Internet Electronic Journal of Molecular Design

June 2005, Volume 4, Number 6, Pages 367–380

Editor: Ovidiu Ivanciuc

Proceedings of the Internet Electronic Conference of Molecular Design 2004 IECMD 2004, November 29 – December 12, 2004

Thermochemistry of Organic and Heteroorganic Species. Part XVI. Application of IR Spectra of Unsaturated Aliphatic Molecules to the Thermochemistry of Vinylic and Allylic Free Radicals

Dmitry Ponomarev¹ and Viatcheslav Takhistov²

¹ St. Petersburg Forest Technical Academy, 194021 St. Petersburg, Institutski per.5, Russia
 ² Center of Ecological Safety RAS, 197042 St. Petersburg, Korpusnaja ul. 18, Russia

Received: November 6, 2004; Revised: February 17, 2005; Accepted: March 15, 2005; Published: June 30, 2005

Citation of the article:

D. Ponomarev and V. Takhistov, Thermochemistry of Organic and Heteroorganic Species. Part XVI. Application of IR Spectra of Unsaturated Aliphatic Molecules to the Thermochemistry of Vinylic and Allylic Free Radicals, *Internet Electron. J. Mol. Des.* **2005**, *4*, 367–380, http://www.biochempress.com.

Inter*net* BBGHOME Journal of Molecular Design BIOCHEM Press http://www.biochempress.com

Thermochemistry of Organic and Heteroorganic Species. Part XVI. Application of IR Spectra of Unsaturated Aliphatic Molecules to the Thermochemistry of Vinylic and Allylic Free Radicals[#]

Dmitry Ponomarev^{1,*} and Viatcheslav Takhistov²

¹ St. Petersburg Forest Technical Academy, 194021 St. Petersburg, Institutski per.5, Russia
 ² Center of Ecological Safety RAS, 197042 St. Petersburg, Korpusnaja ul. 18, Russia

Received: November 6, 2004; Revised: February 17, 2005; Accepted: March 15, 2005; Published: June 30, 2005

Internet Electron. J. Mol. Des. 2005, 4 (6), 367-380

Abstract

The application of IR–spectroscopy supplemented by method of isodesmic (formal) reactions which characterize the relative stabilities of free radicals is demonstrated as a useful tool for getting novel data of the enthalpies of formation for certain types of free radicals. In a result, ΔH_f° values for 23 XC(•)=CH₂ and 17 XC(•)=O novel radicals were obtained and for 8 more drastically corrected from literature v_{CH} values in XC<u>H</u>=CH₂ and XC<u>H</u>=O molecules, respectively. On the example of H–CH₂C(X)=O molecules it was demonstrated the possibility to estimate the enthalpies of formation of ground state free radicals from v_{CH} values for excited C–H bonds. Using the results on the latter radicals the ΔH_f° values for 7 novel •CH₂C(X)=CH₂ radicals were estimated with the aid of isodesmic reactions. In all these calculations the variable Δv_{CH} value at H \rightarrow X replacement equivalent to 1 kcal mol⁻¹ in C–H bond dissociation energy was applied: 9 cm⁻¹ for H–CH₂R bond, 14 cm⁻¹ for XC(-H)=O and 11 cm⁻¹ for vinylic C–H bond. The strong destabilization effect in both vinylic type XC(•)=O and XC(•)=CH₂ free radicals at H \rightarrow X replacement (X – substituent with lone pair or π –electrons) was found. For XC(•)=O radicals even with such groups as RO or R₂N, traditionally treated as strong electron–donating, destabilization effect at H \rightarrow X replacement was demonstrated. The origin of this effect was suggested in the absence of overlapping of free radical center with lone pair or π –electrons of substituent X. Stabilization (destabilization) of vinylic free radicals is found to be the result of electronegativity/polarizability interplay of a substituent.

Keywords. Thermochemistry; bond dissociation energy; free radicals; IR spectra.

Abbreviations and notations	
BDE, bond dissociation energy	PI MS, photoionization mass spectrometry
EN, electronegativity	SE, stabilization energy
PAZ, polarizability	

1 INTRODUCTION

Recently the systematic application of known v_{C-H} frequencies from gas phase IR spectra of R– H molecules to checking, correcting or finding novel values of the enthalpies of formation for

[#] Presented in part at the Internet Electronic Conference of Molecular Design 2004, IECMD 2004.

^{*} Correspondence author; E-mail: juniper@mailbox.alkor.ru.

corresponding R• free radicals has been demonstrated [1–4]. These works followed the fundamental works of McKean with collaborators [5–10] who had shown that Δv (R–H \rightarrow R'–H) values were correlated with Δ BDE (bond dissociation energies), *i.e.* [BDE(R–H) \rightarrow BDE(R'–H)] values in molecules and consequently with the enthalpies of formation for corresponding R• and R'• free radicals. The problems arising in these correlations are discussed in details in Refs 1–10. For such correlations McKean suggested to take *unique* value in Δv about 11.5 cm⁻¹ for R<u>H</u> \rightarrow R'<u>H</u> replacement equivalent to 1 kcal mol⁻¹ for Δ BDE in R–H \rightarrow R'–H molecules [5,6]. Conversely, we showed that the *variable* Δv equivalents to 1 kcal mol⁻¹ in Δ BDE, depending roughly on electronegativity (EN) of C–atom, better fitted such interrelationships [1–4]. Finally, 9 cm⁻¹ in alkanes, 11 cm⁻¹ at H–C=C double bond, 12 cm⁻¹ at H–C=C triple bond and 14 cm⁻¹ in RC(–H)=O molecules for Δv values were adjusted to 1 kcal mol⁻¹ in Δ BDE values [1,3,4].

In present work we further explored these correlations to find out novel values of the enthalpies of formation for RC(•)=O, R'C(•)=CH₂ and some •CH₂C(X)=CH₂ free radicals. To find out these values we applied the well known equation suggested by Benson as early as in 1965 for quantitative evaluation of the relative stabilities E_s of free radicals (Eq.1) [11].

$$E_{s} = \Delta H_{f}^{\circ}(R\bullet) + \Delta H_{f}^{\circ}(R_{1}H) - \Delta H_{f}^{\circ}(RH) - \Delta H_{f}^{\circ}(R_{1}\bullet)$$
(1)

For our purpose, estimation of the enthalpies of formation for free radicals, we apply Eq.1 in the form of isodesmic (formal) reaction, Eq. (2), where $Q = E_s$:

$$R \bullet + R_1 H \to R H + R_1 \bullet + Q \tag{2}$$

The full form of this formal reaction incorporating the ΔH_f° values of all participants of the reaction is given by Eq. (3):

$$H_{f}^{\circ}(\mathbb{R}\bullet) + \Delta H_{f}^{\circ}(\mathbb{R}_{1}H) \to \Delta H_{f}^{\circ}(\mathbb{R}H) + \Delta H_{f}^{\circ}(\mathbb{R}_{1}\bullet) + Q (= E_{s})$$
(3)

To obtain the ΔH_f° value of the target $R_1 \bullet$ from that of model free radical $R \bullet$ we apply Eq. (4) coming out from Eq. (3):

$$\Delta H_{f}^{\circ}(R_{1}\bullet) = \Delta H_{f}^{\circ}(R\bullet) - \Delta H_{f}^{\circ}(RH) + \Delta H_{f}^{\circ}(R_{1}H) - Q$$
(4)

The obvious advantage of the use of isodesmic reactions to compare the *relative* stabilities of free radicals is the exclusion of the enthalpies of formation for molecules, *i.e.* free radicals' skeletons and leaving only the enthalpy Q of stabilization (Eq. (3), Q>0) or destabilization (Eq. (3), Q<0) of the target R₁• compared with the model R• free radical. Such way of comparison of free radicals relative stabilities is very convenient and easily perceptible. Q value expresses the deviation of the resulted $\Delta H_f^{\circ}(R_1)$ value from additive scheme thus making doubtful the elaboration of group contributions for free radicals which still appear in the literature (for example, Refs. [12] and [13]).

2 SUBSTITUTED CARBONYL XC(•)=O FREE RADICALS

We begin presentation of $\Delta v/BDE$ (= $\Delta \Delta H_f^\circ$) correlations from a representative set of RC<u>H</u>=O molecules (Table 1) (for ΔH_f° values of molecules see Appendix). To extract the enthalpies of formation for free radicals RC(•)=O we applied the following calculation scheme based on Eq. (4) and literature $v_{CH}(RCH=O)$ values in gas phase IR spectra.

X-CH=O	ν_{CH}	ΔH_{f}° (RH)	$\Delta v(H \rightarrow X)$	Q	$\Delta H_{f}^{\circ} XC(\bullet)O$ calc.		
л-сп-о				Н→Х	from Δv	final	$\Delta H_{f}^{o}[XC(\bullet)O]$ lit.
Me ₂ C=CH	2768 [15]	[-35.5]	-45	3.21	-2.7	-2.5	
Me	2770	-39.73	-43	3.07	-6.8	-6.8	-2.4 [12], -4.5 [13], -5.4 [14,19]
Ph	2770	-8.8	-43	3.07	24.1	24	26.1 [13, 14], 27.8 [12]
Н	2813	-26.0	0.0	0.0	10.0		9.96 [12], 10.0 [13]
MeS	2838 [16]	[-33.5]	25	-1.8	4.3	4.5	
HS	[2844]	-30	31	-2.2	8.2	8.0	
CF_3	2844	-188.3	31	-2.2	-151.1	-151	-128.4 [12]
Me ₂ N	[2844]	-45.8	31	-2.2	-6.0	-6.0	
Br ₃ C	2845	[-1]	32	-2.3	-38.0	-38	
MeNH	[2847]	[-44.5]	34	-2.4	-5.5	-5.5	
СНО	2850	-50.7	37	-2.6	12.1	12	
H_2N	2852	[-43.5]	39	-2.8	-4.7	-4.5	
Cl ₃ C	2856	[-38.1]	43	-3.1	1.0	1	
HC≡C	2858	24.5	45	-3.2	64.4	64.5	
BrC≡C	2858 [16]	[28]	45	-3.2	67.9	68	
ClC≡C	2860 [16]	[15.5]	47	-3.36	55.4	55.5	
Br	2912.5 [17]	[-32.5]	99.5	-7.1	10.6	10.5	
Ι	2930 [17]	-17	117	-8.36	27.8	28	
MeO	2930	-85.0	117	-8.36	-40.2	-40	-40.4 [19]
Cl	2934 [17]	[-45]	121	-8.64	-0.5	-0.5	-2.8 [13], -5.2 [13]
НО	2943	-90.5	130	-9.3	-45.2	-45	-46.5 [12], -47.3 [20], -53.3 [13]
HCOO (two rotamers)	2948 [18]	[-110]	135	-9.6	-63.9	-64	
(iwo iotalliels)	2964 [18]	[-110]	151	-10.8	-62.7	-04	
F	2981.2 [17]	[-93]	168.2	-12.0	-44.4	-44.5	-43.0 [13]

Table 1. Thermochemical characteristics of XC(•)=O free radicals (v_{CH} values in cm⁻¹ – from Refs. [5] and [6], ΔH_{f}° and Q – in kcal mol⁻¹, derived values – in square brackets).

Formaldehyde H–CH=O was taken as a model compound. The ΔH_f° HC(•)=O 10.0 kcal mol⁻¹ is well established [12,13]. We give an example of calculation for ΔH_f° MeC(•)=O free radical from v_{CH} MeC<u>H</u>=O molecule. ΔH_f° [MeC(•)=O] = ΔH_f° [HC(•)=O] – ΔH_f° (H₂C=O) + ΔH_f° (MeCH=O) – Q = 10.0 – (-26.0) + (-39.73) – Q (Eq. (4), R = H, Me). We gain Q = {[v_{CH}(H–CH=O)– v_{CH}[CH₃C(-H)=O]}: 14 = (2813 – 2770): 14 = 43:14 = 3.07 kcal mol⁻¹. Each 14 cm⁻¹ in Δv are equivalent to 1 kcal mol⁻¹ in $\Delta \Delta H_f^{\circ}$ values. The positive sign of Q 3.07 signifies that acetyl CH₃C(•)=O is by 3.07 kcal mol⁻¹ more stable than formyl HC(•)=O free radical or, in other words H \rightarrow CH₃ replacement reveals stabilization of free radical center by 3.07 kcal mol⁻¹. Thus, in general, we use the additive scheme as a primary step and then introduce the correction term Q reflecting quantitatively the electron–donating (Q > 0) or electron–withdrawing (Q < 0) properties of R–substituent compared with H–atom in formyl H–C(•)=O radical. v_{CH} values for some molecules were extrapolated using IR data for structurally close compounds, like HSC<u>H</u>=O from data on MeSC<u>H</u>=O or MeNHC<u>H</u>=O and Me₂NC<u>H</u>=O from data on H₂NC<u>H</u>=O molecule keeping in mind that H \rightarrow Me replacement decreases the v_{CH} value which parallels the decrease of the BDE C–H in molecules.

Analysis of data collected in Table 1 revealed some unexpected features. The first of them is the minor (if any) role of resonance (conjugation) interaction of lone pairs of heteroatom or π -system (Ph, XC=C) with unshared electron at free radical center. Such substituents as halogens and especially RO–, RS–, R₂N (R = H, alkyl)–groups, being well known as stabilizing free radical center compared with Me–group, reveal, contrary, the destabilizing effect in the RC(•)=O series. Let us compare the Q values (Table 2) for two isodesmic reactions Eqs. (5) and (6). The data for RCH₂·radicals are taken from Ref. [14] (here ΔH_f° for CH₃· radical is taken 35.1 kcal mol⁻¹) and for RC(•)=O radicals from present work. The isodesmic reactions in Table 2 are given in a brief form like CH₃• \rightarrow CH₂NMe₂ + Q, instead of a full form (Eqs. (5) and (6)) or CH₃• + CH₃NMe₂ \rightarrow CH₄ + •CH₂NMe₂ + Q₁.

$$CH_3 \bullet + XCH_3 \rightarrow CH_4 + XCH_2 \bullet + Q_1$$
 (5)

$$HC(\bullet)=O + XCH=O \rightarrow H_2C=O + XC(\bullet)=O + Q_2$$
(6)

●CH ₂ X	、	$\frac{1}{\Delta H_{f}^{0}}(\bullet CH_{2}X)$	Q ₁	XC(•)=O		Q2
CH ₃ ●	$\rightarrow \bullet CH_2NMe_2$	25.8	21.4	HC(•)=O	\rightarrow Me ₂ NC(•)=O	-2.2
	$\rightarrow \bullet CH_2 NHMe$	30.9	17.5		\rightarrow MeNHC(\bullet)=O	-2.4
	$\rightarrow \bullet CH_2NH_2$	34.9	12.5		\rightarrow H ₂ NC(•)=O	-2.8
	$\rightarrow \bullet CH_2OMe$	-5.0	13.9		\rightarrow MeOC(\bullet)=O	-8.4
	$\rightarrow \bullet CH_2OH$	-3.2	7.9		\rightarrow HOC(\bullet)=O	-9.3
	$\rightarrow \bullet CH_2F$	-7.5	6.1		\rightarrow FC(\bullet)=O	-12
	$\rightarrow \bullet CH_2Cl$	28.5	4.8		$\rightarrow ClC(\bullet)=O$	-8.6
	$\rightarrow \bullet CH_2Br$	41	2.3		$\rightarrow BrC(\bullet)=O$	-7.0
	$\rightarrow \bullet CH_2I$	54.5	1.3		\rightarrow IC(\bullet)=O	-8.4
	$\rightarrow \bullet CH_2Me$	27	5.8		\rightarrow MeC(\bullet)=O	3.1
	$\rightarrow \bullet CH_2Ph$	47	17.9		$\rightarrow PhC(\bullet)=O$	3.1

Table 2. Stabilization energies Q for $CH_3 \bullet \rightarrow XCH_2 \bullet (Q_1)$ and $HC(\bullet)=O \rightarrow XC(\bullet)=O (Q_2) (\Delta H_f^\circ R \bullet \text{ and } Q - \text{ in kcal mol}^{-1})$; $\Delta H_f^\circ (\bullet CH_2 X)$ from Ref. [4], $\Delta H_f^\circ XC(\bullet)=O$ – this work (Table 1).

All substituents collected in Table 2 stabilize the CH₃·free radical (Q₁ > 0) while in substituted formyl XC(•)=O free radicals only Me– and Ph–groups reveal a small stabilizing effect (Q₂ > 0). Even such traditionally very strong electron donating groups as H₂N–, –OMe, MeNH–, Me₂N– destabilize formyl radicals (Q₂ < 0). All that signifies that in substituted formyl free radicals there is no overlapping between heteroatoms' lone pair and unshared electron of free radical center or, in other words, the conjugation between them is absent. If in the series of halogeneted XCH₂• radicals the resonance stabilization decreases in the row F > Cl > Br > I in consensus with their R⁺ values – 0.52 (F), –0.31 (Cl), –0.30 (Br) and –0.28 (I) [21] the observed effect in halogenated formyl radicals is the opposite one just following inductive σ_1 [21] or electronegativity values [3]. Thus, it may appear that substituted formyl radicals may become the models of "pure" inductive effect without involvement of resonance effect.

Another interesting observation is that electron-donating effects of Me- and Ph-groups are identical in their relation to stabilization of formyl free radical while, as expected, the latter demonstrated the much higher substitution effect on XCH₂• radical when compared with X = Me. This again can only be treated as the evidence of absence of resonance stabilization of the free radical center by π -system while minor stabilization still takes place owing to polarizability (PAZ) effect of Ph- which is expected to be larger than with Me-group (compare ENs values 4.8 and 5.4 units for Me- and Ph-groups, respectively [3]).

One more specific feature of the XC(•)=O system is contribution of PAZ effect of X– substituents. Its role in stabilization of free radicals on the example of XC=C• species is described in detail in Ref.3. It is expected that the larger is the size of an atom or of a group the larger is the PAZ effect inspired by electron–deficient free radical center. The behavior of XC(•)=O radicals (Tables 1 and 2) parallels that observed with XC=C• free radicals. For the latter only a few "hard" (of small size and low PAZ) substituents F, HO, Cl, and –N=C destabilize HC=C• radical in the framework of isodesmic reaction HC=C• + XC=CH \rightarrow HC=CH + XC=C• + Q (Q<0). All others, including such traditionally treated as strong electron–withdrawing groups as –C=N, CF₃, COOH and even SF₅ stabilize XC=C• radical (Q > 0) since v_{CH} values for XC=C–H molecules with these groups are *lower* than v_{CH} for unsubstituted HC=CH molecule [1,3].

Since $HC(\bullet)=O$ radical is much more stable [by 32.5 kcal mol⁻¹(=Q°) !] in the framework of isodesmic reaction $HC\equivC\bullet + CH_2=O \rightarrow HC\equivCH + HC(\bullet)=O + Q^{\circ}$ many other X-atoms and groups enter the list of destabilizing substituents. This comes out from our observations and found regularities that some substituents stabilize unstable, like Me• radicals while destabilize the more stable radicals like Me₂CH•, that is Q > 0 for Me• + CH₃X \rightarrow MeH + •CH₂X and Q < 0 for Me₂CH• + Me₂CHX \rightarrow Me₂CH₂ + Me₂C(•)X isodesmic reaction. In the absence of possibility to bring about their resonance effect in XC(•)=O system such substituents as halogens, RO–, RS–, RC=C- and even R₂N– exhibit electron–withdrawing (destabilizing) effects. Of course, one should not expect to "measure" the PAZ effect directly from IR data since the interplay between EN and PAZ of a group might appear to be very complex [3]. For example, such rather diverse groups as CF₃, CBr₃, HS, Me₂N or Cl₃C and HC=C give very close v_{CH} values. Another complicating factor even in case of structurally close groups like CX₃ (F, Cl, Br) is the possible difference in their geometrics in relation to C–H bond in RC<u>H</u>=O molecule.

3 1–X–SUBSTITUTED VINYL FREE RADICALS

For $XCH=CH_2$ molecules and $XC(\bullet)CH=CH_2$ free radicals the effects similar to those for XCH=O molecules and $XC(\bullet)=O$ radicals, respectively, are expected. The set of compounds

 $XCH=CH_2$ for which the data on IR spectra are available is more narrow owing to chemical instability of many of them like $XCH=CH_2$ with X=OH, SH, NH₂. Still, the general tendencies in structure/enthalpy of formation are similar in both classes of compounds. The most important and common tendency remains untouched, this is the minor (if any) participation of resonance (conjugation) effect in interaction of X-substituent, possessing either lone pairs or π -electrons, with free radical center and the important role of polarizability effect (Table 3). The best example to demonstrate the role of PAZ effect are the v_{CH} values for $CH_2=CHEH_2$ molecules, where E is the element of V (15) group N-Bi (Table 3).

values – in kcal mol ⁻⁺ , derived values – in square brackets; for ΔH_f° of parent molecules see Appendix].							
X–C <u>H</u> =CH ₂		ΔH_{f}°	$\Delta v(H \rightarrow X)$	Q	$\Delta H_{f}^{\circ} XC(e$	$\Delta H_{f}^{\circ} XC(\bullet)=CH_{2}$	
$X - C \underline{\Pi} - C \Pi_2$	$v_{\rm CH}$	XCH=CH ₂	$\Delta V(\Pi \rightarrow \Lambda)$	Н→Х	from Δv	final	value
H ₂ Bi	[2940]	[75]	-120	11.0	121.5	121.5	
H_2Sb	2949.3[22]	[57.7]	-110.7	10.1	105.14	105	
H ₂ As	2959[22]	[35.5]	-101	9.2	83.8	84	
Me ₂ N	[2975]	[13]	-85	7.7	62.9	63	
H_2P	[2980]	[19.8]	-77	7	70.5	70.5	
MeNH	2990[23]	[14.2]	-70	6.4	65.3	65.5	
ClCO (two rotamers)	2990[24] 2998	[-32]	-70	6.4	19.3	19.5	
CH ₃ CO	[2997]	[-28]	-63	5.7	23.6	23.5	27 [20]
Et	2998[16]	0.02	-62	5.6	51.8	52	
CH ₂ =CH	3000[25]	26.3	-60	5.5	78.2	78	
Ph	[3000]	35.35	-60	5.5	87.2	87	74 [20]
Me	3001[5]	4.88	-59	5.4	56.7	56.5	
H_2N	[3010]	13.5	-50	4.5	66.3	66.5	57.5 [20]
HC≡C	3012[5]	69.8	-48	4.4	122.7	122.5	108 [29]
ClCH ₂	3021[16]	0.5	-39	3.5	54.2	54	
BrCH ₂	3021[16]	10.8	-39	3.5	64.7	64.5	
FCH ₂	3026[16]	-35.5	-34	3.1	25.1	25	
MeS	3044[25]	[16]	-16	1.5	72.0	72	
$Cl_2C=C(Cl)$	3047[27]	11.5	-13	1.2	67.7	67.5	
Н	3060[5]	12.55	0.0	0.0	70.0	70	
MeO	3065[5]	[-24.5]	5.0	-0.6	33.5	33.5	
HS	[3070]	19.5	10	-0.9	78.0	78	
CF ₃	[3070]	-151	10	-0.9	-92.5	-92.5	
Cl	3071[28]	5.2	11	-0.9	63.3	63.5	
N≡C	3078[5]	43.16	18	-1.6	102.2	102	
F	3080[5]	-35	20	-1.8	24.4	24.5	
НО	[3082]	-30.4	22	-2.0	28.9	29	17.5 [20]
Br	3085[5]	18	25	-2.3	77.8	78	
<u>I</u>	[3087]	32	27	-3.5	91.9	92	

Table 3. Thermochemistry of XC(•)=CH₂ free radicals [v_{CH} and Δv – in cm⁻¹ refer to vinylic C–H bond), ΔH_f° and Q values – in kcal mol⁻¹, derived values – in square brackets; for ΔH_f° of parent molecules see Appendix].

Vinyl •CH=CH₂ radical is by 21.55 kcal mol⁻¹ less stable than •CH=O free radical in the framework of isodesmic reaction •CH=O + CH₂=CH₂ \rightarrow CH₂=O + •CH=CH₂ + Q [Q = $\Delta H_f^{\circ}(\bullet CH=O) + \Delta H_f^{\circ}(CH_2=CH_2) - \Delta H_f^{\circ}(CH_2=O) - \Delta H_f^{\circ}(\bullet CH=CH_2) = 10.0 + 12.55 - (-26.0) -70$ = = -21.55 kcal mol⁻¹(destabilization)]. Therefore, many of the substituents which destabilize the XC(•)=O free radicals now become stabilizing ones in XC(•)=CH₂ radicals in the framework of isodesmic reactions. In other words, the less stable vinyl •CH=CH₂ free radical extracts stabilization from those substituents which in the system of more stable formyl •C(H)=O radical were electron–withdrawing, *i.e.* destabilizing the latter ones. This fact stands in line with our previous observations (see above and Refs. [1–4,14]). Among those which now destabilize vinyl radicals we find all halogens, HO, MeO, HS and NC–groups. Using the known experimental data we – by interpolation – ascribed v_{CH} values for some XC<u>H</u>=CH₂ molecules for which such data are not available. IR spectra of substituted ethylenes XCH=CH₂ revealed certain specificity in interaction of halogens with π -double bond. The measured v_{CH} values in the series of halogenated ethylenes XCH=CH₂ (F, Cl, Br, I) range only for 7 cm⁻¹ (compare with the range of 70 cm⁻¹ for XC<u>H</u>=O molecules – see above) (Table 3). Thus, it is hardly possible to make any definite conclusions about the role of inductive effect (or EN), polarizability and geometrical fine structure for a particular halogen.

Summarizing the data on thermochemistry of free radicals of vinylic type we now realize that our earlier estimations of the enthalpies of formation of some XC(•)=CH₂ radicals (X = Ph, H₂N, HO, HC=C) [20,29] (Table 3) were based on erroneous assumptions that either of free radicals saturated and vinylic ones follow similar structure/stability interrelationships. Similarly, the quoted value for ΔH_f° CF₃C(•)=O radical –128.4 [12] compared with the value –151 kcal mol⁻¹ (present work) would give too high destabilization effect of –23.6 kcal mol⁻¹ for HC(•)=O \rightarrow CF₃C(•)=O replacement (compare with –2.2 kcal mol⁻¹ – Table 1). This would lead to unprecedented value for v_{CH} in CF₃C<u>H</u>=O molecule being much more higher than with F–substituent: v_{CH}(CF₃CH=O) = v_{CH}(CH₂=O)(2813) + 23.6 × 14 (see above) = 3143.4 cm⁻¹ (!).

mol molecules ΔH_{f} – from Ref. 31, derived values – in square brackets).								
Molecule	ΔH_{f}°	v _{exp.}	$v_{calc.}$	Q_0	$\Delta H_{\rm f}^{\circ}$	$v_{exp.}$	Q_1	$\Delta H_{\rm f}^{\circ}$
RH	RH	CHas	CHas	Н→Х	• CH_2COX	CHsym	Н→Х	• CH_2COX
CH ₃ CH=O	-39.73	2945	2900.5	0.0	3.0 ^{<i>a</i>}	3002	0.0	9.3
CH ₃ COCH ₃	-51.94	2946	2893.5	-0.1	-9.1^{a} -10 ^b	3004	-0.2	-2.7
CH ₃ COF	-105.66	2980.1	2935.6	-3.9	$-59^{\ a}$ -60.5 $^{\ b}$	3025.4	-2.6	-54
CH ₃ COCl	-58.3	2978.5	2934	-3.8	-11.5^{a} -14^{b}	3004.0	-0.2	-8.8
CH ₃ COBr	-45.5	2978.2	2933.7	-3.7	1.0^{a} -1.2 ^b	2994.9	0.8	2.7
C <u>H</u> 3COI	-30.2	[2978]	2933.5	-3.7	16 ^{<i>a</i>}	2983.3	2.1	16.8
CH ₃ COOMe	-98.45	2972.7	2928.2	-3.0	-52.5^{a} -52.4 ^b	3012	-1.1	-48.3
CH ₃ COCN	[-3]	2957.5	2913	-1.44	40 ^{<i>a</i>}	3010	-0.9	46

Table 4. Thermochemistry of \bullet CH₂C(X)=O free radicals (ν_{CH} from Ref. 6 – in cm⁻¹); Δ H_f° and Q values – in kcal mol⁻¹; molecules' Δ H_f° – from Ref. 31; derived values – in square brackets).

^{*a*} this work; ^{*b*} from Ref. 30

4 ALLYLIC TYPE •CH₂C(X)=O FREE RADICALS

According to Ref. [6] CH₃CHO molecules exhibit in its IR spectrum two bands with v_{CH} frequencies in CH₃-group 2945 (CH_{as}) and 3002 (CH_{sym}). The lower v_{CH} (antisymmetric or *cis*)

corresponds to free radical's conformer •CH₂CH=O in which free radical's center practically does not interact with the double C=O bond. The higher v_{CH} (symmetric or *trans*) belongs to the conformer in which free radical's electron is actively interacting with this double bond performing the destabilizing effect since here CO–group reveals its electron–withdrawing properties. However, even the lower v_{CH} corresponds to •CH₂CH=O radical being in "excited" rather in its ground state. According to McKean [6] BDEs H–CH₂CH=O are 99.4 and 92 kcal mol⁻¹, coming, respectively, from v_{CH} 2945 cm⁻¹ value and from kinetic data (ground state). Thus, all low v_{CH} values in H–CH₂C(X)=O molecules (Table 4) correspond to formation of •CH₂C(X)=O radical in "excited" state with *cis*–position of unshared electron to CO–group. We estimated the enthalpies of formation of series of •CH₂C(X)=O radicals applying the known ΔH_f° value for unsubstituted •CH₂CH=O 3 kcal mol⁻¹ (kinetic and mass spectrometric studies [14]) by estimating v_{CH} H–CH₂C(X)=O in the ground state with the help of following equations (ΔH_f° and Q – in kcal mol⁻¹)

$$\begin{array}{c} CH_3 \bullet + CH_3 CH = O \rightarrow CH_4 + \bullet CH_2 CH = O + Q_1 \\ \Delta H_f^0 & 35.1 \quad -39.73 \quad -17.78 \quad 3 \quad 10.17 \end{array}$$
(7)

$$v_{CH} (calc.) (H-CH_2CH=O) = vCH(CH_3-H) - Q_1(CH_3 \bullet \to \bullet CH_2CH=O) \times 9 =$$

= 2992 - [10.17 × 9 = 91.5] = 2900.5 (8)

$$v_{CH}(\text{calc.} \rightarrow \text{exp.}) = 2900.5 - 2945 = -44.5 \text{ cm}^{-1}$$
 (9)

where 9 cm⁻¹ is the equivalent for 1 kcal mol⁻¹ in BDEs in H–CH₂–group. Then we calculated v_{CH} values for the ground states of all other H–CH₂C(X)=O molecules using v_{CH} (exp.) and introducing the common correction term –44.5 cm⁻¹ [Eq. (9)] as for unsubstituted H–CH₂CH=O molecule [Eqs. (7)–(9)]. For example:

$$v_{CH}(calc.) [H-CH_2C(F)=O] = v_{CH}(exp.) [H-CH_2C(F)=O] (2980.1) - 44.5 = 2935.6 \text{ cm}^{-1}$$
 (10)

From these v_{CH} (calc.) values for ground state $\bullet CH_2C(X)=O$ radicals with *cis*-position of unshared electron and CO-group (Table 4) we then calculated the Q values for isodesmic reactions $\bullet CH_2CH=O \rightarrow \bullet CH_2C(X)=O$ (brief form). For example,

$$\Delta H_{f}^{\circ} [\bullet CH_{2}C(F)=O] = \Delta H_{f}^{\circ} [\bullet CH_{2}CH=O] - \Delta H_{f}^{\circ} [CH_{3}CH=O] + \Delta H_{f}^{\circ} [CH_{3}C(F)=O] - Q\{[v_{CH}(calc.) H-CH_{2}C(F)=O]: 9\} = 3.0 - (-39.73) - 105.66 [31] - [(2900.5 - 2935.6): 9] = (11) - 59.03 \sim 59 \text{ kcal mol}^{-1}$$

When similar calculation was performed with $v_{CH}(sym.)$ values (Table 4) which were responsible for interaction of CO–group and unshared electron being in *trans*–position to each other such interaction appeared to be rather specific. Halogens showed the yet higher contribution of their PAZ effects to such an extent that only F–atom (very low PAZ) destabilized •CH₂C(F)=O radical compared with unsubstituted •CH₂CH=O free radical (Q = -2.6), •CH₂C(Cl)=O demonstrated similar stability with the latter (Q = -0.2) while Br– and then I–atoms showed the yet stronger stabilization effects (Q>0). Consequently, for Br– and, especially, for I–substituents both conformers (with either *cis*– or *trans*–position of C(X)=O group to unshared electron) become close in their stabilities: compare ΔH_f° values for *cis*- and *trans*-radicals 1.0 and 2.7 (Br) or 16 and 16.8 kcal mol⁻¹ (X = I). We stress that either $v_{CH}(as)$ or $v_{CH}(sym)$ values correspond to free radicals being in "excited" states.

Owing to essentially different interaction in *cis*- and *trans*-conformers (compare Q_0 and Q_1 – Table 4) it is hardly possible to calculate the ΔH_f° values of the *trans*-substituted radicals in their ground states as it was performed for *cis*-conformers (see above). All these observations coming from data on IR spectra enlighten the possible complexity in interpretation of experimental results on determination of BDEs in H–CH₂C(X)=O [and H–CH₂C(X)=CH₂ – see later] molecules by methods of chemical kinetics which hardly take in account the described effects coming from IR data.

It is important to mention that experimental ΔH_{f}^{0} values for $\bullet CH_{2}COCH_{3}$ (-10) and •CH₂COOCH₃ (-52.4 kcal mol⁻¹) were obtained by photoionization mass spectrometry (PI MS) [30] (Table 4) and are very close to data gained in present work from IR data thus supporting our methodology of calculating $\Delta H_{f}^{\circ} \bullet CH_{2}C(X)=O$ free radical from v_{CH} values related to "excited" C-H bonds. The literature values for \bullet CH₂C(X)=O radicals (F, Cl, Br) were calculated by additive scheme from experimental data on \bullet CH₂C(X)=O radicals (Me, OMe) [30]. We think that Δ H_f° •CH₂COCH₃ –10 kcal mol⁻¹ gained from PI MS [30] is more reasonable than that obtained from IR spectrum of acetone (Table 4) -9.1 [6] or from chemical kinetics -5.7 [19] kcal mol⁻¹. What is strange that both v_{CH} values for acetone 2946 and 3004 cm⁻¹ are higher than for CH₃CHO molecule 2945 and 3002 cm⁻¹, respectively (Table 4). H \rightarrow Me replacement might stabilize free radical and thus it is expected that v_{CH} values should be lower for acetone H–CH₂COCH₃ than for acetaldehyde H–CH₂CHO like it was observed for many other systems at H \rightarrow Me replacement (Refs. [1–4] and Tables 1–3). The possible source of this discrepancy is involvement of the enol form of acetone $CH_2=C(OH)CH_3$ molecule. Another possible reason is that namely acetone (for unknown reason) deviates from $v_{CH}(as)$ (exp. \rightarrow calc.) tendencies which are followed by all other CH₃C(X)=O molecules. Still the data on •CH₂COCH₃ radical coming from IR spectra and from PI MS differ by only 1 kcal mol^{-1} .

The discrepancy between PI MS and kinetic data -10 [30] and -5.7 [19] kcal mol⁻¹ respectively, can now be explained by involvement in kinetic experiment (bimolecular reaction X• + H– CH₂COCH₃ \rightarrow HX + •CH₂COCH₃) of the stronger C–H bond of *trans* conformer (see above).

5 ALLYLIC TYPE •CH₂C(X)=CH₂ FREE RADICALS

To derive the enthalpies of formation for this type of free radicals we followed the tendencies in structure/ ΔH_f° for $\bullet CH_2C(X)=O$ radicals (see above). In the framework of isodesmic reactions $\bullet CH_2CH=CH_2$ is by 8.4 kcal mol⁻¹ *more* stable than $\bullet CH_2CH=O$ free radical [Eq. (12)] (ΔH_f° and Q

- in kcal mol⁻¹).

•CH₂CH=O + CH₃CH=CH₂
$$\rightarrow$$
 CH₃CH=O + •CH₂CH=CH₂ + Q
 ΔH_{f}° 3.0 4.78 -39.73 39.1 +8.41 (12)

Since all X-substituents (with exception of Me) destabilize \bullet CH₂C(X)=O free radicals at H \rightarrow X replacement, *i.e.* Q < 0 for \bullet CH₂CH=O $\rightarrow \bullet$ CH₂C(X)=O isodesmic reaction (brief form) (Table 4) the same X-substituents will even more destabilize the more stable [Eq. (12)] allyl \bullet CH₂C(X)=CH₂ free radicals at H \rightarrow X replacement in β -position to free radical center (see above). We can estimate approximately the Q value for, say, \bullet CH₂CH=CH₂ + CH₃C(F)=CH₂ \rightarrow CH₃CH=CH₂ + \bullet CH₂C(F)=CH₂ + Q isodesmic reaction [Eq. (13)] applying the known data for less stable FCH₂CH₂ \bullet [32] and \bullet CH₂C(F)=O (this work) free radicals [Eq. (14)] [the values at arrows signify Q values (in kcal mol⁻¹) for corresponding isodesmic reaction like \bullet CH₂CH=CH₂ \rightarrow \bullet CH₂C(F)=CH₂ (brief form) while Eq. (13) is the full form of this reaction].

$$CH_{3}CH_{2} \cdot \xrightarrow{+4.3} \cdot CH_{2}CH=O \xrightarrow{+8.3} \cdot CH_{2}CH=CH_{2}$$
(14)

$$Q_{1} \mid -2.7 \quad -\overset{-1.2}{-\cdots} \quad Q_{2} \mid -3.9 \quad -\overset{[-1.8]}{-\cdots} \quad Q_{1} \mid [-5.7]$$

$$FCH_{2}CH_{2} \cdot \cdot CH_{2}C(F)=O \quad \cdot CH_{2}C(F)=CH_{2}$$

Here we applied the earlier found observation that introduction of an electron–withdrawing substituent to yet more stable free radical performs yet higher destabilizing effect (see above). The final values of the enthalpies of formation for \bullet CH₂C(X)=CH₂ free radicals are collected in Table 5.

f	and $Q = m \kappa c$	a mor , derive	u values – m squ	are brackets)
	Х	ΔH_{f}°	$Q(H \rightarrow X)$	$\Delta H_{f}^{o}(R\bullet)$
	Н	4.88	0.0	39.1[14]
	F	[-46.5]	-5.7	-7.5
	Cl	[-5.0]	-5.55	33.5
	Br	[8.5]	-5.35	47.5
	Ι	[23.5]	-5.35	61.5
	CN	[32]	-2.45	70
	MeO	[-35]	-4.15	2.5
	HO	[-41.5]	-5.55	-4.5

Table 5. Thermochemical characteristics of \bullet CH₂C(X)=CH₂ free radicals (Δ H₆° and O – in kcal mol⁻¹; derived values – in square brackets)

6 CONCLUSIONS

In present work we further demonstrated the application of IR spectroscopy as a useful tool for getting novel data of the enthalpies of formation for certain types of free radicals if IR data are supplemented by series of isodesmic (formal) reactions. In a result, ΔH_f° values for 23 XC(•)=CH₂ and 17 XC(•)=O novel radicals were obtained and for 8 more were drastically corrected using literature v_{CH} values in XC<u>H</u>=O and XC<u>H</u>=CH₂ molecules. For the first time, on the example of H–

CH₂C(X)=O molecules the IR v_{CH} values for excited C–H bonds were applied to calculate the ΔH_f^0 values in the ground state. Using the results on the latter radicals the enthalpies of formation for 7 novel •CH₂C(X)=CH₂ radicals were estimated with the aid of isodesmic reactions.

The strong destabilization effect in both types $XC(\bullet)=O$ and $XC(\bullet)=CH_2$ free radicals at $H \to X$ replacement (X – substituent with lone pair or π -electrons) was demonstrated. The origin of this effect was explained by the absence of overlapping of free radical center with lone pair or π -electrons of X-substituent.

Appendix 1

Most of the known values for the enthalpies of formation for parent molecules are taken from Ref. [31]. The values for ΔH_1° of $H_2NCH=CH_2$ (13.5), HSCH=CH₂ (19.5), BrCH=CH₂ (18), HOCH=CH₂ (-30.4), ClCH=CH₂ (5.2), CF₃CH=CH₂ (-151), FCH=CH₂ (-35), FCH₂CH=CH₂ (-35.5), ClCH₂CH=CH₂ (0.5) we extracted from Ref. [32]. Δ H₆⁰ CF₃CHO –188.kcal mol⁻¹ was earlier obtained in Ref. [33]. Δ H_f° HSCHO –30 kcal mol⁻¹ was earlier estimated in Ref. [20] and hence $\Delta H_f^{\circ}[MeSCHO] = \Delta H_f^{\circ}[HSCHO] - \Delta H_f^{\circ}[MeSH] (-5.5) + \Delta H_f^{\circ}[MeSMe] (-9.0) = -33.5 \text{ kcal mol}^{-1}$. The data for MeNHCHO (or MeNHCH=CH₂) and Me₂NCHO (or Me₂NCH=CH₂) were estimated by additive scheme from ΔH_f° values for H₂NCHO (or H₂NCH=CH₂), H₂NMe and Me₂NH molecules [31]. The enthalpies of formation for HCOX (X = F–I) were calculated by additive scheme from known $\Delta H_{f^{\circ}}$ values of their homologues CH₃COX molecules ([31] and Table 4). For example, $\Delta H_{f}^{\circ}[HCOF] = \Delta H_{f}^{\circ}[HCOOH](-90.5) + \Delta H_{f}^{\circ}[CH_{3}COF](-105.7] 2\Delta H_f^{\circ}(CH_3COOCH_3)(-98.45) + 2\Delta H_f^{\circ}(HCOOCH_3)(-85.0) \approx -110 \text{ kcal mol}^{-1}$. ΔH_f° values for HC=CCH=O (24.5) and HC=CCH=CH₂ (69.8) are taken from Ref. [3]. The heats of formation for ClC=CCHO and BrC=CCHO molecules (Table 1) were estimated by additive scheme using ΔH_f° values for ClC=CH (45.5), BrC=CH (58) and HC=CCHO (24.5) [3]. Since what kind of Hal/CHO interaction (repulsive, attractive or zero) might appear in disubstituted acetylene is unknown (for details see Ref. [3]) we just applied the additive scheme without introducing any correction term

 $\Delta H_f^{\circ}(CH_3COCN)$ was estimated by macroincremental scheme [20]: $\Delta H_f^{\circ}[CH_3COCN] = \Delta H_f^{\circ}[CH_3COCF_3](-$ 200.7) $[20,33] - \Delta H_{f}^{\circ}[CH_{3}CF_{3}](-179.5[4]) + \Delta H_{f}^{\circ}[CH_{3}CN(18[4]) = -3.2 \approx -3 \text{ kcal mol}^{-1}$. The CH₃COCF₃ molecule was selected as a model compound due to close EN values for CF₃ (7.7) and NC-groups (7.9) [3]. Probably, because of expected larger steric CO/CF₃ interaction compared with that for CO/CN pair ΔH_{f}° CH₃COCN might appear to be even more negative. The literature experimental value is 6.2 ± 6.2 kcal mol⁻¹ [34]. The enthalpy of formation for Me₂C=CHCHO molecule was calculated using additive (macroincremental) scheme introducing the small correction term SE: $\Delta H_{f}^{\circ}[Me_{2}C=CHCHO] = \Delta H_{f}^{\circ}[CH_{2}=CHCHO](-16.5) + \Delta H_{f}^{\circ}[Me_{2}C=CH_{2}](-4.0) - \Delta H_{f}^{\circ}[CH_{2}=CH_{2}](12.55) - \Delta H_{f}^{\circ}[Me_{2}C=CHCHO] = \Delta H_{f}^{\circ}[CH_{2}=CHCHO](-16.5) + \Delta H_{f}^{\circ}[Me_{2}C=CH_{2}](-4.0) - \Delta H_{f}^{\circ}[CH_{2}=CH_{2}](12.55) - \Delta H_{f}^{\circ}[Me_{2}C=CHCHO] = \Delta H_{f}^{\circ}[CH_{2}=CHCHO](-16.5) + \Delta H_{f}^{\circ}[Me_{2}C=CH_{2}](-4.0) - \Delta H_{f}^{\circ}[CH_{2}=CH_{2}](-4.0) - \Delta H_{f}^{\circ}[CH_{2}$ $SE(-2) = -35.05 \approx 35.0$ kcal mol⁻¹. The stabilizing energy SE = 2 kcal mol⁻¹ appeared due to polar interaction of electron donating Me- and electron withdrawing CHO-groups with EN 4.8 and 7.2 units, respectively [3]. For example, if $CH_2=CH_2 \rightarrow MeCH=CH_2$ replacement gives $\Delta\Delta H_f^{\circ} -7.77$ kcal mol⁻¹ [31] such replacement in $CH_2=CHCHO \rightarrow Z-$ MeCH=CHCHO or CH₂=CHCOOH \rightarrow E- MeCH=CHCOOH gives SE -1.71 or -1.96 kcal mol⁻¹, respectively. (macroincremental) was applied for estimation $\Delta H_{f}^{\circ}[Cl_{2}C=CClCH=CH_{2}]$ Additive scheme of $\Delta H_{f}^{\circ}[H_{2}C=CHCH=CH_{2}](26.29) + \Delta H_{f}^{\circ}[Cl_{2}C=CHC](-2.3[16]) - \Delta H_{f}^{\circ}[CH_{2}=CH_{2}](12.55) = 11.44 \approx 11.5 \text{ kcal mol}^{-1}.$

For calculation of ΔH_f° CCl₃CHO molecule we first estimated ΔH_f° CCl₃COOH. Using ΔH_f° CCl₃COCl (-57.3[31]) and CCl₃COOPr (-109.9) and Benson's contributions [36] we derived ΔH_f° CCl₃COOH -102.71 and -101.79 kcal mol⁻¹, respectively. Taking the mean value -102.25 and using again Benson's group contributions [36] we estimated C(Cl)₃(CO) group contribution -9.05 kcal mol⁻¹ and then calculated ΔH_f° [CCl₃CHO] = [C(Cl)₃(CO)] + [C(H)(CO)R] = -9.05 - 29.0[36] = -38.15 \approx -38.1 kcal mol⁻¹. Now we have $\Delta \Delta H_f^{\circ}$ {[C(Cl)₃(C)(-19.62[36]) \rightarrow [C(Cl)₃(CO)(-9.05)]} = 10.57 kcal mol⁻¹. Since the Br-atom is larger then Cl-atom we ascribe arbitrary larger $\Delta \Delta H_f^{\circ}$ {[C(Br)₃(C)(15.84)[36] \rightarrow [C(Br)₃(CO)]} ~ 12 kcal mol⁻¹. Thus, [C(Br)₃(CO)] \approx 15.84 + 12 \approx 28 kcal mol⁻¹ and ΔH_f° [CBr₃CHO] = 28 - 29.1 \approx -1 kcal mol⁻¹.

The ΔH_f° values for some of XCH=CH₂ molecules were calculated applying enthalpic shift procedure originally suggested by Benson [37] then in Ref. [20] and in many other works (see Ref. [3]) and introduced in practice as a completed methodology in Ref. 3. As a model system for XCH=CH₂ molecules the substituted benzenes PhX were selected with now well known enthalpic shift $\Delta\Delta H_f^{\circ}$ (CH₂=CHX \rightarrow PhX) \approx 7.2 kcal mol⁻¹ [3,20,38–40]. Thus, taking ΔH_f° –24.67 [31] for PhCOCl, –20.72 [31] for PhCOCH₃, –17.27 [32, 41] for PhOCH₃ and adding \sim –7.2 kcal mol⁻¹ we

obtained ΔH_f° values -32, -28.5 and -24.5 kcal mol⁻¹ for CH₂=CHCOCl, CH₂=CHCOCH₃ and CH₂=CHOCH₃ molecules, respectively. A larger procedure was performed for calculation of the enthalpies of formation for CH₂=CHEH₂ (E = As, Sb and Bi) molecules. The ΔH_f° values for model PhEH₂ molecules are derived by interpolation of the data for EH₃ and EPh₃ molecules [interpolated $\Delta \Delta H_f^{\circ}$ and ΔH_f° values in kcal mol⁻¹ – in square brackets]

Now, taking ΔH_f° (calc.) for PhAsH₂, PhSbH₂ and PhBiH₂ we add ~ - (7.2–7.5) kcal mol⁻¹ [3,20] and obtain ΔH_f° values for CH₂=CHAsH₂, CH₂=CHSbH₂ and CH₂=CHBiH₂ molecules 35.5, 57 and 75 kcal mol⁻¹. Earlier ΔH_f° CH₂=CHPH₂ 19 kcal mol⁻¹ was estimated by other methods [32]. We leave this value for calculation of CH₂=C(•)PH₂ free radical although estimation of CH₂=CHPH₂ from ΔH_f° Ph₃P gives close results (ΔH_f° and $\Delta \Delta H_f^{\circ} - in kcal mol⁻¹$):

The ΔH_f° of Ph₃P is rather uncertain. Several values are quoted: 71.9±3.8 [44], 76.5 [45], 78±5 [46] and 78.4±5 [43] kcal mol⁻¹. We suggest the value 75 kcal mol⁻¹ as the compromise value. Now, we calculate ΔH_f° {CH₂=CHPH₂] = 26.5 – 7.2 = 19.3, compare with 19 kcal mol⁻¹ [32]. From Q values for CH₂=CH• + CH₂=CHEH₂ + CH₂=C(•)EH₂ + Q isodesmic reactions (E = N, As, and Sb) (Table 3) we estimate by inter– and extrapolation those Q values for E = P and Bi:

EH ₂ :	H_2N	PH_2	AsH_2	SbH_2	BiH_2
Q (kcal mol ⁻¹):	4.76	[7]	9.2	10	[11]

then calculate the enthalpies of formation for $CH_2=C(\bullet)PH_2$ and $CH_2=C(\bullet)BiH_2$ free radicals, *e.g.* ΔH_f° [$CH_2=C(\bullet)PH_2$] = ΔH_f° [$CH_2=CH^{\bullet}$] - ΔH_f° [$CH_2=CH_2$] + ΔH_f° ($CH_2=CHPH_2$) - Q = 70 - 12.55 + 19.3 - 7 = 70 kcal mol⁻¹ and ν_{CH} [$CH_2=CHPH_2$] = ν_{CH} ($CH_2=CH_2$)(3060) - Q (7) × 11 (11 cm⁻¹ - equivalent for 1 kcal mol⁻¹ for vinylic =C-H bond) = ~ 2980 cm⁻¹.

For estimation of ΔH_f° CH₂=C(X)Me molecules for two of them (X = Me and Cl) we possess experimental values, *i.e.* -4.0 (Me) and -5.0±2.2 (Cl) kcal mol⁻¹ [31] the latter having rather large uncertainty. From these data we gain $\Delta\Delta H_f^{\circ}$ [CH₂=CHMe(4.88) \rightarrow CH₂=CMe₂ (-4.0)] = -8.88 and $\Delta\Delta H_f^{\circ}$ {CH₂=CHCl (-5.2) \rightarrow CH₂=C(Cl)Me (-5)] = -10.2 kcal mol⁻¹. The latter value seems quite reasonable since the observed difference -10.2 - (-8.8) = -1.4 kcal mol⁻¹ (revealing stabilization of system due to CH₃/Cl polar effect) might be smaller compared with 1,2-isomers (see above). Taking the known EN values for X-substituents 10 (F), 9.0 (OH), 7.9 (CN), 7.4 (MeO), 7.1 (Cl), 6.2 (Br), 5.3 (I), 4.8 (Me) [3] and $\Delta\Delta H_f^{\circ}$ values -8.88 [CH₂=CHMe \rightarrow CH₂=C(Me)₂] and -10.2 [CH₂=CHCl \rightarrow CH₂=C(Me)Cl] kcal mol⁻¹ we roughly assign the following $\Delta\Delta H_f^{\circ}$ [CH₂=CHX \rightarrow CH₂=C(Me)X] values -11.5 (F), -11 (OH), -11(CN), -10.5(MeO), -10.2 (Cl), -9.7 (Br), -9.2 (I) and using the ΔH_f° values for CH₂=CHX obtain the following ΔH_f° (calc.) for CH₂=C(X)Me molecules: -46.5 (X = F), -41.4 (OH), 32 (CN), -35 (MeO), -5.0 (Cl) [31], 8.3 (Br), 22.8 (I). According to Ref.20 such substituents as OH, OMe, CN, Cl and Me have similar steric requirements while Br and I are larger in their "size" compared with Me–group in CH₂=CMe₂ molecule. Therefore, we slightly increase their ΔH_f^{0} values to 8.5 and 23.5 kcal mol⁻¹, respectively.

Recently, the ΔH_1° -65.26 kcal mol⁻¹ for •CH₂C(F)=O free radical was estimated [47] (compare with our value -59 or -60.5 [30] kcal mol⁻¹). When this one is inserted in isodesmic reaction •CH₂CHO (3) + CH₃C(F)=O (-105.66) \rightarrow •CH₂C(F)=O (-65.26 [47]) + CH₃CHO (-39.73 kcal mol⁻¹) + Q the positive Q value +2.33 kcal mol⁻¹ is obtained

revealing the stabilization (?) of the free radical center at H-replacement by electron-withdrawing F-atom in non-conjugative position. This is doubtful result.

7 REFERENCES

- [1] D. A. Ponomarev, V. V. Takhistov, Structural Aspects and Thermochemical Approach to Isomerization and Fragmentation of Negative Ions: Skeletal Rearrangements, Molecular Ion and Artifacts. J. Mol. Struct., in press.
- [2] D. A. Ponomarev, V. V. Takhistov, Isodesmic Reactions and Thermochemistry of Free Radicals. *Abstracts of Fifth Int.Conf.Chem.Kinet., July 16–20, Gaithersberg, USA,* , **2001**, 61–62.
- [3] A. V. Golovin, V. V. Takhistov, Thermochemistry of organic and heteroorganic species. Part XII. Mono- and disubstituted acetylenes and ethynyl free radicals. New electronegative scale. J. Mol. Struct. 2004, 701, 57–91.
- [4] A. V. Golovin, V. V. Takhistov, Interrelationship for v_{CH} values in RH molecules and enthalpy of formation of R• free radicals in aliphatic compounds, *J. Mol. Struct.* 2005, 734, 219–233.
- [5] D. C. McKean, Individual CH bond strength in simple organic compounds, *Chem. Soc. Rev.* **1978**, *7*, 399–422 and refs therein.
- [6] D. C. McKean, CH bond dissociation energies, isolated stretching frequencies and radical stabilisation energy, *Int. J. Chem. Kinet.* **1989**, *21*, 445–464.
- [7] D. C. McKean, I. L. Duncan, L. Blatt, CH-stretching frequencies, bond lengths and dissociation energies, *Spectrochim. Acta* **1973**, *23A*, 1037–1049.
- [8] D. C. McKean, Quantum-chemical studies of fluoroethanes: vibrational assignments, isolated CH stretching frequencies, valence force constants, and bond lengths relationships, *J. Phys. Chem.* **2000**, *A104*, 8995–9008.
- [9] D. C. McKean, A. L. McPhail, H. G. M.Edwards, I. R.Lewis, V. S. Mastryukov, J. E. Roggs, Vibrational spectra in the v(SiH) and v(SiD) regions of chloro– and bromodisilanes and ab initio geometry studies of C₂H₅Cl, Si₂H₅Cl and 1,1–Si₂H₄Cl₂, Spectrochim. Acta, **1993**, 49A, 1079–1094.
- [10] D. C. McKean, CH-stretching frequencies, bond lengths and strengths in halogenated ethylenes, *Spectrochim. Acta*, **1975**, *31A*, 1167–1186.
- [11] S. W. Benson, Bond Energies, J. Chem. Educ. 1965, 42, 502–518.
- [12] Y.-R.Luo, Handbook of Bond Dissociation Energies, CRC Press, Boca Raton, 2003.
- [13] Yu. D. Orlov, Yu. A. Lebedev, I. Sh. Saifullin, *Thermochemistry of Organic Free Radicals (Russ.*), Nauka (Science), Moscow, 2001.
- [14] D. A. Ponomarev, V. V. Takhistov, Some regularities in thermodynamic stability of free radicals, *J. Mol. Struct.* **1997**, *435*, 259–274.
- [15] V. I. Tulin, L. A. Koroleva, L. N. Bazhenova, S. V. Krasnoshchekov, L. S. Surmina, V. V. Ivannikova, Yu. A. Pentin, Vibrational spectra and rotational isomerie of the β , β -dimethylacrolein molecule, *Russ. J. Phys. Chem.* **2004**, 78, 1088–1096.
- [16] M. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, G. N. Roganov. Thermodynamics of Organic Compounds in the Gas Phase, Thermodynamics Research Center, College St. TX, USA. 1994.
- [17] I. Barnes, K. H. Becker, J. Starcke, The gas-phase IR-spectra of formyl iodide and carbonyl iodide, *Chem. Phys. Lett.* 1995, 246, 594–600.
- [18] G. Wu, S. Shlykov, C. Van Arsenoy, H. J. Geise, E. Sluyts, B. J. Van der Veken, Formic anhydride in the gas phase, studied by electron diffraction and microwave and IR spectroscopy, supplemented with ab initio calculations of geometries and force fields, *J. Phys. Chem.* 1995, 99, 8589–8598.
- [19] D. F. McMillen, D. M.Golden, Hydrocarbon bond dissociation energies, Ann. Rev. Phys. Chem. 1982, 33, 493– 532.
- [20] V. V. Takhistov, Organic Mass Spectrometry (Russ.), Nauka (Science), Leningrad, 1990.
- [21] C. Hansch, A. Leo, R. W. Taft, A survey of Hammett substituent constants and resonance and field parameters, *Chem. Rev.* **1991**, *91*, 165–195.
- [22] A. Benidar, R. LeDoucen, J.-C. Guillemin, O. Mo, M. Yanez, Vibrational spectra of vinylarsine and vinylstibine. An experimental and theoretical study, *J. Phys. Chem.* **2002**, *106A*, 6262–6270.
- [23] N. L. Allinger, L. Yan, K. Chen, Molecular mechanics calculations (MM2 and MM3) on enamine and aniline derivatives, J. Comput. Chem. 1994, 15, 1321–1330 and references therein.
- [24] J. E. Katon, W. R. Feairheller, Jr., Vibrational spectra and rotational isomerism in acrylyl chloride and related α , β -unsaturated acyl chlorides, *J. Chem. Phys.* **1967**, *47*, 1248–1255.
- [25] C. M. Richards, J. R. Nielsen, Raman spectrum of 1,3-butadiene in the gaseous and liquid state, J. Opt. Soc. Amer. 1950, 40, 438-441.
- [26] J. R. Durig, D. T. Durig, T. J. Dickson, M. Jalilian, Y. Jin, J. F. Sullivan, IR and Raman spectra, conformational

stability, barriers to internal rotation, vibrational assignment, and ab initio calculations for methyl vinyl sulfide, *J. Mol. Struct.* **1998**, *442*, 71–92.

- [27] Yu. N. Panchenko, V. I. Mochalov, Yu. A. Pentin, Some trends in vibrational spectra and the structure of chloroand methyl-substituted butadienes-1,3, *Vestnik Moscow Univ. (Russ.)*, ser.2, 1984, 131–144.
- [28] M. Z. El–Sabban, B. J. Zwolinski, Normal Coordinate Treatment and Assignment of Fundamental Vibrations of Vinyl Chloride and the seven Deuterated Chlorides, J. Mol. Spectrosc. 1968, 27, 1–16.
- [29] I. N. Domnin, V. V. Takhistov, D. A. Ponomarev, Thermochemistry of organic and heteroorganic species. Part V. Photoionization studies of ionization and fragmentation of polysubstituted cyclopropenes: 3-methyl-3-acetyl and related compounds. *Eur. Mass. Spectrom.* 1999, *5*, 169–182.
- [30] V. M. Orlov, A. D. Misharev, V. V. Takhistov, I. I. Ryabinkin, Enthalpy of formation of acetonyl radical and its analogs in the gas phase. *Russ. Chem. Bull. (Engl. Transl.)* **1989**, 1337–1338.
- [31] J. B. Pedley, R. D. Naylor, S. P. Kirby. *Thermochemical Data of Organic Compounds*, 2nd ed., Chapman and Hall, New York, 1986.
- [32] Yu. D. Orlov, G. Bouchoux, V. V. Takhistov, D. A.Ponomarev, A new estimation scheme of the enthalpies of formation for RCH₂• free radicals, *J. Mol. Struct.* **2001**, *608*, 109–122.
- [33] V. V. Takhistov, T. A. Pashina, N. G. Ismagilov, V. M. Orlov, A. A. Rodin, V. G. Barabanov, Experimental and Theoretical Determination of the Enthalpies of Formation of Molecules, Cations, and Radicals Containing Fluoroalkyl and Other fluorinated Groups, *Russ. J. Org. Chem. (Engl. Transl.)*. **1995**, *31*, 1582–1588.
- [34] M. Born, S. Ingemann, N. M. M. Nibbering, Experimental determination of the enthalpies of formation of formyl cyanide in the gas phase, *J. Phys. Chem.* **1996**, *100*, 17662–17769.
- [35] A. V. Golovin, D. A. Ponomarev, V. V. Takhistov, Thermochemistry of Organic and Elementoorganic species. Part VIII. Ketene and structurally related species, *J. Mol. Struct.* **2000**, *524*, 259–280.
- [36] S. W. Benson, Thermochemical Kinetics, J.Wiley, New York. 1976.
- [37] S. W. Benson, Thermochemistry and Kinetics of Sulfur–containing Molecules and Radicals, *Chem. Rev.* **1978**, *78*, 23–36.
- [38] V. V. Takhistov, Thesese Dr.Sci.Dissertation, Leningrad (Russia), 1989.
- [39] J. F. Liebman, A.Greenberg, Survey of the heats of formation of three-membered-ring species *Chem. Rev.* **1989**, 89, 1225–1246.
- [40] Y.-R. Luo, J. L. Holmes, σ-π and n-π Stabilization energies in vinyl and phenyl compounds, J. Phys. Org. Chem, 1994, 7, 403-411 and refs therein.
- [41] J. D. Cox, G. Pilcher, *Thermochemistry of Organic and Organometallic Compounds*, Academic Press, London, 1970.
- [42] D. A. Ponomarev, V. V. Takhistov, The enthalpies of formation of the hydrides of main group elements, *J. Mol. Struct.* **1999**, *477*, 91–103.
- [43] G. Pilcher, in: Int.Rev.Sci., Phys.Chem., Ser.2, Vol.10, Chapter 2. Skinner H.A.,ed. Butterworth, London, 1975 (according to quotation in Ref. 44).
- [44] W. V. Steele, The standard enthalpies of formation of the triphenyl compounds of the group V elements. 2. Triphenylbismuth and the phenyl-bismuth mean bond dissociation energy, *J. Chem. Thermodyn.* **1979**, *11*, 187–192.
- [45] D. R. Kirklin, E. S. Domalski, Enthalpies of combustion of triphenylphosphine and triphenylphosphine oxide, *J. Chem. Thermodyn.* **1988**, *20*, 743–754.
- [46] S. G. Lias, G. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, W. G. Mallard. Gas-phase ion and neutral thermochemistry, *J. Phys. Chem. Ref. Data.* **1988**, *17*, *Suppl 1*.
- [47] A. A. Hoops, J. R. Gascooke, K. E. Kautzman, A. E. Faulhaber, D. M. Neumark, Photodisociation spectroscopy and dynamics of the CH₂CFO radical, *J. Chem. Phys.* 2004, 120, 8494–8504.