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Abstract 

Motivation. We present an ab initio investigation of the surface electronic structure of B2–TiNi (001) and (110) 
thin films with adsorbed hydrogen atoms and with Pd coating. This study can be useful for understanding of 
electron factors which are responsible for hydrogen adsorption on metal surface and allow to increase surface 
reactivity by alloying. 
Method. The computations were made with the full potential linearized augmented plain wave method. We have 
used the software WIEN2k, www.wien2k.at. 
Results. The adsorption and binding energies are calculated when hydrogen adsorbs on the TiNi or TiFe (001) 
surface in the “hollow” position. The influence of Pd coating on the surface (001) and (110) electronic structure 
is discussed. The change of the local electronic structure in the presence of Pd is analyzed in dependence on 
interfacial atoms or Pd place on the surface. 
Conclusions. The hydrogen adsorption is preferable on Ti–terminated B2–TiNi (001) surface as in the case of 
B2–TiFe (001). It is shown that Pd influences the surface ES significantly when Ni is interfacial atom in the case 
(001) surface or Pd locates above Ni on TiNi (110). Since Pd coating is well permeable for hydrogen the 
adsorption properties of Pd–covered and clean TiNi (110) can be the same. The interaction between the H 
orbitals and the metal d–states depends strongly on the adsorption geometry. The present results are very 
important for understanding of microscopic origin of the metal alloys surface reactivity. The calculations allow 
to predict the preferable surface orientation and its composition. 
Keywords. Transition metal alloys; surface and interface; electronic structure. 

Abbreviations and notations 
BCT, body centered tetragonal  FCC, face centered cubic 
DOS, density of states  FLAPW, full–potential linearized augmented plane wave 
Ead, adsorption energy LDA, local density approximation 
Eb, binding energy  N(EF), density of states at the Fermi level 
EF, Fermi level TM, transition metal 
ES, electronic structure  , work function 

1 INTRODUCTION 

In the past two–decade the adsorption properties of metal surfaces have been a subject of an 
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increasing number of both experimental and theoretical studies. However, up to now not sufficient 

attention has been paid to the study of the surface electronic structure (ES) of transition metal (TM) 

alloys. Ti–based alloys with 3–5d TM have important technological properties such as the shape 

memory effect, the high hydrogen capacity, etc. They are also found widespread application in 

medicine as implant materials. TiFe and TiNi are considered as key materials for hydrogen storage 

and the development of future clean hydrogen energy systems. Despite of intensive experimental 

investigations the modification of surface electron properties by hydrogen adsorption remains an 

open question. The other problem is connected with the formation of surface oxide layers, which 

hinder the hydrogen adsorption. The experimental studies of TiFe showed that the formation of 

surface oxide layers can be prevented by the usage of Pd coating. It should be interesting to 

compare the adsorption characteristics in the set TiFe–TiNi–TiPd in order to explain in the 

microscopic level the high surface reactivity and hydrogenation capability of Ti–based alloys. In 

our previous works [1,2] we investigated electronic structure of some Ti–based alloys surfaces and 

the hydrogen adsorption on B2–TiFe (001) and (110) surfaces. As a continuation of our studies, we 

investigate hydrogen adsorption in the B2–TiNi thin films. The study of the hydrogen adsorption on 

Pd–covered TiNi surfaces is also carried out. 

2 COMPUTATIONAL DETAILS 

The full potential linearized–augmented–plane–wave (FLAPW) method [3] within the local 

density approximation (LDA) for the exchange–correlation potential was applied for calculations of 

the electronic structure for clean B2–TiNi surfaces as well as with hydrogen or oxygen in the 

fourfold “hollow” site. Using the supercell technique, the surface was simulated by repeated 5–9 

layers slabs separated in one direction by a vacuum region ~10 Å. The lateral lattice parameter was 

set to the experimental one (a = 3.015 Å). The work function was determined as the difference 

between the vacuum level and Fermi energy (EF). The vacuum level is found from the self–

consistent potential in the middle of the vacuum region. The binding energy has been defined as Eb

= 1/2(EH/substr–Esubstr–2EH). Here EH is the energy of free hydrogen atom, and “Esubstr” means total 

energy of clean TiNi (001) film. The adsorption energy was calculated as Ead = 1/2(EH/substr–Esubstr–

EH2), where EH2 is total energy of hydrogen molecule. In our estimations we used experimental 

values of EH = –13.6058 eV and Eb
H2 = –4.75 eV (Eb

H2 is the binding energy of H2 molecule). More 

details of calculations can be found in [1,2]. 
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Table 1. Adsorption and binding energy in eV, the height (h0) of the stable adsorption site above the surface layer in Å. 
The values in parentheses are given for the unrelaxed surfaces 
 Ead Eb h0
H–Ti/TiNi (001) 
H–Ni/TiNi (001) 

–0.88 (–0.81) 
–0.67 (–0.72) 

–3.25 (–3.19) 
–3.05 (–3.10) 

0.46 (0.31) 
0.65 (0.31) 

H–Ti/TiFe (001) 
H–Fe/TiFe (001) 
FM H–Fe/TiFe (001) 

–0.75 (–0.78) 
–0.73 (–0.97) 
–0.56 (–0.72) 

–3.12 (–3.15) 
–3.09 (–3.30) 
–2.94 (–3.09) 

0.48 (0.31) 
0.76 (0.31) 
0.74 (0.31) 

H–PdTi/NiTi (001) 
H–PdNi/TiNi (001) 

–0.45 (–0.41) 
–0.92 (–0.86) 

–2.82 (–2.78) 
–3.29 (–3.24) 

0.44 (0.31) 
0.19 (0.31) 

H–PdTi/FeTi (001) 
H–PdFe/TiFe (001) 

–0.25 (–0.12) 
–0.47 (–0.45) 

–2.62 (–2.49) 
–2.85 (–2.83) 

0.37 (0.31) 
0.23 (0.31) 
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Figure 1. Layer resolved DOS of H–covered TiNi(001) films: a) Ni–
terminated TiNi (001), b) Ti–terminated TiNi (001). 

3 RESULTS AND DISCUSSION 

Hydrogen atom was placed in the fourfold “hollow” position on the 2–TiNi (001) surface. The 
preference for the fourfold “hollow” position on the B2–TiMe (001) alloy surface for the hydrogen 
adsorption is related to the higher coordination number at this site, and to the minimization of the 
repulsion between the overlapping charge densities of H atoms with the surface and subsurface 
atoms. It should be noted that within the LDA we found a surprisingly strong contraction of the 
interlayer distance between the surface and subsurface layers, –20.1% for Ni/TiNi(001) and –14.9% 
for Ti/TiNi(001). In addition to a relaxation of a clean surface we found a minimum of the 
adsorption energy, which was calculated as a function of the distance between the H atom and the 
surface layer. Unfortunately we did not perform the final relaxation of the adsorbate/substrate 
complex because it takes a large computational time with our approach and does not change 
significantly the results. The lower values of inward relaxation were obtained in the case TiNi 
(110). They are –15.2% for Ni and –7.4% for Ti. The equilibrium positions of hydrogen on both Ti– 
and Ni–terminated TiNi (001) surfaces (Ti/TiNi and Ni/TiNi) are given in Table 1. The minimum of 
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total energy for Ti/TiNi is observed at a distance of 0.46 Å from surface layer (1.74 Å from 
subsurface Ni atom – close to the distance of the H–Ni bond length). In the case of Ni–terminated 
surface the value of H–Ti distance is 1.86 Å. Calculated binding and adsorption energies for relaxed 
geometry are given in Table 1. As seen the adsorption of hydrogen is more preferable on the Ti–
terminated (001) surface. Such tendency was observed for TiFe (001) surface as well, but in the last 
case the preference of Ti–terminated surface for hydrogen adsorption is only due to the magnetism 
of Fe surface layer that increase Ead by about 0.2 eV. In our case both terminations of TiNi (001) 
surface are non–magnetic. Note that the adsorption energy is very sensitive to the surface relaxation 
and the relaxation influences the electronic structure only for the first two surface layers. 

Figure 2. DOS for O–covered Ti/TiNi and Ni/TiNi (001) surfaces for suface and 
bulklike layers are given in comparison with clean B2–TiNi (001) surfaces. 
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Figure 3. The surface DOS for both terminations of B2–TiNi (001) with Pd in 
surface (a) and subsurface (b) layer in comparison with results for B2–TiPd (001). 
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(001) surface as well as in the central layer, compared with the layer–resolved DOS’s of the clean 
TiNi (001) for both surface termination, is shown in Figure 1. H–metal bonding states appear below 
the d–band bottom of the clean TiNi surface. The hydrogen 1s states are located at around –4 eV 
below EF for the Ni–terminated surface and they lie deeper at –6 eV for the Ti–terminated case. It 
should be noted that the hybridized states of hydrogen with surface Ti and with subsurface Ni for 
H–Ti/TiNi as well as H–Ni bonding states for H–Ni/TiNi are appeared. Partial DOS’s give us the 
opportunity to find states, which are responsible for this hybridization. The binding in the fourfold 
“hollow” position occurs in H–TiNi (001) through the s–dxy hybridization of hydrogen and titanium 
(nickel) surface states as well as s–d3z2–r2 hybridization of hydrogen and subsurface nickel 
(titanium). Hydrogen can influence to central layer states only indirectly through the hybridization 
with neighboring atoms. The charge density distribution shows that the region of relatively high 
electron density is observed from the H site to the Ni one. This occurs despite the fact that the Ti 
atom is the nearest neighbor of H in the Ni/TiNi(001). We estimated work function ( ) for both Ti 
and Ni surface terminations. The hydrogen adsorption leads to decrease of  values by 0.2 eV (4.29 
eV – 4.09 eV) for Ti/TiNi and slightly change  (5.04 eV –– 4.97 eV) for Ni/TiNi. This means that 
surface potential changes more sufficiently in Ti/TiNi structure due to preferable H–Ni 
hybridization in normal direction. Since TiNi (001) film is non–magnetic one the oxygen adsorption 
can only induce small polarization on the Ni atom in contrast to TiFe case. Our results suggest the 
possibility of O–induced reconstruction of Ti–terminated TiNi (001) surfaces (Figure 2). In general, 
oxygen forms a much stronger bond to the TiMe surface than hydrogen and it can block considered 
“hollow” adsorbate site for H adsorption. The magnetism induced by the oxygen adsorption as in 
TiFe case can hinder the hydrogen adsorption also. The consideration of oxygen adsorption in the 
same “hollow” position on TiNi (001) surface shows that the Ni surface states are much more 
affected due to oxygen chemisorption and the adsorbate p–orbitals mix with them. Oxygen 
adsorption in the “hollow” site slightly increases DOS at the Fermi level for Ti–terminated surface 
and does not change N(EF) for Ni–terminated surface whereas the DOS profile changes drastically 
especially for Ni/TiNi case. Our results show that Ti–terminated TiNi (001) surface is unstable in 
respect to O adsorption whereas Fe–terminated surface was unstable in the case TiFe (001) film. In 
order to prevent the formation of surface oxide layer in TiFe the thin layer of Pd as a cover can be 
used. We considered the influence of Pd on the hydrogen adsorption for TiFe (001) in our previous 
paper [4]. It is known that desorption properties of TiFe can be improved by partial replacing of 
iron by nickel. It is interesting to consider critical situation – TiNi alloy in the point of view of 
hydrogen interaction with Pd–covered TiNi (001) and (110) surfaces. The lattice parameter for FCC 
Pd is 3.887 Å and 2.749 Å for conventional BCT lattice that gives the mismatch with B2–TiFe and 
TiNi lattice parameter by –7.6 % and –8.8 %. On the other hand the lattice parameter of B2–TiPd 
(3.18 Å) is greater by 6.9 % and 5.5 % than that of B2–TiFe (2.976 Å) and TiNi (3.015 Å). 
Titanium as Pd is an element, which also actively adsorbs hydrogen. Upon hydrogen loading TiFe 
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forms several phases: orthorhombic TiFeH1.37 and monoclinic TiFeH2. The structure of TiNiH was 
established as tetragonal one corresponding to the space group I4/mmm. The structures of the 
hydrides TiNiHx with x = 1.0 and 1.4 have been resolved in [6]. 

We carried out the investigation of ES for different substrate compositions in Pd–covered TiNi 
(001) system. DOS’s of Pd–covered TiNi (001) are presented in Figure 3 in comparison with clean 
TiPd (001). We also analyzed changes of ES during hypothetical Pd segregation. Results are given 
in Figure 3 (right). The influence of Pd is restricted to two upper layers. It is obvious, that in the 
case of thicker Pd coating the absorption properties of the system would be similar to pure Pd. In 
the case of PdNi/TiNi (001) when Ti surface atoms are replaced by Pd atoms ES changes 
significantly in the surface layer, because bands of Pd are located below EF in the same energy 
region as Ni bands (Figure 3a). Palladium strongly disturbs Ni states and shifts them towards EF. 
The value of N(EF) slightly decreases for Ni subsurface layer from 1.08 down to 0.82 
states/eV/atom. In PdFe/TiFe N(EF) increases for Fe subsurface layer from 1.16 up to 3.8 states/ 
eV/atom. At the same time the value of N(EF) for both surface and subsurface layers in PdFe/TiFe 
increases considerably from 1.35 up to 2.45 states/eV/atom. As it was shown this electron factor is 
favorable for gas absorption. DOS of PdNi/TiNi is shifted from EF in comparison with one for 
PdFe/TiFe (001) and N(EF) decreases considerably in comparison with clean Ti/TiNi (0.57 and 
1.72 states/eV/atom, respectively). Introducing Pd on Ni site we found that Pd–states are placed 
significantly lower in the energy in comparison with Ni states in Ni/TiNi (001) as well as Pd states 
in Pd/TiPd (001). Titanium bands located at the same position relative to EF than that for Ni/TiNi 
(001) and Pd/TiPd (001) surfaces. Ti–states are dominant at EF in PdTi/NiTi. In this case the value 
of N(EF) decreases in comparison with pure Pd/TiPd (001) (0.89, 1.23 states/eV/atom ). For 
PdTi/NiTi (001) system we have 0.45 and 1.30 states/eV/atom at the Fermi level for surface Pd and 
subsurface Ti atoms, respectively. These values are slightly less than one for PdTi/FeTi (001) 
system. We calculated the work function for PdNi/TiNi and PdTi/NiTi (001) surfaces and obtained 
4.95 eV and 4.90 eV, respectively. These values are less in comparison with  for clean Pd (001) 
(5.22 eV – experiment). The values of 5.18 (5.11) eV and 5.07 (5.02) eV were calculated for 
PdFe/TiFe and PdTi/FeTi (001), respectively. The values in parentheses are obtained for 
equilibrium geometry. The results with Pd in subsurface layer are given in Figure 3b. As expected 
the DOS’s structures are very similar to that for Ti–terminated TiPd (001) film. In this case, the 
formation of surface TiPd alloy is possible. In TiPd/TiNi case Pd states are slightly shifted in lower 
energy region and Ti states are dominant at EF. In both cases N(EF) decreases from 2.13 
states/eV/atom for Ti/PdTi (001) down to 1.25 states/eV/atom for TiPd/TiNi (001) and 1.19 states/ 
eV/atom for TiPd/NiTi (001) surfaces. Because Ti states are highly reactive the formation of the 
surface oxide layers is possible in all cases as on TiNi (001) surface, which will hinder hydrogen 
adsorption. The local DOS for H–covered Pd/TiNi (001) films are shown in Figure 4. It is seen that 
hydrogen introduces only minor changes in ES, which was discussed above. The calculated values 
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of binding and adsorption energies are given in Table 1. The present calculation shows that 
PdNi/TiNi (001) surface is more reactive even in comparison with PdFe/TiFe case. So, the 
hydrogen storage properties depend not on surface reactivity only but the possibility to form bulk 
hydrides or to be unstable upon hydrogen absorption. 
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Figure 4. Layer resolved DOS for H–covered PdTi/TiNi and PdNi/NiTi (001) in 
comparison with results for Pd–covered films and H–covered TiNi (001) films. 

-8 -6 -4 -2 0 2 4 6 80

2

EF
H-Pd/TiNi(110)

0

2

......Pd/TiNi(110)

E[eV]

0

2

tot

S

C

N
(E

)[s
ta

te
s/

eV
]

-8 -6 -4 -2 0 2 4 6 80

2

EFH-Pd/TiNi(110)

0

2

......Pd/TiNi(110)

E[eV]

0

2

tot

S

C

N
(E

)[s
ta

te
s/

eV
]

a)     b) 
Figure 5. Total DOS and sum of local DOS for surface and central layers in Pd/TiNi(110) (dashed 
lines) and H–covered Pd/TiNi(110) film (solid lines): a) Pd is above Ti; b) Pd is above Ni. 

Let us consider now the hydrogen interaction with Pd covered TiNi (110) surface. We will 
analyze two possibilities when Pd is located above Ni or Ti atoms. Hydrogen is considered in 
“hollow” position. H–Pd/TiNi (110) DOS’s are given in Figure 5. In presence of hydrogen the Pd 
states lie slightly deeper in energy than that in Pd/TiNi (110) as in Pd/TiFe (110). The electronic 
structure of subsurface layer of H–Pd/TiNi (110) slightly differs from bulk–like (C in Figure 5) one 
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as in H–Pd/TiFe (110) when Pd is located above Ti. The changes in the surface ES are more 
expressed when Pd is above Ni. Sharp d–Ni peak is splitting up to three peaks and center of gravity 
of Ni bands lie lower in energy in comparison with that of bulk–like layer. The Pd states are shifted 
downward by about 1 eV in comparison with clean Pd (110) but Pd main peak lies close to EF than 
Ni one. Shape of Pd surface DOS in Pd/TiNi (110) changes significantly in contrast to clean Pd 
(110) but total DOS structure near EF changes insubstantial. The main difference of Pd/NiTi (110) 
surface ES from Pd/FeTi (110) is that states induced by Pd–Ni bond lye essentially deeper relative 
EF and it may be a reason of comparatively low TiNi adsorption capability. 

4 CONCLUSIONS 

The hydrogen adsorption on clean B2–TiNi (001) and Pd–covered TiNi (001) and (110) surfaces 
were studied. We found that hydrogen adsorption is preferable on Ti–terminated TiNi (001) surface 
with H in “hollow” position. We investigated the influence of Pd coating on the surface ES and 
chemical bond on TiNi (001) and (110) surfaces. It was shown that Pd influences the surface ES 
significantly when it was placed instead of Ti in TiNi (001). Ni states are more reactive with 
presence of palladium. Hydrogen adsorption is easier for PdNi/TiNi (001) as earlier was found for 
PdFe/TiFe (001) system. It was found that in Pd–covered TiNi (110) hydrogen is below Pd layer 
after relaxation. Since Pd coating is well permeable for hydrogen the adsorption properties of Pd–
covered and clean TiNi (110) can be the same. The present calculations allow to predict the 
preferable surface orientation and composition but in general the hydrogen storage materials 
properties are mainly determined by bulk structure instabilities upon hydrogenation. 
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