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Abstract 

Motivation. In predictive microbiology, identification of different combination of environmental factors (such 
as temperature, water activity, pH), which lead to growth/ no–growth of microorganism, is a problem of 
potential importance. Ant colony optimization (ACO) is one of the most recently developed nature–inspired 
metaheuristic techniques, based on the foraging behavior of real life ants and has already exhibited superior 
performance in solving combinatorial optimization problems. This work explores the search capabilities of this 
metaheuristic for learning classification rules in bacterial growth/no growth data pertaining to pathogenic 
Escherichia coli R31 as affected by temperature and water activity. The discovered rules thus can be used to 
verify whether any combination of temperature and water activity belong to either growth or no–growth of the 
microorganism. 
Method. The ant algorithm for classification works iteratively as follows: At any iteration level, software ants 
construct rules using available heuristic information and dynamically evolved pheromone trails. A rule that has 
highest prediction quality is said to be a discovered rule, which represents information extracted from the 
database. Examples correctly covered by the discovered rule are removed from the training set, and another 
iteration is started. Guided by the modified pheromone matrix, the agents build improved rules and the process is 
repeated for as many iterations as necessary to find rules covering almost all cases in the training set. 
Results. The developed ACO classifier system is utilized on several datasets and its performance is compared 
with the performance of other well known algorithms in terms of the average accuracy attained in 10–fold cross 
validation. The results obtained by this algorithm compare very favorably with other classifiers. Additionally, for 
discovery of classification rules in the dataset pertaining to bacterial growth/no–growth, the performance of the 
ACO classifier is compared with the C4.5 system with respect to the predictive accuracy and the simplicity of 
discovered rules. In both these performance indices the ACO classifier compares very well with the C4.5. 
Conclusions. The results obtained on several data sets indicate that the algorithm is competitive and can be 
considered a very useful tool for knowledge discovery in a given database. 
Keywords. Ant colony optimization; metaheuristic; classification; Escherichia coli; C4.5. 

Abbreviations and notations 
ACO, Ant colony optimization NN, Nearest neighbors 
FEBANN, Feedforward error back propagation artificial neural network  PNN, Probabilistic neural network 
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BP, Back propagation artificial neural network NLLR, Nonlinear logistic regression 
HDT, Hybrid decision tree  
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1 INTRODUCTION 

Classifying new patterns from a domain of observable attributes by associating their membership 
to a class belonging to a set of classes is a problem having wide applications in diverse fields 
including chemistry, microbiology, molecular biology etc [1–20]. Methods applied for this task can 
be broadly categorized as statistical [1–5], clustering [6–9], rule based methods [10,11], artificial 
neural networks [12–19], and support vector machines [20]. 

Compared with the rule–based methods, neural networks have some advantages. Neural 
networks can handle noisy data. They can induce hypotheses that generalize better than those of 
other competing algorithms and have relatively high classification accuracy rate. Several empirical 
studies have pointed out that there is some problem domains in which neural networks provide 
superior predictive accuracy to commonly used symbolic learning algorithms. However, the trained 
neural networks are not commonly used for data mining tasks because they are usually not 
comprehensible, and many neural network learning methods are slow, making them impractical for 
very large datasets. A hypothesis represented by a trained neural network is a black box, which need 
to be translated into a more comprehensible language; rule extraction can be one of the ways to 
solve this problem. Rule based classification, which partitions a given dataset into disjoint groups, 
is one very important class of data mining problems. In this task, the discovered knowledge is often 
expressed as a set of rules in the form: 

IF <conditions> THEN <class>

The advantage of this knowledge representation is that it is quite insightful to the user hence we 
have used this kind of knowledge representation to express the information extracted by the 
proposed classifier system. Approaches proposed so far for mining classification rules from 
databases are mainly decision tree based like C4.5, ID3 on symbolic learning methods. Recently, 
metaheuristic algorithms [10,11,21,22] are also used for knowledge discovery in a database. In this 
paper, we have explored the idea of nature inspired metaheuristic algorithm, known as ant colony 
optimization as a rule based machine–learning system. The ant colony optimization (ACO) is a 
population based co–operative search technique that imitates the way how real–life ants, using the 
pheromone trail communication, find the shortest path from their nest to food source and back [23]. 
The ant colony behavior is described using the diagram shown as Figure1. 

Initially, ants start their foraging process by moving randomly in different directions. Some of 
them follow a path that turns out to be shorter and the rest of the ants trace the longer route. During 
their sojourns ants deposit pheromone on the ground. Ants that follow shorter route need less time 
to cover the distance (from nest to food source and back) as compared to along the longer path 
hence they trace this path with strong pheromone deposition and forming a pheromone trail. Ants 
also possess the ability to sense the pheromone. Thus, ants probabilistically favor moving in the 
direction in which there is a higher concentration of pheromone. More and more ants follow the 
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path of stronger pheromone trail and also simultaneously deposit their own pheromone in the trail 
and the shortest route of the entire colony is quickly established. It is this autocatalytic and 
pheromone mediated collective intelligent swarm behavior of real life ants that inspired researchers 
to devise artificial ant algorithms to solve several problems [23–29]. 

Figure 1. Movement of ants from nest to food source and back. (a) Ants randomly start 
with equal probability in different directions of food source. (b) Pheromone is deposited 
more quickly on the shorter path and eventually most of the ants choose the shortest path. 

In predictive microbiology, developing classification models for identification of growth/no–
growth of a given microorganism under a set of environmental conditions (e.g. temperature (T),
water activity (Aw), pH) is an important class of research activity [1–5,12–19]. Methods based on 
statistical logistic regression are commonly used for classification and prediction of growth under 
environmental factors [1–5]. For example, Presser et al [2] using logistic regression derived the 
equation for estimating growth of E. coli strain with respect to T, pH, Aw and lactic acid 
concentration. Recently, artificial neural networks also been utilized for classification task [12–19]. 
For example, modeling the time dependent microorganism growth [14,16]. 

This paper illustrates how ant colony optimization can be utilized in predictive microbiology for 
discovery of classification rules in the data pertaining to bacterial growth as affected by 
environmental factors. The ant algorithm for classification works as follows. At any iteration level, 
software ants employ available heuristic information and dynamically evolved pheromone trails to 
construct rules. A rule that has highest prediction quality is said to be a discovered rule, which 
represents information extracted from the database. Examples correctly covered by the discovered 
rule are then removed from the training set, and another iteration is started. This process is repeated 
for as many iterations as necessary to find rules covering almost all cases in the training set. At this 
point the procedure has already discovered several rules, which can be readily applied to future 
problems or can become a part of an expert system. The algorithm is applied on the dataset 
containing the instances of bacterial growth/no–growth pertaining to pathogenic Escherichia coli
R31 as affected by T and Aw. The objective is to develop classification rules that are able to identify 
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any (T, Aw) combination as belonging to either one of the two classes: growth or no–growth. The 
performance of the ACO classifier is also compared with the performance of tree based C4.5 
algorithm with respect to the predictive accuracy and the simplicity of discovered rules. 

2 MATERIALS AND METHODS 

2.1 Method 
The present ACO classifier system handles categorical attributes to learn rules hence continuous 

attributes need to be discretized. This can be readily done by using any of the several discretization 
methods available in the literature [30]. The simplest discretization technique is to divide each 
attribute into domains of equal length. We have used the C4.5–Disc discretization algorithm given 
in Kohavi and Sahami [31]. The C4.5 software contains this algorithm for discretizing features. To 
explain the ACO classifier details, a sample training dataset is considered as an illustrative example. 
It is given both in continuous and discretized form as shown in Table 1. 

Table 1. Illustrative training dataset to describe steps in the ACO algorithm for rules discovery 
 Dataset (cases, N = 11; attributes, n = 2) 

Case No 1 2 3 4 5 6 7 8 9 10 11 
A1 85 80 70 65 64 70 69 75 75 71 68 Continuous 

data A2 85 90 96 83 65 95 70 79 70 80 79 
A1 D12 D12 D11 D11 D11 D11 D11 D12 D12 D12 D11Discretized

data A2 D22 D22 D22 D22 D21 D22 D21 D21 D21 D22 D21
Class 1 1 2 1 2 1 2 2 2 1 2 

For discretizing continuous attributes of the training set, the ranges of the domains of each 
attribute were obtained as: for attribute, A1: {D11 = A1  70, D12 = A1 > 70} and for attribute A2:
{D21 = A2  79, D22 = A2 > 79}. 

Table 2. A set of classification rules discovered by the ACO algorithm for illustrative dataset given in Table 1 
Rule: IF <antecedent> THEN <consequent>Rule no. Antecedent consequent (predicted class)

1 A1 = D12 AND A2 = D22 C1

2 A2 = D21 AND A1 = D11 C2

3 A1 = D11 AND A2 = D22 C1

4 Default Rule C2

The ACO algorithm for discovery of an optimal set of classification rules in a given dataset is 
based on a pheromone meditated cooperative search capabilities of ants. Solutions generated by the 
software ants or agents are in the form of rules. The structure of the rule is: IF <antecedent> THEN
<consequent>. The <antecedent> part of the rule contains terms Tij using the logical operator, AND. 
The term Tij is of the form Ai=Dij, where Ai is the ith attribute and Dij is the jth value of the domain of 
Ai. The <consequent> part of the rule is the predicted class that maximizes the quality of rule. For 
example, consider one of the rules given in Table 2 as: IF A1=D12 AND A2=D22 THEN C1. It can be 
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interpreted as: if given example has attribute A1  70 and attribute A2  79 then it can be assigned to 
class 1. 

The algorithm considers R agents to build rules. An agent starts with an empty rule i.e. rule with 
no term in its antecedent, and generates an antecedent of the rule by adding one term at a time in its 
current partial rule. For illustration, consider an antecedent part of the first rule 1 shown in Table 2 
as:

antecedent : A1=D12 AND A2=D22

This current partial rule covers three cases (1,2 and 10) in the dataset shown in Table 1. To 
construct a rule, the agent uses a problem dependent information and pheromone trail 
communication matrix. At the start of the algorithm, the pheromone matrix  is initialized to some 
small value, 0 . The trail value, ij  at location (i, j) represents the pheromone concentration of 

term, Tij. The pheromone trail matrix evolves as we iterate. At any iteration level, each one of the 
agents or software ants develops such trial rules and a rule with highest value of quality measure is 
denoted as a discovered rule, which represents information extracted from the training set. Cases 
correctly covered by the discovered rule are removed from the training dataset, and another iteration 
is started. Guided by the modified pheromone matrix, the agents build improved rules and the 
process is repeated for as many iterations as necessary to find rules covering almost all cases in the 
training set. 

2.1.1 Algorithm details

As explained earlier, ants start with empty rules and in the first iteration, the elements of the 
pheromone matrix are initialized to the same values. With the progress of iterations, the pheromone 
matrix is updated depending upon the quality of rules produced. Let us consider for the purpose of 
illustration, a training dataset containing N = 11 cases defined by n = 2 attributes as shown in Table 
1. To generate a set of classification rules, R = 10 agents are deputed. We now proceed to describe 
the progress of current iteration, t with a view to providing a clear picture of the algorithm details. 
The agents build their rules by applying the information provided by the pheromone matrix updated 
at the end of iteration, t–1 and available heuristic information. To construct a current partial rule, 
the agent selects term Tij with certain probability given as: 

Ii,k,
.t

.t
P

n

1k

d

1l
klkl

ijij
ij k (1)

where, Pij is a normalized probability of choosing term Tij. n is the number of attributes defining an 
example in a dataset. dk is the number of domains of attribute Ak. I is the list of attributes not yet 
used by the agent. ij is the value of problem dependent heuristic function for term Tij. ij is a 
measure of the predictive power of term Tij. Higher value of ij  for the term Tij indicates its high 
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relevance of being part of the classification rule and hence likely to be selected with greater 
probability. The heuristic function considered in this study can be given as [32]: 

C

c
ijiijiij DA|cPDA|cPT

1
2loginfo  (2)

where, infoTij is a measure of the quality of term Tij with respect to its ability to improve the 
predictive accuracy of rule. c is the class attribute. C is the number of classes. P(c Ai = Dij) is the 
empirical probability of observing class c conditional on having observed Ai = Dij. The amount of 
information obtained by equation (2) is normalized in the range 0  infoTij  log2(C) to facilitate the 
use of equation (1). The equation used to normalize infoTij is given as follows: 

n

k

d

j
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ij
ij k
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1 1
2

2

infolog

infolog
(3)

Consider the calculation of ij  value for term T22 i.e. A2=D22. It covers a total of six cases (five 

belong to class one and one is from class two) in the dataset shown Table 1. The value of infoTij

measure for term T22 using the equation (2) is 0.6500. Similarly, for other values of the domain of 
attributes, infoTij can be given as: 

infoTij
i/j 1 2 
1 0.9183 0.971 
2 0.0 0.6500 

Using the equation (3) heuristic information ij  for all the terms can be computed as: 

ij

i/j 1 2 
1 0.0559 0.0199 
2 0.6846 0.2396 

Let us consider the pheromone trail matrix at the start of current iteration t as: 

ij
i/j 1 2 
1 0.0148 0.0153 
2 0.0199 0.0120 

From the estimates of predictive power ij  and the current values of the pheromone trail ij the 

normalized probability of a term Tij can be computed by using Eq. (1). To illustrate how an agent 
chooses a term to add in the current partial rule by Eq. (1), consider that an agent has started with an 
empty rule and is presently developing the antecedent part, 2, as shown in Table 2. To select a 
term, first compute normalized probabilities for all the terms Tij. This can be done by using the 
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above values of ij  and ij by Eq. (1) as: 0.0454, 0.0170, 0.7714, and 0.1645. Then draw a random 

number r in the range (0,1) using uniform distribution. If r is less than 0.0454 then the term T11 is 
chosen. If r lies between 0.0454 and 0.0624 then term T12 is preferred. If it is in the range from 
0.0624 to 0.7884 then the term T21 is selected and if it is greater than 0.7884 then term T22 is chosen. 
Suppose the random number generated is r = 0.4546. It lies in the range 0.0624 to 0.7884 hence 
term T21 i.e. A2 = D21 is chosen. The algorithm can add the chosen term (say, T21) in the current 
partial rule if the following conditions are satisfied: (i) it covers the minimum number of cases in 
the training set defined a priori, min_cover_cases (for illustrative example, min_cover_cases = 3), 
and (ii) the attribute (say, A2) is not already been used by the agent. Similarly, the agent selects the 
term T11 and checks its feasibility with both the above–mentioned conditions. Both the terms T21

and T11 individually and in combination (T21 AND T11) cover the number of cases in the training 
dataset greater than or equal to min_cover_cases. The developed antecedent part by an agent using 
the above formalism is depicted in the current partial rule 2 in Table 2. The algorithm chooses the 
consequent (i.e. predicted class) for the antecedent of the rule 2 that maximizes the quality of the 
rule. This is done by assigning to the rule consequent, the majority class among the cases covered 
by the antecedent of the rule. Consider the antecedent of the rule 2, and it is clear from Table 1 that 
it covers the cases 5,7, and 11. All these covered cases belong to class two hence, the rule 
consequent of the rule 2 is class two, C2. The quality of the constructed rule is calculated as [33]: 

TNFP
TNx

FNTP
TPQ (4)

where, TP is the number of cases covered by the rule that have the class predicted by the rule. FP is 
the number of cases covered by the rule that have a class different from the class predicted by the 
rule. TN is the number of cases that are not covered by the rule and that do not have the class 
predicted by the rule. FN is the number of cases that are not covered by the rule but that have the 
class predicted by the rule. As soon as agent develop its solution (rule), pheromone trail is updated 
locally as [34]: 

01 .. ijij (5)

The local trail updating is similar to trail evaporation in real ants. This process intends agents to 
bias the exploration to those parts of the search space rather than following the strongly 
concentrated trails. Thus, pheromone trails related to terms T21 and T11 are updated corresponding to 
the rule 2. Similarly, remaining nine agents will develop their rules in current iteration t. The 
process of rule development by the R agents can be terminated earlier if a rule constructed by the 
current agent is same as one of the rules developed by the previous (no_rules_converged –1) agents, 
where no_rules_converged is an algorithm parameter used to test the convergence of the software 
ants. This criterion of terminating the rules construction process in the current iteration in a way 
reflects the establishment of the shortest path in real–life ant colony. 
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The rule of highest quality among the rules constructed by all the agents is considered as a (best) 
discovered rule. It is stored in the special set of discovered rules in the order of its discovery. The 
pheromone trail matrix is updated globally using the quality measure of the best rule discovered. It 
is called global pheromone trail updating [34] and is given as: 

Q.. ijij 1 (6)

The global trail updating process is a kind of intensification, which helps agents to favor, terms 
that are part of higher quality rules. Suppose the best rule among the rules constructed by ten agents 
at current iteration is rule 2; the pheromone trails related to terms T21 and T11 (found in the 
antecedent part of 2) would be updated by the global pheromone trail updating process. This 
completes an iteration of the ACO algorithm. The cases covered by the discovered rule are removed 
from the training dataset and in the next iteration agents will work on the reduced dataset. The 
algorithm works for as many iterations as necessary to find rules covering almost all the examples 
in a dataset or leaving uncovered examples in the training dataset less than a predefined number 
max_cases_uncovered. This terminates the iteration process of the ACO algorithm. At this stage, 
the ant classifier has developed several rules. A default rule is added at the bottom of the set of 
discovered rules. The default rule has the empty antecedent and its rule consequent is the majority 
class that predicts among the cases in the training dataset not covered by any of the discovered 
rules.

The set of discovered rules thus developed by the ACO system can be applied on the new test 
cases, unseen during the training process. The rules are tried in the ordered list on a new test case. If 
the first rule is applied on the new case and the attributes of the test case satisfy antecedent part of 
this rule, then it assigns its consequent to the test case. The system will apply default rule on the test 
case if any of the rules from the list of discovered rules is not able to classify the test case. 

2.2 Data Set
To exemplify the application of the ACO algorithm as rule based method for classification 

problems in predictive microbiology, the dataset of bacterial growth/no growth pertaining to 
pathogenic Escherichia coli R31 as affected by a set of operating conditions is utilized. The 
description of the dataset is given as: 

2.2.1 Escherichia coli R31 growth/no–growth data

This dataset is given by Salter et al [3]. The dataset pertaining to growth/no–growth of an E. coli
strain R31 as affected by temperature and water activity is used for learning the classification rules. 
The data consist of experiments performed with different combinations of temperature in the range 
7.7 to 37.0 and water activity in the range 0.943 to 0.987, using NaCl as humectant. All samples of 
E. coli R31 were cultured in plates and L–tube observed daily. If growth in a sample occurred, it 
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was scored positive. The growth in the sample was related to a visible increase in turbidity or 
deposit in the base of the tube. If after 50 days there was neither turbidity nor deposit, a loopful of 
culture was streaked onto plate count agar to determine if any growth is present. A total of 179 
samples were observed using different values of temperature and water activity, with 99 as growth 
cases and 80 no–growth cases. 

3 RESULTS AND DISCUSSION 

To demonstrate the competitiveness of the proposed classification system, we applied it on 
several datasets. All the datasets are from the UCI machine learning repository [35] and are 
designed for classification tasks. Examples that have missing values are removed. Information of 
the datasets is given in Table 3. 

Table 3. Summary of datasets utilized for the performance study of the ACO classifier system 
Dataset Attributes 

abbreviation original name size class total continuous discrete 
iris iris plant 150 3 4 4 0 
pima pima indians diabetes 768 2 8 8 0 
win wine recognition 179 3 13 13 0 
wis wisconsin breast cancer 683 2 9 9 0 

The performance of the ACO classifier is compared with the performance of other classifier 
systems such as C4.5, BP, FANNC, HDT, and NN. Our experiments were conducted using the 10–
fold cross–validation technique, which is a commonly used technique to evaluate the performance 
of a pattern classification algorithm [36]. We conducted the 10–fold cross–validation in the 
following way: we randomly partitioned each data set into 10 groups, each group having 
approximately the same number of examples. Then we ran the ACO system 10 times. Each time, 
one different group of data was held out for use as the test set; the other nine groups were used as 
the training set. The results are reported in Table 4 as average values of rate of correct classification 
for these ten runs. 

Table 4. Comparison of ACO classifier versus other classifiers 
Accuracy rate (%) Dataset

ACO C4.5 [37] HDT [37] BP [37] FANNC [37] NN [38] 
Iris 96.00 94.68 93.98 93.62 93.98 96.00 
Pima 74.20 74.26 70.76 71.06 70.76 75.30 
win 97.88 92.54 96.56 96.90 96.56 97.70 
wis 96.02 93.00 95.60 96.06 95.60 97.30 

The results show that the ACO classifier performed as good as NN on two datasets namely, iris 
and win and only ranked second to NN in terms of accuracy on datasets, pima and wis. The 
experimental results show the effectiveness of the proposed ACO classifier system. 

Now, we applied the ACO classifier to extract classification rules in the dataset of bacterial 
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growth/no–growth pertaining to pathogenic E. coli as affected by T and Aw. The ACO classifier 
system is executed in C++ compiler on Pentium 533 MHz PC. We evaluated the performance of the 
proposed classifier system with the decision tree based C4.5 algorithm. The C4.5 is a well–known 
induction algorithm developed by Quinlan [39]. It converts input data into a decision tree, which 
can be used to classify a test case by starting from the root of the tree and continuing down the 
branches until a terminating leaf is encountered. C4.5 applies information theory to the training 
samples with an information maximization process to generate a decision tree. Detailed description 
of C4.5 algorithm can be found elsewhere [39]. The comparison is based on the predictive power of 
discovered rules on testing examples and the simplicity of rules discovered. A 10–fold cross 
validation procedure is used to measure the predictive accuracy of the algorithm. The results 
comparing the average predictive accuracy of rule set discovered by the ant classifier and the C4.5 
are given in Table 4 while the results comparing the simplicity of discovered rule set are given in 
Table 5. 

Table 4. Average predictive accuracy rate of rules discovered by the algorithms on E. coli dataset 
Average predictive accuracy on test set (%) 

ACO C4.5 
98.89 93.33 

Table 5. Measure of simplicity of rule sets discovered by the algorithms on E. coli dataset 
Average number of rules Average number of terms 

ACO C4.5 ACO C4.5 
12.1 10.4 22.1 47.3 

The average predictive accuracy of discovered rules obtained by the ACO classifier in the 
classification of the bacterial growth/no growth data pertaining to pathogenic Escherichia coli R31 
is higher than that obtained by the C4.5 algorithm as can be seen from Table 4. The accuracy rate of 
the learned rules by the ACO classifier is 98.89 while that of C4.5 is 93.33. The average number of 
rules obtained by the ACO system on the ten training sets is 12.1 as compared to 10.4 obtained by 
C4.5 (Table 5). The average number of rules discovered by the ACO system is slightly on higher 
side as compared to that obtained by the C4.5, but the average number of terms considered in the 
rule set discovered by the ACO classifier is quite less than the number of terms used by the rule set 
obtained with the C4.5. As can be seen in Table 5, the average number of terms considered by the 
rule set learned by the ACO classifier is 22.1 while that of 47.3 in the rule set obtained by the C4.5. 
Hajmeer and Basheer [19] also used logistic regression and artificial neural networks as classifiers 
for this bacterial growth data and compared them using analysis of the receiver operating 
characteristic curves as well as a number of scalar performance measures pertaining to the 
classification contingency matrices. The scalar performance measures for binary classification 
considered by Hajmeer and Basheer [19] are given as: 
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N
TNTPFC , 

FPTN
FPFAR , 

TPFN
TPPOD  (7)

To check the performance of the rules learned by the ACO classifier with other classifiers 
studied by the Hameer and Basheer [19], we have used the measure fraction correct, FC. FC is 
nothing but a fraction of correct classification. Considering all the cases (combined training and 
testing set) in the E. coli growth dataset, a set of rules discovered by the ACO algorithm was 
applied to calculate the performance measure, FC. The value of FC obtained by the discovered rules 
is 0.949. The best value of the performance measure FC reported for various classifiers in [19] is 
given in the following Table 6. 

Table 6. Comparison of the ACO classifier versus other classifiers using 
training and validation combined (179 cases) E .coli growth dataset 

classifier type performance measure (FC) 
ACO 0.949 
LLR  0.782 
NLLR  0.905 
FEBANN  0.939 
PNN  1.0 

As can be seen from Table 6, the developed ACO classifier for bacteria growth has higher FC 
value than other three algorithms namely, LLR, NLLR and FEBANN. The discovered rule set 
corresponding to FC = 0.949 misclassified 9 cases out of 179. The number cases misclassified in 
the E. coli growth dataset by LLR, NLLR, FEBANN are 39, 17, and 11 respectively [19]. The 
discovered rule set for the bacteria growth dataset obtained by the ACO system is given in Table 7. 

Table 7. A set of classification rules discovered by the ACO classifier for E. coli growth dataset 
Sr. No. Rules 

1 IF TEMP  10.6 AND WAT > 0.977 THEN GROW 
2 IF TEMP > 22.2 AND 0.961< WAT  0.977 THEN GROW 
3 IF 15.0 < TEMP  22.2 AND 0.961< WAT  0.977 THEN GROW 
4 IF 10.6 < TEMP  15.0 AND 0.961< WAT  0.977 THEN GROW 
5 IF TEMP  10.6 AND 0.961< WAT  0.977 THEN NOGROW 
6 IF TEMP > 10.6 AND 0.951< WAT  0.961 THEN GROW 
7 IF 15.0 < TEMP  22.2 AND 0.951< WAT  0.961 THEN GROW 
8 IF 10.6 < TEMP  15.0 AND 0.951< WAT  0.961 THEN NOGROW 
9 IF TEMP  10.6 AND 0.951< WAT  0.961 THEN NOGROW 

10 IF TEMP > 22.2 AND 0.949< WAT  0.951 THEN GROW 
11 IF 0.949< WAT  0.951 THEN NOGROW 
12 IF TEMP > 22.2 AND 0.948< WAT  0.949 THEN GROW 
13 IF WAT  0.948 THEN NOGROW 
14 DEFAULT RULE IS GROW 

TEMP: temperature, WAT: water activity, GROW: E. coli bacteria growth, NOGROW: E. coli bacteria no–growth. 

We can summarize the results of our experiments taking into account both the accuracy rate and 
the rule set simplicity criteria. The discovered rule set by the ACO classifier is simpler and more 
accurate than the rule set discovered by the C4.5 system. Also, a total number of terms in the rules 
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generated by the ACO system were smaller than that of the rules obtained by the C4.5 method. The 
advantages of metaheuristic (evolutionary) algorithms as rule based techniques over decision tree 
based approaches are: first they work with a population of candidate solutions. Second, they 
evaluate a candidate solution as a whole by the fitness function. These characteristics are in contrast 
with most greedy rule induction algorithms, which work with a single candidate solution at a time 
and typically evaluate a partial candidate solution based on local information only. Third, they use 
probabilistic procedures that make them less prone to get trapped into local minima in the search 
space. Empirical evidence that in general evolutionary algorithms cope with attribute interaction 
better than greedy rule induction algorithms, can be found in literature on data mining [40,41]. 
However, they also have some disadvantages for rule discovery. First, in general, they are 
considerably slower than greedy rule induction algorithms. Second, the rules developed by the 
algorithm are stored in the order of their discovery, in order to be applied to a test case; the previous 
rules in the list must not cover that case. Hence, the rules discovered by the algorithm are not as 
modular and independent as the rules discovered by the C4.5 system. This has the effect of reducing 
a little simplicity of the rules discovered by the algorithm in comparison with the rules discovered 
by the C4.5 system. This effect seems to be compensated by, overall, the size of the rule list 
discovered by the ant classifier, which is much smaller than the size of the rule set, discovered by 
the C4.5. So, it can be said that, the rules discovered by the ant classifier are simpler than the rules 
discovered by C4.5. 

4 CONCLUSIONS 

In this work, ant colony metaheuristic originally developed for solving combinatorial 
optimization problems is employed as a rule based classifier. To evaluate the performance of this 
classifier system is tested on several datasets commonly used for comparison study. The results 
show that the classifier performs very well on the tested data sets and this system can be considered 
as an alternative to symbolic techniques for discovery of rules in data mining tasks. In predictive 
microbiology, the application of the ant colony based classifier system is illustrated by generating 
classification rules in the dataset pertaining to pathogenic E. coli R31 as affected by temperature 
and water activity. The discovered rules thus can be used to identify any combination of 
temperature and water activity belonging to either one of the two classes: growth or no–growth, or 
can become a part of expert systems. 
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