
CODEN IEJMAT Internet Electronic Journal of Molecular Design 2005, 4, 381–392 ISSN 1538–6414 
BioChem Press http://www.biochempress.com

Copyright  ©  2005 BioChem Press

Internet Electronic  Journal  of 
Molecular Design

June 2005, Volume 4, Number 6, Pages 381–392 

Editor: Ovidiu Ivanciuc 

Proceedings of the Internet Electronic Conference of Molecular Design 2004 
IECMD 2004, November 29 – December 12, 2004 

Modeling Structure Property Relationships with Kernel
Recursive Least Squares 

Rajshekhar, Abhijit Kulkarni, Valadi K. Jayaraman, and Bhaskar D. Kulkarni 
Chemical Engineering and Process Development Division, National Chemical Laboratory, Dr. 

Homi Bhabha Road, Pune–411008, India 

Received: October 27, 2004; Revised: March 5, 2005; Accepted: March 21, 2005; Published: June 30, 2005 

Citation of the article: 
Rajshekhar, A. Kulkarni, V. K. Jayaraman, and B. D. Kulkarni, Modeling Structure Property 
Relationships with Kernel Recursive Least Squares, Internet Electron. J. Mol. Des. 2005, 4,
381–392, http://www.biochempress.com. 



Rajshekhar, A. Kulkarni, V. K. Jayaraman, and B. D. Kulkarni 
Internet Electronic Journal of Molecular Design 2005, 4, 381–392 

381 
BioChem Press http://www.biochempress.com

Internet Electronic Journal
of Molecular Design

BioChem Press
http://www.biochempress.com

Modeling Structure Property Relationships with Kernel
Recursive Least Squares #

Rajshekhar, Abhijit Kulkarni, Valadi K. Jayaraman, and Bhaskar D. Kulkarni *
Chemical Engineering and Process Development Division, National Chemical Laboratory, Dr. 

Homi Bhabha Road, Pune–411008, India 

Received: October 27, 2004; Revised: March 5, 2005; Accepted: March 21, 2005; Published: June 30, 2005 

Internet Electron. J. Mol. Des. 2005, 4 (6), 381–392 
Abstract 

Motivation. Modeling structure property relationships accurately is a challenging task and newly developed 
kernel based methods may provide the accuracy for building these relationships. 
Method. Kernelized variant of traditional recursive least squares algorithm is used to model two QSPR datasets. 
Results. All the datasets showed a good correlation between actual and predicted values of boiling points with 
root mean squared errors (RMSEs) comparable to other conventional methods. For the datasets from Espinosa et 
al., KRLS showed good prediction statistics with R value in the range of 0.97–0.99 and S value in the range 5.5–
8 as compared to multiple linear regression (MLR) with R value in the range 0.85–0.88 and S value in the range 
22–26. For the dataset from Trinajsti et al., KRLS performed consistently well with R values lying in the range 
of 0.95–0.99 and S in the range of 5–10 as compared to MLR with R values in the range of 0.7–0.85 and S in the 
range of 25–30. 
Conclusions. The KRLS method works better when more number of variables from the dataset are included as 
against other methods such as support vector learning or lazy learning technique which works better for smaller 
number of reduced relevant variables from the dataset. 
Keywords. QSPR; quantitative structure–property relationships; multiple linear regression; kernel recursive 
least squares; support vector learning; lazy learning. 

Abbreviations and notations 
ALD, approximate linear dependence RBF, radial basis function 
KRLS, kernel recursive least squares RMSE, root mean squared error 
MLR, multiple linear regression SVR, support vector regression 

1 INTRODUCTION 
There is a growing need to model the quantitative structure property relationships (QSPRs) as 

accurately as possible. As a result extensive efforts to develop new regression algorithms to 
facilitate modeling these relationships continue. Artificial neural networks were introduced to take 
into account the inherent non–linearities associated with the QSPR data [1–5]. But owing to certain 
drawbacks such as long training times, chances of overfitting, getting trapped in local minima while 
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optimizing the weights etc., their utility becomes restricted and too expensive in terms of 
development. Recently, kernel based methods are gaining popularity in machine learning 
community since they provide an alternative to deal with the nonlinearity in the data elegantly and 
effectively. Some of these popular methods include support vector machines, kernel principal 
component analysis, kernel density estimation etc. 

The idea, previously put forth to deal with nonlinearity in the data, is to map the data into some 
high dimensional (possibly infinite) feature spaces (usually termed as Hilbert spaces) with a view to 
make it amenable to linear methodologies. However, the dimensionality increases by many folds 
with the increase in number of features. Kernel functions were introduced particularly to deal with 
this problem of high dimensionality. With the advent of many desirable properties of these 
functions, several of the traditional techniques are now reformulated within this setting to deal with 
the nonlinearity in the data. In the present work, kernel recursive least squares (KRLS) algorithm is 
used, which is a kernelized variant of the traditional recursive least squares algorithm [6]. 

In the sections to follow, materials and methods section explains datasets used and the KRLS 
algorithm. Results and discussions section describes the results obtained and the pros and cons of 
the KRLS algorithm. Finally, conclusion section summarizes the salient features of the algorithm. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 
Datasets considered in the analysis are taken from literature. In QSPRs, molecular structural 

characteristics (geometric and electronic) are generally correlated with physicochemical properties 
of compounds. The structural characteristics are usually expressed in terms of molecular 
descriptors. The descriptors, which are routinely used include electronic, e.g. dipole moments, 
lipophilic, e.g. partition coefficients and topological, e.g. connectivity indices. Some molecular 
parameters like molar volume, parachor etc. are also used in correlating the physicochemical 
properties. Most frequently used topological indices proposed for QSPRs include Randi  branching 
indices, valance molecular connectivity indices, Wiener path numbers, Kappa shape indices, and the 
electrotopological state indices. Many datasets have been published in the literature describing 
various descriptors correlating with different physicochemical properties. We have resorted to two 
such datasets, one is from Espinosa et al. [7] and the other is from Trinajsti et al. [8]. Both the 
datasets were built up to predict the boiling points of aliphatic hydrocarbons. Espinosa et al. [7] 
particularly dealt with alkanes, alkenes and alkynes family, whereas Trinajsti et al. [8] dealt with 
alkanes only. Espinosa et al. [7] obtained QSPRs from four valence molecular connectivity indices, 
a second–order Kappa shape index (2k), dipole moment and molecular weight. These were obtained 
for first 140 alkanes, first 144 alkenes and 43 alkynes respectively. Since good amount of 
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experimental data is required to get significant correlation, in our analysis, we have dealt with only 
alkanes and alkenes datasets. Further details regarding the datasets can be found in Espinosa et al.
[7]. Trinajsti et al. [8–10] considered different descriptors based on distance indices and two 
connectivity indices (total 12 molecular descriptors) for first 150 alkanes. In their work, they 
studied individual descriptors as well as combination of them to see how they correlate to boiling 
point. We used this prior knowledge about the data and considered only those descriptors, which 
correlate well. In our analysis, we have also considered all 12 descriptors together, something which 
was not done previously. Further details can be found in Trinajsti et al. [8]. Next we explain the 
foundations of the kernel theory in brief. 

2.2 Kernel Theory and its connection to Reproducing Kernel Hilbert Spaces
To handle the nonlinear data in real practice, we transform the original input data (lower 

dimensional) to a potentially very high dimensional (sometimes infinite dimensional) linear feature 
space (usually termed as Hilbert spaces, ), with the inner product defined, which is complete with 
respect to the corresponding norm. By doing so, one can linearly regress the data in that space [11]. 
The computations in the high dimensional feature space become intractable as the dimensionality 
and number of instances in the input space increase. To overcome this practical difficulty, kernel 
functions are introduced. A kernel is defined as: 

)()(),( jijiK xxxx (1)

where, dR:  i.e. input space is mapped to a higher dimensional Hilbert space by mapping 
function .

The idea of kernel functions is to perform operations in the input space rather than a very high 
dimensional feature space. In other words, as can be seen from Eq. (1), an inner product in feature 
space has an equivalent kernel in the input space. The kernel function can be chosen subject to 
Mercer’s condition [11], which states that there exists a mapping  and it’s expansion as given in 
Eq. (1), if and only if, for any g (x) we have 

xd)x(g 2  is finite (2)

And:

0ydxdygxgy,xK (3)

Kernel functions like polynomial and Gaussian radial basis function have been very popular and 
extensively used in the literature [11]. Among these, the Gaussian radial basis function (RBF) 
kernel is very useful and we have employed this kernel in our computations. This kernel can be 
defined as: 
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where  is the kernel width parameter. 

With the kernel trick, many traditional algorithms, like logistic regression, fisher discriminant 
analysis etc., have been modified to handle the nonlinearity in the data. KRLS is one such effective 
technique, which is explained in the next section. 

2.3 Kernel Recursive Least Squares (KRLS) Algorithm 
We start by giving a brief account of the traditional recursive least squares algorithm and then 

explain it’s kernel variant. 

2.3.1 Recursive Least Squares (RLS)

The RLS algorithm is used to recursively train a linear regression model [12], which can be 
expressed in the following parametric form, 

)x(,w,b)x(f (4)

where, )x(  is a feature vector associated with the input variable vector x and b is the bias term. 

The weights w can be adjusted in a manner such that the bias term becomes zero. In such a case, the 
regression model reduces to a simpler form, 

w)x()x(,w)x(f T (5)

The objective of the learning algorithm is to minimize, 
n

1i

2
ii )y)x(f()w(g (6)

with respect to the w vector. In the simple least squares algorithm all the points in the training set 
are considered simultaneously. However in RLS algorithm each training data point is considered 
one by one and improving the weight vector in the process.  

The optimal weight vector can be expressed as, 
n

1i
ii )x(w (7)

and the regression model becomes, 

)x()x()x(f T (8)
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2.3.2 Kernel Recursive Least Squares (KRLS) 

As can be seen from the Eq. (8), the regression model can be expressed as a function of inner 
product of feature vectors corresponding to input vectors. The basic idea behind the kernel machine 
is that if applied on a set of input vectors it can represent the inner product of feature vectors as [6]: 

n

1i
ii )x,x(K)x(f (9)

By minimizing the cost function, we can get the theoretical value of  (same as in case of least 
squares). However, the matrix inversion method allows us to compute the  vector recursively 
(same as in case of RLS) i.e. a stream of training data points can be sampled sequentially. 

This approach will however lead to some severe problems if size of training set increases to 
some considerable extent. The problems arise due to overfitting, memory limitations (storage of 
kernel matrix) and the instability in inverting the large kernel matrix (as will be required in the 
vector calculation). 

To avoid these shortcomings, sparsification method for the pruning of training data is necessary. 
By making use of this method the training data can be stored in a compact form i.e. only a fraction 
of training data will be actually used for the training purpose. As explained in the paper by [6], the 
sparsification procedure can be justified as follows. Although the dimensions of the feature space 
can be very large but the effective dimensionality of the manifold spanned by the training feature 
vectors may be significantly low. Hence, the solution to any optimization problem can be expressed 
by a set of linearly independent feature vectors that approximately span this manifold, as long as it 
satisfies the conditions required by the theorem. The sparsification procedure will be discussed in 
details in the next section. 

2.3.3 Sparsification Method

In the sparsification procedure, the linearly independent training data points will be stored in a 
Dictionary Set [6]. Assume that after sampling (i–1) number of data points, the dictionary set is Di–

1. Now consider next training data point, this data point will be added in the dictionary set if it is 
approximately linearly independent of the dictionary set vectors. To prove the linear dependency of 
the new data vector on the dictionary vectors the approximate linear dependence (ALD) test is 
performed, i.e. we will find a coefficient vector C such that, 

2
1m

1j
ijjCi )x()x(Cmin (10)

where  is an important tuning parameter that determines the level of sparsity. Expanding Eq. (10), 
1m

1l,j

1m

1j
iiijjljljCi )x(),x()x(),x(C2)x(),x(CCmin (11)
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we can express the cost function for the ALD test in terms of the inner product of the feature 
vectors. We can apply the kernel trick once again to get the cost function as: 

iii1i
T

1i
T

Ci K)x(KC2CKCmin (12)

where, )x,x(kK ljl,j1i , (Ki–1(xi))j=k(xj,xi) and Kii=k(xi,xi).

Solving for optimality of the cost function, we can get: 

)x(KC i1i
1
1ii K  and i

T
i1iiii C)x(KK (13)

If i , we don’t need to include the data point under consideration into the dictionary set. But if 

i , then we should include it into the dictionary set. 

2.3.4 Computation of  vector 

While updating the  vector online (i.e. recursively), we are faced with two situations: 

(a) The new training data point will be added in the dictionary set and 

(b) The new training data point will not be added in the dictionary set. 

Due to sparsification, the cost function (for regression model) reduces to the form, 
2

iii

2

ii
T

i yKAy)(g (14)

Where  is approximated to be equal to iA . Ai is introduced to counter the ill effects of 
sparsification. i.e. iA  is a vector of m (size of the dictionary set) “reduced” coefficients. 

For the two cases, the optimal value of  vector can be computed recursively using the matrix
inversion method.

Case (a)

ii
T

i1i

i1i1i

i
K)X(K

)X(KK
K (15)

1C

CCCK1K
T

i

i
T

ii
1

1ii

i

1
i (16)

))x(Ky(1

))x(Ky(C

yA)AA(K

1i
T

i1ii
i

1i
T

i1ii
i

i
1i

i
T

i
1

i
T

i
1

ii (17)

As required in case (b), we have to update the matrix P also as, 
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0P
P

T

1i

i (18)

Case (b). Here there will not change the kernel matrix (as the dictionary set remains same). 

1i
T

i1iii
1

i1ii
T

ii
1

ii )x(Ky(qyAP KK (19)

where
i1i

T
i

1i
T

ii1i
1i

1
1i

T
1ii CPC1

PCCPP)AA(P  and: 

i1i
T

i

i1i
i CPC1

CPq (20)

2.4 KRLS Algorithm (with sparsification) 
(1) Initialize the Dictionary Set. 
(2) Select the first element from the training set and put into the dictionary set. Compute the kernel 
weight vector (alpha) for the dictionary set. 
(3) Get the next sample from the training set and perform the approximate linear dependence (ALD) 
test for it. 
(4) If ALD test error is less than the threshold value , go to step (6). 
(5) Add the new sample in the dictionary set. Update the kernel weight vector. Go to step (7). 
(6) Keep the dictionary set unchanged. Update the kernel weight vector. 
(7) If training set has any element left, go to step (3). 
(8) Use the dictionary set and kernel weight vector in the testing phase. 

Having described the datasets and the algorithm, we now move on to explain the results 
obtained.

3 RESULTS AND DISCUSSION 

The results obtained are summarized in Tables 1–4. The kernel methods depend on the selection 
of properly optimized kernels [13–15]. We tried several kernel functions including linear, quadratic 
and Gaussian form of RBF kernel. Comparison of RBF kernel with linear kernel in terms of 
prediction RMSEs on all the datasets is shown in Table 1. We found that RBF kernel performed 
consistently well and hence selected and used it in all the simulations. There are two parameters (
and ), which need proper attention to get good performance of the KRLS algorithm. The 
parameter, , controls the size of the dictionary set and was set as 10–5. The kernel width parameter 
was optimized in a range of [0.1, 20] with 0.1 as step size i.e. while training the algorithm, width 
parameter goes on changing from iteration to iteration while  remains constant. The kernel width 
value with least root mean squared error (RMSE) is treated as an optimal value for the particular 
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range specified above. This optimal value is used in predictions. 

Table 1. Prediction RMSEs for linear and RBF kernel 
Dataset Linear Kernel RBF Kernel 

Alkane (Espinosa et al. [7]) 5.23 2.39 
Alkene (Espinosa et al. [7]) 11.51 8.49 
Alkane (Trinajsti et al. [8])–12 descriptors 3.43 2.94 
Alkane– 2–TI descriptor only 21.61 13.81 
Alkane– 3–TI descriptor only 22.68 21.31 
Alkane– connectivity index only 10.03 5.68 

Table 2. Results on the dataset due to Espinosa et al. [7] 
QSPR Dataset Optimal Kernel parameter width Dictionary set size RMSE 

Alkanes 3.1 31 2.39
Alkenes 3.7 32 8.49

Table 3. Results on the Alkanes dataset due to Trinajsti et al. [8] 
Descriptor considered Optimal Kernel 

parameter width 
Dictionary set 

size
RMSE
KRLS+

RMSE
Lazy learning 

RMSE
SVR+

2–TI* 0.4 32 13.81 1.88 2.13 
3–TI* 0.2 22 21.31 0.70 0.93 

Connectivity index 0.4 8 5.68 0.60 0.73 
All 12 descriptors  4.7 26 2.94 17.08 17.71 

*2–TI: 2–dimensional topological index, 3–TI: 3–dimensional topological index 
+ SVR: Support vector regressor, KRLS: Kernel recursive least squares 

Standard machine learning steps were adopted while making the partitions in the data as training 
set (approximately 2/3rd of the original data) and test set (remaining 1/3rd ) for predictions. The 
figures below show the prediction plots (cf. Figure 1–6) of KRLS algorithm wherein actual boiling 
point is plotted against predicted boiling point. 
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Figure 1. Experimental vs. predicted boiling point: 
alkanes dataset from Espinosa et al. [7] 

Figure 2. Actual vs predicted boiling point: alkenes 
dataset from Espinosa et al. [7] 

Firstly, the datasets due to Espinosa et al. [7] were analyzed. All the descriptors in the original 
data were considered while building the model. As can be seen from Table 2, descriptors in both the 
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datasets, viz. alkanes and alkenes, correlate well with prediction RMSEs 2.39 and 8.49 respectively.
R and S statistics (cf. Table 4) eventually show that KRLS performed better than multiple linear 
regression (MLR) and equivalently to support vector regression and lazy learning. Direct 
comparison with previous work due to Espinosa et al. [7] is not possible due to different 
performance parameters and simulation setups. However, the prediction plots ultimately indicate 
that KRLS performed well. 

Table 4. Comparison of methods based on prediction statistics (R and S) 
R S Dataset

MLR a KRLS SVR LL MLR KRLS SVR LL 
Alkane (Espinosa et al. [7]) 0.88 0.99 0.98 0.99 22.15 5.93 7.85 5.93 
Alkene (Espinosa et al. [7]) 0.85 0.97 0.96 0.97 25.2 7.15 8.2 7.15 

Alkane (Trinajsti et al. [8]) 12 descriptors 0.7 0.99 0.99 0.99 30.2 5.9 5.9 5.9 
Alkane (2–TI descriptor) 0.75 0.95 0.95 0.95 29.1 9.17 9.17 9.17 
Alkane (3–TI descriptor) 0.7 0.98 0.95 0.98 30.2 6.23 9.17 6.23 

Alkane (connectivity index) 0.84 0.95 0.94 0.95 26.5 9.18 9.5 9.18 
a MLR: Multiple linear regression, KRLS: Kernel recursive least squares, SVR: Support vector regression, LL: Lazy 
learning
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Figure 3. Actual vs. predicted boiling point: alkane 
dataset from Trinajsti et al. [8] using 2–TI 

Figure 4. Actual vs. predicted boiling point: alkane 
dataset from Trinajsti et al. [8] using 3–TI 

Next, the alkanes data reported by Trinajsti et al. [8–10] was analyzed. We initially considered 
only three descriptors viz. 2–dimensional topological index, 3–dimensional topological index and 
connectivity index. The earlier work reported that these descriptors correlate well in predicting the 
boiling points. This observation was also justified in the work reported by Kumar et al. [16]. We 
took advantage of this knowledge and modeled the QSPR with these individual descriptors. Overall, 
it is found that KRLS is correlating well in predicting the boiling points. Among these three 
descriptors, 3–dimensional topological index is found to be correlating well. This is consistent with 
the observations made by Kumar et al. [16]. The prediction R values for all the three descriptors lie 
in the range of 0.95–0.99 and S values lie in the range of 6–10. The prediction plots for individual 
descriptors are as shown in Figures 3–5. 
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Figure 5. Actual vs. predicted boiling point: alkane 
dataset from Trinajsti et al. [8] using connectivity index. 

Figure 6. Actual vs. predicted boiling point: alkane 
dataset from Trinajsti et al. [8] using 12 descriptors. 

If we compare the descriptorwise results with that reported by Kumar et al. [16], it is observed 

that lazy learning regressor and support vector regressor outperforms KRLS with RMSE values as 

shown in Table 3. One possible reason is that lazy learning is a powerful local learner and support 

vector regressor, which is a kernel–enabled method, is based on strong foundations of statistical 

learning theory and structural risk minimization principle which gives it a natural advantage to 

generalize well. But if we consider the relative training time to train all these algorithms, KRLS 

requires less time since in support vector regression and lazy learning, optimization of algorithm 

parameters (model selection) take much time. However, the errors by SVR and lazy learning 

algorithms are less than experimental error. This may be attributed to the fact that these methods are 

quite powerful and sometimes they may overfit. To avoid this problem, lot of simulations on unseen 

observations are required to guarantee their generalization. But they have advantage that they can 

be easily implemented online also. 

Further in our analysis, we combined all the 12 descriptors reported in the original dataset to 

build the model. Here KRLS outperformed lazy learning as well as support vector regressor (cf. 

Table 3 and [16]). The prediction plot is as shown in Figure 6. Prediction statistics (R and S) are as 

shown in the Table 4. The results imply that KRLS performs better with the more number of 

variables in the dataset whereas support vector regressor and lazy learning regressor works better 

with the relevant variables, which contain maximum information for good correlation. Since KRLS 

algorithm takes help of only dictionary set while predicting the unseen cases, the increased number 

of computations due to increased number of variables can be compensated with the less 

computations with the less number of observations in the dictionary set. 

To summarize the results, KRLS performed well on all the investigated datasets. The attractive 
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features of the algorithm include less training time, less computations while predicting the unseen 

cases (cf. dictionary set size in Tables 2 and 3). With these desirable features, algorithm can be 

further exploited to tackle more difficult real world problems. 

4 CONCLUSIONS 

The real world QSPR datasets often have large degree of nonlinearity associated with them that 

make it difficult to develop accurate correlations. Kernel recursive least squares, a variant of 

traditional recursive least squares algorithm, is used in the present work to model two different 

QSPR datasets for predicting the boiling points of aliphatic hydrocarbons, namely alkanes and 

alkenes. Kernel functions facilitate to deal with the nonlinearity in data effectively by allowing one 

to work in input space instead of very high dimensional feature space. The algorithm gives a good 

correlation between predicted and actual values of boiling points in case of both the datasets. For 

the datasets due to Espinosa et al. [7], KRLS showed good prediction statistics with R value in the 

range of 0.97–0.99 and S value in the range 5.5–8 as compared to multiple linear regression (MLR) 

with R value in the range 0.85–0.88 and S value in the range 22–26. For the dataset due to Trinajsti

et al. [8], KRLS performed consistently well with R values lying in the range of 0.95–0.99 and S in 

the range of 5–10 as compared to MLR with R values in the range of 0.7–0.85 and S in the range of 

25–30. Small dictionary set size indicates reduced number of computations in prediction of the 

unseen observations. With the desirable properties like less training time, reduced computations due 

to small dictionary set size, the algorithm may be quite useful to model other kind of structural 

relationships like structure activity relationships or structure mobility relationships. 
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