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Abstract 

Motivation. Nerve agents like Sarin, Tabun, Soman, VX, Amiton etc. are highly toxic organophosphates (OPs) 
that exert their toxic effect by inhibition of acetylcholine esterase. These compounds have received considerable 
interest due their inherent nature as weapons of mass destruction. Since these compounds have been developed 
for military purposes, data is typically classified material and thus only scarcely available. QSAR modeling is an 
obvious possibility in order to remedy the lack of data availability. However, a wide variety of structurally 
related OP insecticides are well known and well characterized. “Noise–deficient” QSARs, i.e., a QSAR model 
where the natural variation in both the experimental data and the primary models data has been suppressed in a 
subsequent modeling step, for physico–chemical properties of nerve agents are based on the use of the EPI Suite, 
a general QSAR model from the US EPA. Partial order ranking is an important tool to establish an identity for 
nerve agents relative to well–known OP insecticides. The development of a simple QSAR model for 
toxicological properties was unsuccessful. 
Method. The results described in the paper are obtained using QSAR modeling based on the EPI Suite in 
comparison with partial order ranking. The concept of “noise deficient” QSARs is introduced. 
Results. “Noise deficient” QSARs can be obtained using EPI Suite generated data in combination with 
experimental data for the test set, the data subsequently being applied in the ranking exercise. In the present 
study it is shown that to a certain extent selected insecticides may act as substitutes for nerve agents in 
preliminary experimental studies. 
Conclusions. The paper suggests that experimentally well–characterized compounds may be selected as 
substitutes for highly toxic compounds for preliminary experimental studies of the environmental behavior of the 
latter.
Keywords. Noise–deficient QSARs; partial order ranking; Hasse diagrams; organo–phosphates; nerve agents. 

1 INTRODUCTION 

Organophosphates (OPs) are in general toxic substances that exert their toxic effect by inhibition 
of acetylcholinesterase. The so–called nerve agents like Sarin, Tabun, Soman, and VX have 
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received considerable interest due their potential use as weapons of mass destruction. 

According to the ‘Convention for the Prohibition of the Development, Production [1], 
Stockpiling and Use of Chemical Weapons and their Destruction’ major emphasis is given to 
declaration and destruction of existing stockpiles of chemical weapons as well as of chemical 
weapons production facilities. The Convention covers both the destruction of chemical weapons 
stockpiles and destruction or conversion of chemical weapons production facilities. In both cases 
there may be a significant risk to environment and human health. Since these compounds have been 
developed for military purposes data on these compounds are often regarded as classified. However, 
an excellent review on the sources, fate and toxicity of chemical warfare agent degradation products 
is available [2]. It should be noted hat this review partly is based on papers and reports that not 
necessarily is easily obtained. 

When assessing environmental or human health effects of these compounds, QSAR modeling 
can to a certain extent remedy the apparent lack of data. Thus, in the present study physico–
chemical properties of nerve agents have been estimated using QSAR models based on the EPI 
Suite [3]. It should be emphasized that the environmental processes of these substances are no 
different from other substances. However, for environmental studies the extreme toxicity of the 
nerve agents obviously must be considered. 

Within the frame of the present study, it has not been possible to derive a simple QSAR model 
for OP toxicity. However, various studies have been devoted to models to the toxicity of OPs [4–7]. 

The present paper emphasizes the development of “noise–deficient” QSARs that will lead to 
physico–chemical end–points that subsequently can be used as descriptors in a partial order ranking 
of OPs with focus on selected nerve agents. The main objective is to find experimentally well–
characterized compounds, exhibiting significantly lower toxicity than the nerve agents that can be 
used as substitutes in experimental studies of the environmental behavior of the nerve agents. 
Obviously, unique structural elements of the nerve agents may well cause significant differences in 
the environmental fate of the nerve agents and the OP insecticides. Nevertheless, some insecticides 
may mimic the nerve agents by, e.g., exhibiting identical volatilization behavior, while others may 
display similar rates of biodegradation. Based on a partial order ranking, taking several parameters 
into account simultaneously, it appears possible to give the single nerve agent an identity by 
comparing to structurally related OP insecticides. These substitutes will, based on an overall 
viewpoint exhibit analogous environmental characteristics as the nerve agents, and thus be models. 
Thus, such substitutes may well be used for preliminary experimental studies on the environmental 
fate of nerve agents, and subsequently constitute the basis of selection of a limited number of 
necessary experimental studies applied the actual nerve agents in order to perform risk assessment, 
e.g., in relation to the demilitarization activities. 
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2 MATERIALS AND METHODS 

In the present study the end–points are generated through QSAR modeling, the EPI Suite being 
the primary tool [3]. The EPI Suite comprises a variety of submodules to estimate various physico–
chemical parameters as well as ECOSAR to derive toxicity parameters. The models are based on a 
group contribution approach. 

The EPI generated (logarithmic) values for water solubility (log Sol), octanol–water partitioning 
(log KOW), vapor pressure (log VP) and Henry’s Law constants (log HLC) are further treated, i.e.,
new linear “noise–deficient” QSAR models are built by estimating the relationships between the 
EPI generated data and available experimental data for up to 65 OP insecticides, the general 
formula for the end–points, Di, to be used being: 

Di = ai×DEPI + bi (1)

DEPI being the EPI generated end–point value and ai and bi being constants. The log KOW values 
generated in this way are subsequently used to generate log BCF values according to the Connell 
formula [8]. 

log BCF = 6.9×10–3×(log Kow)4 – 1.85×10–1×(log Kow)3 + 1.55×(log Kow)2

– 4.18×log Kow + 4.72 (2)

The model was somewhat modified. Thus, a linear decrease of log BCF with log KOW was 
assumed in the range 1 < log KOW < 2.33, the log BCF = 0.5 for log KOW  1, the latter value being 
in accordance with BCFWin [3]. Subsequently data for missing OP insecticides and the nerve 
agents are calculated based on these formula and the appropriate EPI generated data. 

Due to the lack of experimental data for the test set compounds with regard to (logarithmic 
water–organic carbon partitioning (log KOC) and the ultimate biodegradation potential (BDP3), the 
same procedure was not applicable to these two end–points. Thus, data log KOC and BDP3 are used 
as estimated by the appropriate modules in the EPI Suite. 

The partial order ranking of the compounds included in this study were made using the WHasse 
software [9] using the above described “noise–deficient” QSAR generated end–point as descriptors, 
i.e., log Sol, log KOW, log VP and Henry Law constants as generated by the EPI Suite, (log HLCe), 
and by the bond estimation method, (log HLCb), organic carbon–water partitioning coefficients (log 
KOC), and bioconcentration factors (log BCF), biodegradation potentials for ultimate degradation 
(BDP3), respectively. 

The theory of partial order ranking is presented elsewhere, e.g., [10] and application in relation 
to QSAR is presented previously [11–14]. In brief, Partial Order Ranking is a simple principle, 
which a priori includes “ ” as the only mathematical relation. If a system is considered, which can 
be described by a series of descriptors pi, a given compound A, characterized by the descriptors 
pi(A) can be compared to another compound B, characterized by the descriptors pi(B), through 
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comparison of the single descriptors, respectively. Thus, compound A will be ranked higher than 
compound B, i.e., B  A, if at least one descriptor for A is higher than the corresponding descriptor 
for B and no descriptor for A is lower than the corresponding descriptor for B. If, on the other hand, 
pi(A)>pi(B) for descriptor i and pj(A)< pj(B) for descriptor j, A and B will be denoted incomparable. 
In mathematical terms this can be expressed as 

B  A pi(B) pi(A) for all i (3)

Obviously, if all descriptors for A are equal to the corresponding descriptors for B, i.e., pi(B) = 
pi(A) for all i, the two compounds will have identical rank and will be considered as equivalent. It 
further follows that if A  B and B  C then A  C. If no rank can be established between A and B 
these compounds are denoted as incomparable, i.e. they cannot be assigned a mutual order. 

In partial order ranking (in contrast to standard multidimensional statistical analysis) neither 
assumptions about linearity nor any assumptions about distribution properties are made. In this way 
the partial order ranking can be considered as a non–parametric method. Thus, there is no 
preference among the descriptors. However, due to the simple mathematics outlined above, it is 
obvious that the method a priori is rather sensitive to noise, since even minor fluctuations in the 
descriptor values may lead to non–comparability or reversed ordering. The graphical representation 
of the partial ordering is often given in a so–called Hasse diagram. In practice the partial order 
rankings are done using the WHasse software [9]. The generation of the average rank of the single 
compounds in the Hasse diagram is obtained applying the simple empirical relation recently 
reported by Brüggemann et al. [15]. The average rank of a specific compound, ci, can be obtained 
by the simple relation 

Rkav = (N+1) – (S+1)×(N+1)/(N+1–U) (4)

where N is the number of elements in the diagram, S the number of successors to ci and U the 
number of elements being incomparable to ci [15]. 

O
P

R'O
R Z

X
P

R'O
RO YR''

Nerve Agents               OP Insecticides
Generalized formula for the Nerve agents and for OP insecticides 

2.1 Chemical Data 
Even though data on the nerve agents in practice often are unavailable, or at the best scarce (vide

supra), a wide variety of structurally related compounds are well known and well characterized, i.e.,
OP insecticides such as parathion, malation, diazinon, etc. with respect to physico–chemical and 
toxicological characteristics [16]. 
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Table 1. FADINAD No., CAS No. and name for the 65 OPs used as tested 
FADINAD CAS No. Name log Sol log KOW VP, Pa HLC, atm m3/mol 

61 64249–01–0 Anilofos 1.134 3.81   
69 35575–96–3 Azamethiphos 3.041 1.05 5.0129E–06 1.43E–11 
70 2642–71–9 Azinphos ethyl 1.021 3.4 0.00031997 9.95E–08 
71 86–50–0 Azinphos methyl 1.320 2.75 0.00021332 2.39E–08 
126 2104–96–3 Bromophos –0.523 5.21 0.01706522 2.05E–04 
127 4824–78–6 Bromophos ethyl –0.357 6.15   
139 36335–67–8 Butamifos 0.792 4.62 0.08399286 4.45E–05 
150 95465–99–9 Cadusapfos 2.394 3.9 0.1199898 1.29E–06 
194 470–90–6 Chlorfenvinphos 2.093 3.81 0.00053329 1.53E–08 
201 24934–91–6 Chlormephos 1.778  7.599354 2.93E–04 
216 2921–88–2 Chlorpyriphos 0.049 4.96 0.0026931 2.93E–06 
217 5598–13–0 Chlorpyriphos methyl 0.678 4.31 0.00559952 3.75E–06 
249 56–72–4 Coumaphos 0.176 4.13 1.2932E–05 3.09E–08 
261 13067–93–1 Cyanofenphos –0.222 4.29   
262 2636–26–2 Cyanophos 1.663 2.71 0.10505774 5.48E–06 
296 10311–84–9 Dialifos –0.745 4.69 8.266E–06 1.78E–07 
300 333–41–5 Diazinon 1.602 3.81 0.01201231 1.13E–07 
312 62–73–7 Dichlorvos 3.903 1.47 2.1064876 5.74E–07 
319 141–66–2 Dicrotophos 6.000 –0.49 0.02133152 5.03E–11 
359 3811–49–2 Dioxabenzofos 1.763 2.67   
372 5131–24–8 Ditalimfos 2.124 3.48   
390 17109–49–8 Edifenphos 1.748 3.48 3.5997E–05 7.60E–10 
415 13194–48–4 Ethoprophos 2.875 3.59 0.05066236 1.62E–07 
427 38260–54–7 Etrimfos 1.602  0.01066576 4.62E–07 
434 22224–92–6 Fenamiphos 2.517 3.23 0.00013332 1.21E–09 
524 66767–39–3 Fonofos 1.196 3.94 0.04506284 6.98E–06 
533 83733–82–8 Fosmethilan     
534 98886–44–3 Fosthiazate 3.993 1.68 0.00055995 1.74E–10 
558 23560–59–0 Heptonophos 3.398 2.32 0.17065216 1.92E–07 
591 26087–47–8 Iprobenfos 2.602 3.34 0.00539954 3.84E–08 
594 42509–80–8 Isazofos 1.839 3.82 0.01159901 2.39E–07 
598 25311–71–1 Isofenphos 1.342 4.12 0.00039997 6.17E–08 
613 18181–70–9 Jodfenphos –1.000 5.51 0.00010999 4.48E–06 
629 121–75–5 Malathion 2.155 2.36 0.00045063 4.89E–09 
648 950–10–7 Mephosfolan 1.756 1.04   
664 62610–77–9 Methacrifos 2.602  0.1599864 9.48E–07 
665 10265–92–6 Methamidophos 6.000 –0.8 0.00470627  
694 7786–34–7 Mevinphos 5.778 0.13 0.01706522 6.39E–11 
705 6923–22–4 Monocrotophos 6.000 –0.2 0.00029064  
771 56–38–2 Parathion 1.041 3.83 0.00089059 2.98E–07 
772 298–00–0 Parathion methyl 1.576 2.86 0.00046663 1.00E–07 
795 2310–17–0 Phosalone 0.484 4.38   
796 36519–00–3 Phosdiphen –0.155    
797 947–02–4 Phosfolan 2.813    
798 732–11–6 Phosmet 1.387 2.78 6.5328E–05 8.38E–09 
799 13171–21–6 Phosphamidon 6.000 0.79 0.00219981  
810 24151–93–7 Piperophos 1.398 4.04 3.1997E–05 4.47E–09 
814 23505–41–1 Pirimiphos ethyl 0.599 4.85 0.03866338 3.21E–05 
815 29232–93–7 Pirimiphos methyl 0.934 4.2 0.00199983 7.01E–07 
836 41198–08–7 Profenofos 1.447 4.68 0.00011999 2.21E–08 
849 7292–16–2 Propafos 2.097 3.67 0.0011999 2.88E–08 
853 31218–83–4 Propetamphos 2.041  0.0019065 4.81E–08 
864 34643–46–4 Prothiofos –1.155 5.67  3.01E–05 
869 77458–01–6 Pyraclofos 1.519 3.77 1.5999E–06 1.73E–10 
872 13457–18–6 Pyrazophos 0.623 3.8   
888 13593–03–8 Quinolphos 1.342 4.44 0.00034664 5.73E–08 
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Table 1. (Continued) 
FADINAD CAS No. Name log Sol log KOW VP, Pa HLC, atm m3/mol 

956 3689–24–5 Sulfotep 1.477 3.99 0.01399881 2.40E–06 
959 35400–43–2 Sulphofos –0.509 5.48 0.00015999 1.64E–06 
974 3383–96–8 Temephos –0.569 5.96   
975 107–49–3 TEPP 6.000    
977 13071–79–9 Terbufos 0.705 4.48 0.04266304 2.40E–05 
981 22248–79–9 Tetrachlorvinphos 1.041 3.53 5.5995E–06 1.84E–09 

1005 57018–04–9 Tolclofos methyl 0.041 4.56 0.05732846 1.54E–04 
1015 24017–47–8 Triazophos 1.591 3.34 0.00038663 4.84E–08 
1021 52–68–6 Trichlorfon /Chlorophos 5.079 0.51 0.00103991 1.70E–11 

In the present paper up to 65 OP insecticides have been used as test set. Dependent of the single 
endpoint reduced numbers of OPs may be used, simply reflecting the limitations in experimental 
data (cf. empty entries in Table 1). The OP insecticides used are summarized in Table 1. Details on 
the 16 known and potential nerve agents are given in Table 2. 

Table 2. Details on the 16 known and potential nerve agents 
Type CAS No. Name/code R R' Z 
G–agent 77–81–6 Tabun (GA) –N(CH3)2 –C2H5 –CN 
G–agent 107–44–8 Sarin (GB) –CH3 –CH(CH3)2 –F 
G–agent 329–99–7 Cyclosarin (GF) –CH3 –c–C6H11 –F
G–agent 96–64–0 Soman (GD) –CH3 –CH(CH3)C(CH3)3 –F 
V–agent 50782–69–9 VX –CH3 –C2H5 –SCH2CH2(N(CH(CH3)2)2
V–agent 159939–87–4 R–VX –CH3 –CH2CH(CH3)2 –SCH2CH2(N(C2H5)2
V–agent  C–VX –CH3 –C4H9 –SCH2CH2(N(C2H5)2
VX degr. product  EA2192 –CH3 –H –SCH2CH2(N(CH(CH3)2)2
RVX degr. product  R/C "EA2192" –CH3 –H –SCH2CH2(N(C2H5)2
Possible V–agent 78–53–5 VG (Amiton) –OC2H5 –C2H5 –SCH2CH2(N(C2H5)2
Possible V–agent  Amiton methyl –OC2H5 –C2H5 –SCH2CH2(N(CH3)2
Possible V–agent  Vx (EDMM) –CH3 –C2H5 –SCH2CH2(N(CH3)2
Possible V–agent  VM –CH3 –C2H5 –SCH2CH2(N(C2H5)2
Possible V–agent  VE –C2H5 –C2H5 –SCH2CH2(N(C2H5)2
Possible V–agent  VS –C2H5 –C2H5 –SCH2CH2(N(CH(CH3)2)2
Possible V–agent  S12 –CH3 –c–C5H9 –SCH2CH2(N(CH(CH3)2)2

2.2 Computer Software 
EPI Suite: The EPI Suite is available from the EPA web–site at http://www.epa.gov/oppt/ 

exposure/docs/episuitedl.htm. The reference manual for the EPI Suite, P2 Manual 6–00.pdf' can be 
found and downloaded at http://www.epa.gov/pbt/framwork.htm [3]. WHASSE is described in 
Brüggemann et al. [9]. The software may be obtained by contacting Dr. R. Brüggemann, Institute of 
Freshwater Ecology and Inland Fisheries, Berlin. 

3 RESULTS AND DISCUSSION 

The biodegradation potential of the OPs were assessed using the BioWin module of the EPI 
Suite [3]. In the cases of BDP3 (ultimate biodegradation) predicted values in the ranges 5.0–4.0, 
4.0–3.0, 3.0–2.0, 2.0–1.0 and <1.0 indicate that biodegradation will take place within hours, days, 
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weeks, months or longer than months, respectively. Chemicals with BDP3 in the interval of 1.75 to 
2 are associated with a medium persistence potential, and BDP3 smaller than 1.75 were assigned a 
high persistence potential [13]. In Figure 1 BDP3 data for the 81 compounds under investigation are 
summarized. The compounds included in the study are presented in Table 1 (the OP insecticides) 
and Table 2 (the OP nerve agents). 
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Figure 1. Ultimate biodegradation potential (BDP3)of 65 OP insecticides (x) 
and 16 known or potential nerve agents (o) as derived by BioWin. 

Obviously, it is predicted that the biodegradation of the nerve agents are relative fast and as such 
this should not constitute a problem. However, it should be remembered that if the necessary 
biological activity is not present significantly longer persistence times might prevail. Thus, half–
lives of VX in marine waters and in rivers of up to 1–2 years have been observed [17]. In Figures 
2–5 the EPI–based modified QSARs for solubility, octanol–water partitioning, vapor pressure and 
Henry’s Law constants are visualized. 
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Figure 2. Visualization of the EPI–based modified QSAR 
modeling of log Sol based on 64 OP insecticides. 

Figure 3. Visualization of the EPI–based modified QSAR 
modeling of log KOW based on 53 OP insecticides. 
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Figure 4. Visualization of the EPI–based modified QSAR 
modeling of log VP based on 51 OP insecticides. 

Figure 5. Visualization of the EPI–based modified QSAR 
modeling of log HLCe and log HLCb based on 49 OP 
insecticides. 

The corresponding models are 

log Sol = 0.983×log Sol(EPI) + 0.625; n = 64, r2 = 0.830 (5)

log KOW = 0.894×log KOW(EPI) + 0.487; n = 53, r2 = 0.947 (6)

log VP = 0.793×log VP(EPI) – 1.229; n = 51, r2 = 0.612 (7)

log HLCe = 0.946×log HLCe(EPI) – 1.168; r2 = 0.636 (8)

log HLCb = 0.751×log HLCb(EPI) – 1.371; r2 = 0.727 (9)

Although data for nerve agents are scarce some data have been retrieved. These may serve as a 
validation set for the above models. In Table 3 available experimental data for the “classical” nerve 
agents, i.e. Tabun, Sarin, Cyclosarin, Soman and VX are given together with the corresponding 
values derived based on the above models. Generally a satisfactory agreement can be observed. 
However, it appears that in the case of vapor pressure there are more significant disagreements. 
This is due to the fact that the model for estimating vapor pressures is rather poor, as reflected in the 
regression coefficient r2 = 0.612. In some case, i.e., for substances exhibiting very low vapor 
pressures, such as the V–agents, experimental difficulties in the estimation of the vapor pressures 
may in this case play a role. 
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Table 3. Experimental data (solubilities, octanol–water partitioning, vapor pressures, Henry’s Law constants) compared 
to model generated data derived by “noise–deficient” QSARs based on the EPI Suite) 

log Sol
exp

log Sol
Eq. (5) 

log KOW
exp

log KOW
Eq. (6) 

log VP
exp

log VP
Eq. (7) 

log HLC
exp

log HLCe
Eq. (8) 

log HLCb
Eq. (9) 

4.99 5.05 0.38 0.74 –1.15 –2.29    
6.00 5.21 0.30 0.70 0.46 –0.70    
4.30 3.94  1.92 –1.22 –1.99    
4.32 3.78 1.78 1.92 –0.40 –1.54 –5.34 –5.17 –4.88 
4.48 4.07 2.09 2.33 –3.15 –3.38 –8.09 –7.47 –7.93 

Table 4. Physico–chemical data (solubilities, octanol–water partitioning, vapor pressures, Henry’s Law constants based 
on EPI data and bond estimation, respectively, and bioconcentration factors) for known and potential nerve agents as 
derived by “noise–deficient” QSARs based on the EPI Suite 

 log Sol log KOW log VP log HLCe log HLCb log BCF BDP3 
Tabun 5.05 0.74 –2.29 –5.97 –6.97 0.50 2.84 
Sarin 5.21 0.70 –0.70 –6.94 –7.44 0.50 2.89 
Cyclosarin 3.94 1.92 –1.99 –6.74 –6.80 1.02 2.80 
Soman 3.78 1.92 –1.54 –4.64 –4.57 1.02 2.58 
VX 4.07 2.33 –3.38 –8.11 –10.88 1.25 2.35 
R–VX 4.03 2.40 –4.14 –8.13 –10.32 1.29 2.35 
C–VX 3.96 2.46 –4.41 –6.65 –7.68 1.32 2.65 
EA2192 4.70 1.85 –5.42 –5.69 –5.81 0.98 2.42 
R/C "EA2192 a 5.55 1.09 –5.28 –5.49 –5.73 0.55 2.48 
VG (Amiton) 4.38 2.01 –4.06 –6.17 –7.91 1.07 3.64 
Amiton methyl 5.36 1.13 –3.83 –9.46 –8.62 0.57 2.57 
Vx (EDMM) 5.91 0.71 –3.03 –5.15 –5.55 0.50 2.48 
VM 4.94 1.59 –3.78 –7.41 –7.13 0.83 3.22 
VE 4.45 2.02 –4.11 –5.69 –4.82 1.08 3.19 
VS 3.60 2.77 –4.22 –7.63 –8.97 1.51 3.15 
S12 2.78 3.48 –3.41 –9.71 –10.07 2.16 3.12 
a Analog to EA2192, however, derived from Russian or Chinese VX 

Subsequently the above given models have been applied in estimating physico–chemical data for 
a broader range of known as well as potential nerve agents. In Table 4 these data are collected 
together with the corresponding logarithmic bioconcentration factors as derived through the Connell 
formula (vide supra) applying the log KOW values obtained using the model given in Eq. (5). 

The model–generated end–points may subsequently be used as descriptors in ranking the 65 OP 
insecticides together with the 16 known potential nerve agents. Thus, as in total 81 compounds are 
included in the subsequent ranking procedure, the resulting Hasse diagrams may seem somewhat 
confusing. In Figure 6 the Hasse diagram disclosing the mutual ranking of the compounds due to 
their combined PB (Persistent and Bioaccumulating) characteristics, i.e., bringing simultaneously 
the BDP3 and log BCF into play. 

A priori, compounds located on the same level in the Hasse diagram are assumed to be close in 
their overall characteristics based on the set of descriptors used. On this basis, in the above example 
(Figure 6) the highly toxic EDMM (LD50 (rats, acute, oral) = 0.121 mg/kg) may be substituted by, 
e.g., compounds No. 71 (Azinphos Methyl; LC50 = 4 mg/kg), 312 (Dichlorvos; LC50 = 56 mg/kg), 
591 (Iprobenfos; LC50 = 490 mg/kg) or 648 (Mephosfolan; LC50 = 8.9 mg/kg). 
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Figure 6. Hasse diagram displaying the PB characteristics of the 65 OP insecticides and 16 nerve agent (hatched), The 
numbers corresponds to the numbering of the OP insecticides in the FADINAP database. 

However, a further analysis is necessary to disclose how close these compounds actually are. For 
this analysis we have chosen the concept of average rank [15,18]. Thus, it is assumed that if the 
average ranks, Rkav, of two compounds are close, the two compounds will on an average basis 
display similar characteristics as being determined by the set of descriptors applied. In Table 3 the 
average ranks for the four compounds are compared. 

From the values for the average rank (Table 5), that the four possible substitutes for EDMM 
located on the same level in the Hasse diagram based on average ranks apparently can be regarded 
as being rather close. Thus, taking the actual toxicities, as expressed through the LC50 values into 
account Dichlorvos appear as the optimal choice as substitute for EDMM in studies where the PB 
characteristics of the compounds is important, the toxicity associated with the experiments being 
decreased by a factor close to 500. 

Table 5. Average ranks for the PB characteristics as determined by log BCF and the biodegradation potential for 
EDMM, Azinphos Methyl, Dichlorphos, Iprobenfos and Mephosfolan (the compound ID refers to the FADINAP 
database [16]) 

Compound name Compounds ID 
(Table 1 and 2) 

LC50 (mg/kg) 
Rat, Acute, Oral 

Average Rank 
RKav

EDDM EDDM 0.121 55.9 
Azinphos Methyl 71 4 51.1 

Dichlorvos 312 56 55.9 
Iprobenfos 591 490 50.6 

Mephosfolan 648 8.9 57.9 

Similar analyses for other descriptor combinations can obviously be carried out analogously. 
This is, however, outside the scope of the present paper and is reported elsewhere [19]. The 
Chemical Weapons Convention [1] obviously covers all the nerve agents. However, as a curiosity it 
can be noted that the nerve agents, despite their extreme toxicity based on their PB characteristics 
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(cf. Figure 1 and Table 2) would not immediately qualify to falling into the group of chemicals that 
requires special authorization in the coming European system for registration, evaluation and 
authorization of chemicals, REACH, as these compounds would neither be classified as persistent 
nor as bioaccumulating [20]. This is further substantiated by the placement of all the 16 known or 
potential nerve agents in the lower half of the Hasse diagram reflecting the combined PB 
characteristics (Figure 6). Thus, in cases of extremely toxic compounds, not being covered by, e.g.,
the Chemical Weapons Convention, it might in addition to the PBT and vPvB (very Persistent and 
very Bioaccumulating) criteria be relevant to introduce a vT (very Toxic) criteria as well. 

4 CONCLUSIONS 

The present study has demonstrated that “noise–deficient” QSARs can be generated using the 
EPI Suite as the modeling onset. Subsequently, the generated physico–chemical end–points can be 
used as descriptors in a partial order based ranking giving compounds where experimental data are 
not available an identity by comparing to a test set of experimentally well–characterized, 
structurally similar compounds. 

On this background it has been suggested that experimentally well–characterized compounds 
may be selected as substitutes for highly toxic compounds, as the nerve agent. Hence, this 
procedure allows that the environmental behavior of the latter may be studied experimentally using 
compounds that from an overall viewpoint exhibit analogous environmental characteristics, 
however, without exhibiting the extreme toxicity. 
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