the weight 
of a vertex corresponding to a carbon atom is 0, while the weight of an edge corresponding to a 
carbon–carbon single bond is 1. Also, the topological bond order Boij of an edge eij takes the value 1 
for single bonds, 2 for double bonds, 3 for triple bonds and 1.5 for aromatic bonds. Several 
procedures for computing vertex and edge weights were proposed in the literature [42–46]. From 
them, five weighting schemes for molecular graphs will be used in this study to compute the vertex 
Vw and edge Ew parameters [46]: P, the atomic polarizability weighting scheme; E, the atomic 
electronegativity weighting scheme; R, the atomic radius weighting scheme; A, the atomic mass 
weighting scheme; AH, the atomic mass weighting scheme that considers the hydrogen atoms. 

In a weighting scheme w the vertex Vw and edge Ew parameters are computed from a property pi

associated with every vertex vi from G, vi V(G), and the topological bond order Bo of all edges 
from the molecular graph. The vertex parameter Vw(w)i for the vertex vi is: 

Vw(w)i = 1 – pC/pi (11)

and the edge parameter Ew(w)ij for the edge between vertices vi and vj is: 

Ew(w)ij = pCpC/Boijpipj (12)
where pi is the atomic property of vertex vi, pj is the atomic property of vertex vj, and pC is the 
atomic property for carbon atom. Several weighting schemes can be obtained when p represents 
different atomic properties: Z, when p is the atomic number [42]; A, when p is the atomic mass; P,
when p is the atomic polarizability; E, when p is the atomic electronegativity; R, when p is the 
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atomic radius [46]. The atomic properties for the P, E, and R weighting schemes are taken from a 
recent report [47]; selected values of atomic properties for the computation of vertex and edge 
parameters are presented in Table 1. Similar equations were used to define the X and Y weighting 
schemes, using different sets of values for the atomic radius and electronegativity [45]. 

Table 1. Selected set of atomic properties used with different weighting schemes: the atomic number Z, the atomic 
mass A, the polarizability v (Å3), the atomic radius r  (Å), and the electronegativity .

Element Z A v r
B 5 10.811 3.03 1.45 2.02 
C 6 12.011 1.76 1.21 2.55 
N 7 14.007 1.10 1.03 3.12 
O 8 15.999 0.802 0.93 3.62 
F 9 18.998 0.557 0.82 4.23 
Si 14 28.086 5.38 1.75 1.87 
P 15 30.974 3.63 1.54 2.22 
S 16 32.066 2.90 1.43 2.49 
Cl 17 35.453 2.18 1.30 2.82 
As 33 74.922 4.31 1.63 2.11 
Se 34 78.960 3.77 1.56 2.31 
Br 35 79.904 3.05 1.45 2.56 
Te 52 127.60 5.5 1.77 2.08 
I 53 126.90 4.7 1.68 2.27 

The AH weighting scheme uses the following equation to define the vertex parameter Vw(AH)i

for the non–hydrogen atom i:
Vw(AH)i = 1 – AC/(Ai + NoHiAH) = 1 – 12.011/(Ai + 1.0079NoHi) (13)

The edge parameter Ew(AH)ij for the bond between atoms i and j is defined with the equation: 

Ew(AH)ij = ACAC/Boij(Ai + NoHiAH)(Aj + NoHjAH) = 
12.011·12.011/Boij(Ai + 1.0079NoHi)(Aj + 1.0079NoHj)

(14)

where AC = 12.011 is the atomic mass for carbon, AH = 1.0079 is the atomic mass for hydrogen, 
NoHi is the number of hydrogen atoms bonded to the heavy atom i, and NoHj is the number of 
hydrogen atoms bonded to the heavy atom j.

A molecular graph can be represented as a molecular matrix, such as the adjacency or distance 
matrix. The structural descriptors used in QSPR and QSAR studies can be computed from a large 
variety of molecular matrices [1,40]; from the group of the most widely used molecular matrices we 
mention the adjacency A, distance D, reciprocal distance RD [48–50], distance–path Dp, and 
reciprocal distance–path RDp matrices [59]. 

Consider the vertex– and edge–weighted graph G with N vertices and its distance matrix D(w) = 
D(w,G) computed with the weighting scheme w. The reciprocal distance matrix of a weighted graph 
G with N vertices, RD(w) = RD(w,G), is a square N×N symmetric matrix, whose entries [RD(w)]ij

are equal to the reciprocal of the corresponding value of the D(w) matrix (i.e. 1/[D(w)]ij) for non–
diagonal elements, and equal to [D(w)]ii for the diagonal elements: 
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The distance–path matrix of the weighted graph G, Dp(w) = Dp(w,G), is the square N×N
symmetric matrix whose element [Dp(w)]ij is defined with the formula: 

[Dp(w,G)]ij = [D(w,G)]ij([D(w,G)]ij + 1)/2 (16)

The reciprocal distance–path matrix of a weighted graph G with N vertices, RDp(w) = 
RDp(w,G), is: 
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We have to mention that the distance–path and reciprocal distance–path matrices for alkanes and 
cycloalkanes were introduced by Diudea [51–53]. However, for the computation of the structural 
descriptors derived from weighted molecular graphs we use the above two equations. 

The vertex sum operator VS. Consider the vertex vi from the VEW graph G with N vertices 
and the symmetric graph matrix M(w) = M(w,G) computed with the weighting scheme w. The 
vertex sum of the vertex vi, VS(M,w)i = VS(M,w,G)i, is defined as the sum of the elements in the 
column i, or row i of the molecular matrix M [46]: 

VS M M M( , [ ( )] [ ( )], ) = =w G w wi ij
j

N

ji
j

N

1 1
(18)

The Chi operator. The Chi operator [54] is derived from the Kier and Hall connectivity indices 
[29] by replacing the local invariant v  with any other vertex invariant. Consider a vertex structural 
descriptor VSD(M,w) = VSD(M,w,G) that assigns a numerical invariant VSD(M,w)i to each vertex 
vi from the VEW molecular graph G. The Chi operator Chi(VSD,M,w) = Chi(VSD,M,w,G) of the 
graph G is: 

m
t j

j

n

i

s

w wChi VSD M VSD M( ) ( , ) ) /, , = ( 1 2

11
(19)

where s is the number of connected subgraphs of type t with m edges, n is the number of vertices of 
the subgraph, and w is the weighting scheme. In this study we use two VSD atomic descriptors, 
namely the valency val and the vertex sum VS. The valency of the vertex vi, val(w)i = val(w,G)i, is 
defined as the sum of the weights Ew(w)ij of all edges eij incident with vertex vi:

val( ) ( )
( )

w Ew wi ij
e E Gij

= (20)

where w is the weighting scheme used to compute the Ew parameters. Alternatively, the valency of 
the vertex vi may be computed as the sum of the non–diagonal elements in the row i, or column i, of 
the adjacency matrix A(w) = A(w,G), of a molecular graph G with N vertices: 
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The set of valency values for all vertices in a graph forms the vector Val = Val(G) whose ith
element represents the valency of the vertex vi.

The Wiener operator Wi. Consider the vertex– and edge–weighted molecular graph G with N
vertices and its symmetric molecular matrix M(w) = M(w,G) computed with the weighting scheme 
w. The Wiener operator Wi(M,w) = Wi(M,w,G) is [46,54]: 

Wi M M( , ) =w G w G ij
j i

N

i

N

, [ ( , )]
1

(22)

The hyper–Wiener operator HyWi. Based on a symmetric molecular matrix M(w) = M(w,G)
computed with the weighting scheme w, the hyper–Wiener operator HyWi(M,w) = HyWi(M,w,G)
is defined with the equation [54]: 

HyWi M M M( , , ) =
1
2

2w G w wij ij
j i

N

i

N

[ ( )] [ ( )]
1

(23)

The spectrum operators MinSp and MaxSp. The matrix spectrum operator Sp(M,w,G) = {xi, i
= 1, 2, ..., N} represents the eigenvalues of the matrix M(w) or the roots of the polynomial 
Ch(M,w,G,x), Ch(M,w,G,x) = 0 [46]. The MinSp(M,w,G) and MaxSp(M,w,G) spectral operators 
are equal to the minimum and maximum values of Sp(M,w,G), respectively [54,58]: 

MinSp(M,w,G) = min{Sp(M,w,G)}  (24)

MaxSp(M,w,G) = max{Sp(M,w,G)} (25)

4 SIMILARITY QSAR FOR ANTICONVULSANT PHENYLACETANILIDES

Data. The similarity QSAR models are developed for a data set consisting of 30 
phenylacetanilides with the general formula 1, presented in Table 2 together with their 
anticonvulsant activity –log ED50 taken from the literature [55]. The anticonvulsant activity ED50

(mol kg–1) is evaluated by the maximal electroshock seizure method in mice. 

CH2 C
O

NH
X1

A Hansch–type QSAR analysis of these 30 compounds was performed with the aid of the 
following descriptors: log P, the octanol–water partition coefficient; , the Hammett electronic 
constant; Ip, an indicator variable which takes the value 1 for p–derivatives and 0 for other 
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compounds; ES, the Taft steric constant for o–derivatives; R, the electronic parameter for o–
derivatives. The Hansch equations with four, five, and six independent variables are: 

–log ED50 = 2.280 + 0.264(log P)2 + 1.222(log P) – 0.161  – 0.079Ip
n = 30 r = 0.700 s = 0.228     F = 5.99 

–log ED50 = 2.311 + 0.290(log P)2 + 1.309(log P) – 0.135  – 0.157Ip + 0.404ES
n = 30 r = 0.800 s = 0.195     F = 10.05 

–log ED50 = 2.478 + 0.276(log P)2 + 1.229(log P) – 0.353  – 0.223Ip + 0.278ES + 0.621R
n = 30 r = 0.855 s = 0.172     F = 7.83 

Table 2. Structure of substituted phenylacetanilides, molecular similarity descriptors, and anticonvulsant activity. 
No. X S4 S10 S20 S26 –log ED50,exp –log ED50,res 
1 H 0.99828 0.99978 0.99981 0.99944 3.77 0.28 
2 m–Me 0.99817 0.99986 0.99999 0.99943 3.75 0.16 
3 m–Et 0.99756 0.99958 0.99988 0.99900 3.67 0.01 
4 m–F 1 0.99903 0.99799 0.99962 3.34 –0.23 
5 m–Cl 0.99836 0.99983 0.99982 0.99951 3.40 –0.24 
6 m–Br 0.99735 0.99896 0.99896 0.99864 3.32 0.06 
7 m–I 0.99331 0.99514 0.99515 0.99481 2.64 –0.03 
8 m–CF3 0.99820 0.99520 0.99331 0.99655 2.84 –0.29 
9 m–OH 0.99962 0.99986 0.99935 0.99999 3.58 –0.00 

10 m–NH2 0.99903 1 0.99980 0.99985 3.81 0.12 
11 m–NHMe 0.99960 0.99964 0.99905 0.99982 4.03 0.14 
12 m–NHEt 0.99944 0.99901 0.99824 0.99935 3.91 0.03 
13 m–OMe 0.99961 0.99768 0.99623 0.99862 3.55 –0.08 
14 m–CN 0.99795 0.99973 0.99989 0.99928 3.44 –0.01 
15 m–NO2 0.99898 0.99639 0.99466 0.99759 3.62 0.30 
16 m–COMe 0.99775 0.99950 0.99967 0.99903 3.95 0.27 
17 m–OAc 0.99604 0.99161 0.98907 0.99349 3.48 0.15 
18 m–OEt 0.99823 0.99506 0.99308 0.99645 3.42 –0.23 
19 m–OSO2Me 0.99562 0.99192 0.98958 0.99357 3.77 –0.03 
20 p–Me 0.99799 0.99980 1 0.99932 3.26 –0.21 
21 p–F 0.99999 0.99904 0.99804 0.99961 3.49 0.04 
22 p–OH 0.99957 0.99988 0.99941 0.99997 3.72 0.03 
23 p–OMe 0.99965 0.99787 0.99651 0.99873 3.78 0.04 
24 p–COMe 0.99734 0.99933 0.99963 0.99875 3.51 –0.17 
25 o–F 0.99999 0.99904 0.99800 0.99964 3.48 0.08 
26 o–OH 0.99962 0.99985 0.99932 1 3.33 –0.17 
27 o–NH2 0.99907 0.99999 0.99976 0.99988 3.40 –0.06 
28 o–OMe 0.99957 0.99753 0.99602 0.99853 3.43 –0.03 
29 o–NO2 0.99880 0.99600 0.99415 0.99731 3.29 0.17 
30 o–COMe 0.99806 0.99960 0.99965 0.99924 3.41 –0.11 

Structural descriptors. In this study we use structural descriptors computed with the following 
operators: Wiener Wi, hyper–Wiener HyWi, Chi, and the spectral operators MinSp and MaxSp.
The molecular graph descriptors were computed with five weighting schemes [46], namely P, E, R,
A, and AH, using the distance–path Dp(w) and reciprocal distance–path RDp(w) matrices. The list of 
the 111 structural descriptors used in the QSAR study is: (1) the molecular weight, MW; (2) the 
Chi indices: 0Chi(VSD,M,w), 1Chi(VSD,M,w), 2Chi(VSD,M,w), 3Chi(VSD,M,w)p,
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3Chi(VSD,M,w)c, computed with the vertex descriptors val(w) and VS(M,w); (3) Wiener indices 
computed with the Wiener operator Wi(M,w); (4) hyper–Wiener indices computed with the hyper–
Wiener operator HyWi(RDp,w) using the reciprocal distance–path matrix; the distance–path matrix 
was not used because it gives too large values for the hyper–Wiener operator; (5) the spectral 
operators MinSp(M,w) and MaxSp(M,w).

Similarity matrices. Using the 111 structural descriptors, four similarity indices, namely the 
Cosine, Dice, Richards, and Good similarity indices, are employed for the computation of the 
similarity matrices. Before computing the similarity matrices, the individual descriptors can be 
standardized. For each similarity matrix, three experiments were performed: with original, not 
scaled descriptors; with descriptors scaled in the range [0, 1]; with autoscaled descriptors. All 
resulting similarity matrices contain 30 rows and 30 columns. The column j of a similarity matrix 
describes the pairwise molecular similarity between molecule j and all other molecules in the QSAR 
set; each column represents a structural descriptor that is used to develop MLR equations that 
model the anticonvulsant activity of the phenylacetanilides. 

Table 3. Coefficients, structural descriptors SDi (i = 1–4), and statistical indices for the best two MLR equations with 
four independent variables that model the anticonvulsant activity of substituted phenylacetanilides using structural 
descriptors form the similarity matrices computed with the Cosine, Dice, Richards, and Good indices. The MLR 
equations have the general form: log 1/ED50 = a0 + a1SD1 + a2SD2 + a3SD3 + a4SD4.
Index Scalea a0 a1 SD1 a2 SD2 a3 SD3 a4 SD4 r s F
Cosine n –88.391 1396.8 S4 23800 S10 –10025 S20 –15083 S26 0.8413 0.17 15.1
Cosine n –39.463 4447.3 S13 –2337.3 S24 –22103 S26 20041 S27 0.8400 0.17 15.0
Cosine r 3.0999 –6.5609 S7 –6.1930 S8 5.4709 S19 7.5149 S20 0.7491 0.21 8.0 
Cosine r 3.4384 –11.120 S6 –7.7669 S8 5.8386 S19 13.131 S20 0.7453 0.21 7.8 
Cosine a 3.4850 –2.5011 S7 –1.6925 S8 –1.3511 S15 2.2037 S19 0.8024 0.19 11.3
Cosine a 3.4849 –2.0890 S7 –1.5538 S8 2.2647 S19 1.2876 S20 0.7817 0.20 9.8 
Dice n 55.224 –4915.9 S3 9123.4 S11 –2922.5 S28 –1362.4 S29 0.8061 0.19 11.6
Dice n 35.050 –5304.3 S3 13638 S11 –6819.3 S13 –1567.5 S14 0.8023 0.19 11.3
Dice r 3.7097 –8.8579 S6 –6.1424 S8 4.6256 S19 10.215 S20 0.7521 0.21 8.1 
Dice r 3.3188 13.216 S2 –11.972 S6 –6.4669 S8 5.8498 S19 0.7508 0.21 8.1 
Dice a 3.4953 3.3340 S1 –1.6396 S7 1.4625 S19 –2.0775 S25 0.7833 0.20 9.9 
Dice a 3.4328 0.45397 S3 –1.4013 S7 –1.5621 S8 1.2142 S19 0.7818 0.20 9.8 
Richards n –27.253 15.663 S1 4.7674 S16 2.7624 S17 15.085 S19 0.8122 0.19 12.1
Richards n –22.462 12.779 S1 1.9093 S12 4.2061 S16 13.379 S19 0.7951 0.19 10.7
Richards r 4.0788 –1.3329 S7 –1.7179 S8 0.60656 S12 0.88140 S16 0.7883 0.20 10.3
Richards r 4.2665 –1.3140 S7 –1.7262 S8 2.0974 S16 –0.93004 S30 0.7797 0.20 9.7 
Richards a 3.5704 –1.0934 S7 –1.6166 S8 0.65009 S16 0.53826 S19 0.8318 0.18 14.0
Richards a 3.7747 –1.3118 S7 –1.5581 S8 –0.81551 S26 –0.43779 S29 0.8295 0.18 13.8
Good n 11.274 4.1843 S6 –10.337 S7 –7.2693 S8 4.0588 S16 0.7913 0.19 10.5
Good n –26.432 13.766 S1 2.3235 S12 5.8791 S16 13.696 S19 0.7911 0.19 10.5
Good r 4.9709 –2.0017 S7 –2.3389 S8 0.78786 S12 1.0041 S16 0.7987 0.19 11.0
Good r 5.3629 –2.0431 S7 –2.2805 S8 2.3661 S16 –1.1605 S30 0.7926 0.19 10.6
Good a 5.9327 –0.71027 S4 –2.0121 S7 –1.8099 S8 –0.73567 S29 0.7935 0.19 10.6
Good a 4.6152 –1.6790 S7 –2.1219 S8 0.75784 S16 0.63128 S19 0.7930 0.19 10.6
a n: not scaled; r: range scaled between 0 and 1; a: autoscaled 
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QSAR model. The QSAR models were obtained by selecting the best combination of structural 
descriptors that correspond to certain conditions. This algorithm takes a similarity matrix and from 
the pool of 30 similarity descriptors generates the best QSAR equations by applying the following 
steps: (1) All one–parameter correlation equations are computed. All descriptors with a correlation 
coefficient greater than a threshold, |rmin| > 0.15, are selected for further use. (2) MLR regression 
equations are computed with all possible groups of k descriptors selected in step (1). The most 
significant MLR equations are reported. (3) Step (2) is performed for k from 2 and 5. 

Table 4. Coefficients, structural descriptors SDi (i = 1–5), and statistical indices for the best two MLR equations with 
five independent variables that model the anticonvulsant activity of substituted phenylacetanilides using structural 
descriptors form the similarity matrices computed with the Cosine, Dice, Richards, and Good indices. The MLR 
equations have the general form: log 1/ED50 = a0 + a1SD1 + a2SD2 + a3SD3 + a4SD4 + a5SD5.
Index Sa a0 a1 SD1 a2 SD2 a3 SD3 a4 SD4 a5 SD5 r s F
Cosine n –82.057 –5197.4 S3 27654 S10 –14624 S22 4947.3 S23 –12690 S26 0.8615 0.17 13.8
Cosine n –83.187 –4703.9 S3 25018 S10 4285.9 S13 –9328.8 S22 –15179 S26 0.8611 0.17 13.8
Cosine r 2.8204 –5.0924 S7 –8.1697 S8 5.9184 S19 20.499 S22 –13.031 S25 0.8133 0.19 9.4
Cosine r 2.6897 –8.7206 S6 –9.7796 S8 6.8259 S19 25.849 S22 –13.574 S25 0.8128 0.19 9.3
Cosine a 3.4833 11.909 S1 1.7526 S8 4.3125 S13 6.5682 S16 6.1041 S19 0.8493 0.17 12.4
Cosine a 3.4808 –31.700 S3 –1.9399 S8 –4.4082 S9 47.166 S11 –32.381 S13 0.8472 0.17 12.2
Dice n 51.910 –3438.1 S3 –82.869 S8 10700 S11 –5218.5 S13 –2033.3 S14 0.8309 0.18 10.7
Dice n 54.253 –4189.0 S3 –38.424 S7 7824.0 S11 –2445.8 S28 –1225.6 S29 0.8285 0.18 10.5
Dice r 0.17410 45.257 S1 –9.8488 S6 8.4885 S19 9.8679 S23 –41.699 S26 0.8286 0.18 10.5
Dice r 0.99701 34.634 S1 –5.0754 S7 6.6589 S19 7.4544 S23 –34.911 S26 0.8145 0.19 9.5
Dice a 3.4894 2.2011 S1 –1.8243 S7 –1.0581 S8 1.5030 S19 –1.6456 S25 0.8254 0.18 10.3
Dice a 3.4806 3.9353 S1 –1.6453 S7 1.7071 S19 –2.6696 S25 0.37711 S28 0.8135 0.19 9.4
Richards n –22.492 13.819 S1 8.4152 S11 3.7387 S17 12.722 S19 –6.3204 S28 0.8194 0.19 9.8
Richards n –28.498 15.275 S1 1.2637 S2 4.3818 S16 3.1213 S17 15.740 S19 0.8183 0.19 9.7
Richards r 4.2673 –1.1731 S4 –1.6137 S7 –1.6980 S8 1.1104 S10 1.3446 S16 0.8179 0.19 9.7
Richards r 4.2176 –1.3595 S7 –1.5093 S8 1.4011 S11 0.82144 S16 –1.2194 S28 0.8150 0.19 9.5
Richards a 3.5613 0.58982 S6 –1.6190 S7 –1.5770 S8 0.68508 S16 0.57048 S19 0.8482 0.17 12.3
Richards a 3.7240 –0.91898 S4 –1.3081 S7 –1.5589 S8 1.1572 S10 –0.88832 S27 0.8444 0.17 11.9
Good n 11.372 5.7891 S6 –11.135 S7 –8.1684 S8 8.5086 S16 –4.4612 S30 0.8177 0.19 9.7
Good n –30.688 15.070 S1 2.9583 S3 4.5937 S16 2.9444 S17 15.157 S19 0.8144 0.19 9.5
Good r 5.5134 –1.4742 S4 –2.3986 S7 –2.3354 S8 1.3116 S10 1.4569 S16 0.8275 0.18 10.4
Good r 5.5437 1.0090 S2 –0.99854 S4 –2.5549 S7 –2.3565 S8 1.4112 S16 0.8227 0.18 10.1
Good a 4.0933 0.61235 S2 –1.8269 S7 –1.9259 S8 0.92862 S16 0.88068 S19 0.8170 0.19 9.6
Good a 5.7841 –1.3736 S4 –2.1027 S7 –1.7042 S8 0.84170 S10 –0.63587 S29 0.8142 0.19 9.4
a Scale: n: not scaled; r: range scaled between 0 and 1; a: autoscaled 

Results. In Tables 3 and 4 we present the statistical indices (r, correlation coefficient, s, standard 
deviation, and F, Fisher test) for the best two QSAR models with 4 and 5 similarity descriptors, 
together with the coefficients of the MLR equations. An inspection of these results indicates a 
significant difference of the results obtained with the four similarity indices and scaling methods. 
The best QSAR model having four similarity descriptors, with r = 0.8413, s = 0.17, F = 15.1, is 
obtained using the Cosine and unscaled topological indices and contains the descriptors S4, S10,
S20, and S26. The similarity descriptor S4, representing the 4–th column from the similarity matrix, 
represents the similarity of the 30 compounds with molecule 4, with X = m–F. The remaining three 
descriptors represent the similarity of the investigated molecules with compound 10 (X = m–NH2), 
20 (X = p–Me), and 26 (X = o–OH). We have to point that the most active compound, 11, was not 
selected as a similarity standard. Also, in the four molecules that represent the similarity standard 
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one can recognize the three substitution modes from the set of compounds, i.e. ortho, meta, and 
para. The statistical quality of this equation is comparable with that of the Hansch model with six 
parameters. However, an important advantage of this approach that uses theoretical parameters is 
the possibility to compute the structural descriptors for all organic compounds; a Hansch analysis 
uses empirical substituent constants and frequently, when the proper value is missing, one uses 
approximations or values from similar groups. The values of the similarity descriptors S4, S10, S20,
and S26 are given in Table 2, together with the residual values (log 1/ED50,res = log 1/ED50,exp – log 
1/ED50,calc). An inspection of the residual values shows that all biological activities are well 
estimated, with no statistical outliers. 

Table 5. Structure of substituted phenylacetanilides, molecular similarity descriptors, and anticonvulsant activity. 
No X S3 S10 S22 S23 S26 –log ED50,exp –log ED50,res 
1 H 0.99941 0.99978 0.99946 0.99661 0.99944 3.77 0.20 
2 m–Me 0.99985 0.99986 0.99949 0.99670 0.99943 3.75 0.12 
3 m–Et 1 0.99958 0.99912 0.99622 0.99900 3.67 0.07 
4 m–F 0.99756 0.99903 0.99957 0.99965 0.99962 3.34 –0.26 
5 m–Cl 0.99957 0.99983 0.99952 0.99685 0.99951 3.40 –0.15 
6 m–Br 0.9985 0.99896 0.99854 0.99539 0.99864 3.32 0.12 
7 m–I 0.99438 0.99514 0.99455 0.99069 0.99481 2.64 –0.03 
8 m–CF3 0.99319 0.99520 0.99646 0.99929 0.99655 2.84 –0.21 
9 m–OH 0.99905 0.99986 0.99999 0.99877 0.99999 3.58 –0.03 

10 m–NH2 0.99958 1 0.99988 0.99787 0.99985 3.81 0.15 
11 m–NHMe 0.99895 0.99964 0.99986 0.99913 0.99982 4.03 0.14 
12 m–NHEt 0.99829 0.99901 0.99941 0.99943 0.99935 3.91 –0.02 
13 m–OMe 0.99592 0.99768 0.99858 0.99998 0.99862 3.55 –0.04 
14 m–CN 0.99990 0.99973 0.99933 0.99660 0.99928 3.44 –0.09 
15 m–NO2 0.99441 0.99639 0.99750 0.99972 0.99759 3.62 0.28 
16 m–COMe 0.99988 0.99950 0.99913 0.99666 0.99903 3.95 0.29 
17 m–OAc 0.98882 0.99161 0.99337 0.99785 0.99349 3.48 0.10 
18 m–OEt 0.99284 0.99506 0.99640 0.99938 0.99645 3.42 –0.17 
19 m–OSO2Me 0.98927 0.99192 0.99337 0.99689 0.99357 3.77 –0.08 
20 p–Me 0.99988 0.99980 0.99941 0.99651 0.99932 3.26 –0.18 
21 p–F 0.99761 0.99904 0.99959 0.99967 0.99961 3.49 –0.06 
22 p–OH 0.99912 0.99988 1 0.99874 0.99997 3.72 –0.04 
23 p–OMe 0.99622 0.99787 0.99874 1 0.99873 3.78 0.14 
24 p–COMe 0.99989 0.99933 0.99890 0.99622 0.99875 3.51 –0.14 
25 o–F 0.99756 0.99904 0.99957 0.99959 0.99964 3.48 0.16 
26 o–OH 0.99900 0.99985 0.99997 0.99873 1 3.33 –0.23 
27 o–NH2 0.99951 0.99999 0.99988 0.99789 0.99988 3.40 –0.07 
28 o–OMe 0.99568 0.99753 0.99845 0.99992 0.99853 3.43 –0.00 
29 o–NO2 0.99385 0.99600 0.99716 0.99955 0.99731 3.29 0.14 
30 o–COMe 0.99981 0.99960 0.99928 0.99698 0.99924 3.41 –0.11 

As already mentioned, the results reported in Table 3 show an important dependence of the 
statistical quality of the QSAR model on the similarity index used to compute the similarity matrix 
and on the scaling of the topological indices. The best results are obtained with the Cosine index 
computed with unscaled data (s = 0.17), followed by the Richards index computed with autoscaled 
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data (s = 0.18). Lower quality results are obtained with the Dice and Good indices. 

From the results presented in Table 4 one can see that the best QSAR model containing five 
similarity descriptors, with r = 0.8615, s = 0.17, F = 13.8, is obtained with the Cosine index and 
unscaled topological indices; we have to mention that this similarity matrix gives also the best 
results in QSAR models with four similarity descriptors. The five similarity descriptors (S3, S10,
S22, S23, and S26) represent the similarity of the investigated molecules with compound 3 (X = m–
Et), 10 (X = m–NH2), 22 (X = p–OH), 23 (X = p–OMe), and 26 (X = o–OH). The values of the 
similarity descriptors S3, S10, S22, S23, and S26 are given in Table 5, together with the residual 
values for the 30 molecules in the QSAR set. Overall, the statistical indices of the QSAR equations 
from Table 4 do not present a significant improvement when compared with the results from Table 
3, obtained with four descriptors. A significant influence of the similarity matrix on the statistical 
quality of the QSAR model is observed also from Table 4, with best results are obtained with the 
Cosine index computed with unscaled data, followed by the Cosine index computed with autoscaled 
data and the Richards index computed with autoscaled data. More QSAR models have to be 
investigated in order to identify the best way of computing the similarity matrix. Until then, the 
single advice is to experiment with similarity matrices computed with several similarity indices and 
to use the three scaling procedures for the molecular graph descriptors. 

5 CONCLUSIONS

Molecular similarity plays a fundamental role in structure–activity relationship due to the 
principle that similar structures have similar biological activities. A quantitative model that 
implements this principle is represented by the use of similarity matrices. The large majority of 
QSAR equations developed from similarity matrices are based on three–dimensional field 
descriptors computed on a grid. The computation of the three–dimensional similarity of two 
molecules, irrespective of the similarity index or grid property, is a nonlinear optimization process 
that is computationally very expensive. Various time consuming procedures, such as the Simplex, 
Monte Carlo, or genetic algorithms were proposed for this task. Therefore, the 3D similarity 
matrices are obtained in a computationally intensive process, and offer only a limited and partial 
measure of the molecular similarity, because only one field is used in their calculation. 

On the other hand, molecular graph descriptors are particularly efficient in measuring the 
molecular similarity. Although several applications using graph similarity were published, this class 
of 2D similarity descriptors was not extensively used in QSPR and QSAR studies. In this paper we 
have presented a new application of topological indices for the computation of similarity matrices in 
which the numerical descriptors are obtained by computing a similarity index between a molecule 
and every other from the data set. In order to analyze a data set of N molecules, in the N×N
similarity matrix the column j describes the pairwise molecular similarity between molecule j and 
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all other molecules in the QSAR set; each column represents a structural descriptor that is used to 
develop QSAR models. 

In this paper we have described the molecular structure with 111 graph descriptors computed 
from six operators, namely the Wiener Wi, hyper–Wiener HyWi, Chi, and the spectral operators 
MinSp and MaxSp. Two molecular matrices (the distance–path Dp and reciprocal distance–path 
RDp) and five weighting schemes (P, E, R, A, and AH) [46,56,57] were used to compute the 
topological indices. The similarity matrices were computed using four similarity indices, namely the 
Cosine, Dice, Richards, and Good similarity indices. For each similarity matrix, three experiments 
were performed: with original, not scaled descriptors; with descriptors scaled in the range [0, 1]; 
with autoscaled descriptors. 

The similarity matrices were used to develop multilinear regression QSAR models of the 
anticonvulsant activity of 30 phenylacetanilides; the significant columns from the similarity 
matrices were selected as independent variables in QSAR equations. The best models with 4 and 5 
descriptors were obtained with similarity indices computed with the Cosine index from unscaled 
topological indices. The results obtained show that similarity matrices derived from molecular 
graph descriptors represent an efficient model for the investigation of quantitative structure–activity 
relationships.
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