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Abstract 

The special issue of the Internet Electron. J. Mol. Des. represented a challenge to summarize the ideas and 
results, which I regard important in my 35 years research in the area of mathematical chemistry, and to look 
ahead to the paths mathematical chemistry might follow in the future. The importance of such an analysis stems 
from the generality of the methods used and their potential for a variety of applications. Topological patterns in 
molecular structures are identified and characterized quantitatively in four major classes: branching, cyclicity, 
centrality, and complexity. It is shown that it is through these patterns that topology controls the properties of 
molecules, polymers, and crystals. The direct relationships derived between the Wiener number, radius of 
gyration, and viscosity of polymers offer for the first time the chance to experimentally determine a topological 
index. Information theory was demonstrated as a method capable of capturing the essence of molecular and 
atomic structure, and to be a tool for investigating structure–property relationships. The predictions of the 
nuclear binding energies of nuclides of chemical elements 101–108, which we made 25 years ago, were recently 
confirmed with a relative standard deviation of only 0.1%. The overall connectivity indices and the information 
index for the vertex degree distribution were shown to be adequate measures of complexity of molecules and 
biological networks. Also reported are methods for classification, coding, enumeration and complexity 
assessment of chemical reaction networks. Mathematical chemistry is shown as a powerful tool for 
characterization of chemical structures with a variety of applications. 
Keywords. Molecular topology; complexity; information theory; networks; kinetic graphs; atomic structure. 

1 HOW IT ALL STARTED 

Looking back through the crystal ball of time is nostalgic. You smile remembering your first 
steps in science, so clumsy and incommensurable to your great ambitions. You dig even further 
back and there they are – the roots of the real beginning, the two “chance” events that 
preprogrammed my future interests and development. I was only nine years old when a family 
relative, intrigued by my chess playing, presented me with a collection of chess magazines. This 
totally transformed my childhood and green years. Taking part in many competitions, I could play 
“blind” games, something that later turned into deriving equations in the same “blind” manner. 
Calculating chess moves made mathematics my favorite high school subject. Evaluating chess 
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positions taught me strategy and looking to a problem in its entirety, something that later proved to 
be an asset in planning and completing my research projects. A similar gift of Russian scientific–
popular magazines, given to me by my uncle when I was 13, inspired a life–long interest toward 
science and science fiction. Growing up in a post–war communist country, in which there was no 
room for religion, it was science that became my religion. Science was the force that was moving 
mankind ahead, and where else could I be! 

There was no room for a chance in selecting chemical engineering as my college major in the 
city of Sofia, the capital of Bulgaria. Several cousins of mine were already making university or 
industrial careers as chemists. Thus, the early combination of math and chemistry would inevitably 
one day bring me to mathematical chemistry, to which I devoted my life in science. However, that 
was still to come. After graduating from the technical university, I worked for three years as a 
process engineer in a big chemical plant. I was spending a good deal of my evening and night shifts 
with my favorite mathematical handbook. Another loved book was Brillouin’s “Science and 
Information Theory” [1], which I managed to borrow for three months from the Library of Congress 
through our National Library. This fascinating book was my first contact with the “Big Science”, a 
contact that turned Shannon’s information theory [2] into a favorite research tool for the years to 
come. 

Yet, it was still early for mathematical chemistry, and my D. Sc. degree in mathematical 
chemistry from the Moscow State University was light years away. The last two years in college 
awakened a deep interest toward the structure of atoms and molecules, and toward physics in 
general. It was then quite natural to accept the next generous gift of fate – the offer to found the 
department of physical chemistry at the newly opened technical university in my native town of 
Bourgas, on the Black Sea coast. Organizing laboratories and classes was combined with getting 
(externally) a Ph. D. degree in quantum chemistry under the guidance of Prof. Tyutyulkov from the 
Bulgarian Academy of Sciences. While specializing for six months in the Department of Quantum 
Mechanics at the University of St. Petersburg, Russia, I had the rare chance to extend my 
knowledge of physics, spending nights with Einstein’s relativity theory and the physics of discrete 
space–time. Back to Bulgaria, the initial enthusiasm about quantum chemistry soon had to face the 
hard reality of making science in a small East–block country lacking the big computers of the 
leading Western countries. The Copenhagen interpretation of quantum mechanics, which I found 
unsatisfying, added to the accumulating disappointment. Lacking a college degree in physics, I had 
to abandon my dreams of a new physical theory, dreams that at the age of 27 sent me to the 
National Conference in Physics to report my information theory–based hypothesis for the 
dependence of the fine structure constant, mass and charge of electron on the age of the Universe. 
Thus, in the beginning of the 1970s I was ready for a change. I was ready for mathematical 
chemistry! 
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In fact, without knowing it, I had already been a mathematical chemist, applying information 
theory for a number of years to the characterization of atoms and molecules. Lacking self–
confidence, I was keeping the unpublished results on my desk. Until one day Nenad Trinajsti , who 
was visiting me, looked at them and asked: “Man, why don’t you publish all of this?” That was the 
encouragement, so much needed in the beginning, the turning point after which the earth started 
revolving much faster. In the next year, in January 1976, I returned his visit and spent three months 
in the beautiful city of Zagreb. I was not totally absorbed by the initiated work on applying my 
information theoretic indices to QSAR of a series of molecules, so I started playing with the 
chemical structures. I was assigning numbers to atoms and counting how many bonds separate 
them. One day, Ivan Gutman, who worked in the same room, looked over my shoulder and said: 
“Congratulations, Sir! You have reinvented the Wiener number.” Then, he showed me the Wiener 
papers [3] and that of Hosoya [4] of 1971, and that was how I first met with graph theory, my great 
love. At that time, the Zagreb group of theoretical chemists (Trinajsti , Gutman, Graovac, Živkovi )
was already very active and gained a lot of attention with the their work on the interplay between 
molecular orbital theory and graph theory [5]. My three months visit gave birth to our JCP paper 
with Nenad on molecular branching [6], in which the marriage of information theory and graph 
theory produced for the first time a detailed characteristic of this general topological property of 
molecular structures. Three years later, during the 1979 Bremen symposium in Germany, I was 
already proposing the creation of an International Society for Mathematical Chemistry. 

This is how it all started. I was blessed to join the newly born area of mathematical chemistry 
during the time it was taking shape and was struggling for its place as a branch of theoretical 
chemistry. In the years to follow I was privileged to have contacts, friendships, and/or 
collaborations with most of the scientists who shared the same passion toward mathematical 
chemistry. All of the work performed until 1992, when I moved to the United States, would be 
impossible without the invaluable help of my former students/coworkers from the Bourgas 
Technical University “Prof. Assen Zlatarov”: Verginia and Dimitar Kamenski, Bresitsa Rousseva, 
Todor Peev, Dimcho Dimov, Kristiana Tashkova, and, first of all, my former student, collaborator 
and close friend Professor Ovanes Mekenyan, with whom I founded in 1984 the Bourgas 
Laboratory of Mathematical Chemistry and Chemical Informatics, which he brilliantly developed as 
a world–class laboratory for QSAR software in environmental research and drug design. This 
article, which attempts to summarize some of my contributions to mathematical chemistry, is 
dedicated to the wonderful community of mathematical chemists, which I have had the privilege to 
know and collaborate with. Due to the scope and volume of the article, the references given are 
anything but complete, and the readers are addressed for more references to the original papers 
cited.
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2 INFORMATION THEORY IN DESCRIBING ATOMS AND ATOMIC 
NUCLEI 

2.1 My First Information Theory Study 
One of the simplest formulas in Shannon’s Information Theory [1,2] is the one describing the 

amount of information obtained in an “experiment” reducing the uncertainty of the possible 
equiprobable outcomes from P0 to P1:

bits
P
P

I ,log
1

0
2 (2.1)

I made use of this formula [7] in 1960s in searching the answer of an important question: “What 
is the maximum amount of information that can be obtained in measuring distance and time?” Such 
a question has an answer only if space and time are discrete and finite. Assuming the radius Ro and 
age To of the Universe as an upper limit of the distance and time scale, while taking the classical 
radius of electron ro and the time to for which light passes through electron as lower limits of the 
two scales, respectively, one obtains 
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(Here, the logarithm at a base 2 is used to obtain information in binary digits, bits). The numerical 
result shown in Eq. (2.2) was obtained assuming the age of the Universe to be 5×1010 years, which 
was taken as an average of the 1960s estimates 1.3×1010 to 1011 years. This result coincided with an 
error of less than 0.1% with the reciprocal value of the important dimensionless fine structure 
constant  = 2 e2/hc, which incorporates three fundamental constants – the Planck constant h,
velocity of light c, and electron charge e. Proceeding from the hypothesis that the numerical 
coincidence is in fact a real relationship, one concludes that the fine structure constant is in fact a 
variable quantity that depends on the Universe age: 
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Thus, the dimensionless constant  was hypothesized to have a dimension of information or even to 
represent a conversion factor between a bit of information and a quantum of distance or time. It was 
also assessed from the equation that the annual variation of the fine structure constant would be 
about 1.9×10–11 %, and that the largest part of the Universe evolution would occur in a very small 
fraction of a second, in agreement with the Big Bang theory. Eq. (2.3) also indicated that at least 
one of the three fundamental constant included would also “age” with the Universe. Assuming this 
to be the electron charge, one easily arrives to conclusions and quantitative estimates for the 
Universe aging being associated with a decrease in electron charge, mass, and velocity, an increase 
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in the atomic radius and that of the earth, as well as with atomic spectra red shift. 

Papers relating the cosmic “big numbers” to the parameters of the microworld have been 
traditionally published in Nature [8,9]. Indeed, it was naïve to think that a manuscript coming from 
beyond the iron curtain, written in bad English by an unknown author, might also be published in 
this most respectful journal. Yet, it hurts when your paper is rejected on the ridiculous ground that 
your results have been previously published, and the reference given is totally irrelevant. Thus, this 
interesting hypothesis had to be buried in the Yearbook of my university [7]. In the years that 
followed, my “youth dreams” were popping–up spontaneously from time to time. They have left 
their traces in the wild idea to connect the upper end of the Periodic Table of chemical elements to 
the Eddington Number (the total number of particles in the universe) [10], as well as in my 
“spiraling electron” theory (a manuscript [11] summarized mainly during my ten days stay in the 
Hidden Valley Yoga Retreat in Southern California in the year 1997, and never submitted for 
publication). However, the rejection of my paper by Nature in the late sixties was the turning point 
after which, for good or for bad, I turned from physics to chemistry, and to the chemical 
applications of information theory and graph theory. 

2.2 Information Theory As Applied To Discrete Finite Structures 
In characterizing atoms and molecules one cannot proceed from Eq. (2.1), because the 

probabilities of different “events” are in general not equal and one deals with probability
distributions. A convenient basis in these cases is the finite probability scheme proposed by 
Mowshowitz [12]. Let a system be composed of N elements, distributed according to certain 
equivalence criterion  into k groups, having N1, N2,…, Nk elements, respectively. A probability pi

= Ni /N can be assigned to a randomly chosen element i to belong to the ith group. A probability 
distribution P( ) = {p1, p2, …, pk} is thus constructed. The mean and total entropy of this 
distribution, ( )()( HandH , respectively) can be calculated by the Shannon formulas: 

elementperbitsppH
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When all probabilities are equal, the entropy of the system is maximal: 

NNHNH 2max2max log)(;log)( (2.6
a,b)

Any system that deviates from the state of maximum entropy is regarded to contain information 
or to have information content. The information content I( ) of a system is thus defined by the 
difference between the maximum possible entropy of a system with the same number of elements 
and the actual entropy of the system: 
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)()()( max HHI (2.7)

Depending on the selected equivalence criterion , a system can be characterized by different types 
of entropy or information content. 

2.3 Information Content of a Chemical Element and a Nuclide [13]
In defining the information content of atoms we proceeded first by the distribution of the 

protons, neutrons and electrons into two substructures: atomic nucleus and electron shell. The 
information content of a nuclide having z protons, z electrons and n neutrons (i.e., having atomic 
mass A = z + n) was defined as: 

zzAAzAzAI nuclide 222 loglog)(log)( (2.8)

We then defined the information content of a chemical element as the average information 
content of its naturally occurring nuclides i, accounting for their abundance ci:

i inuclideielementchem IcI ,. (2.9)

The properties of this information index remained largely unexplored except the few correlations 
with atomic properties reported [13,14]. Instead, the focus of our studies was shifted to the 
distributions of electrons in electronic shells and to the protons and neutrons distribution in the 
atomic nuclei. Proceeding from the quantum mechanical description of atom, the following 
information indices were defined [15–18]: information on the distribution of electrons over atomic 
shells, In, subshells, Inl, atomic orbitals, Inlm, and spin–orbitals, Inlmms, as well as information on the 
electron distribution over the values of the orbital, magnetic, and spin quantum numbers, Il, Im, and 
Ims. In all these cases, one deals with the distribution of z electrons into k groups, having z1, z2, …, 
zk electrons, respectively. Denoting by x the combination of quantum numbers (the Shannon 
equivalence criterion ), which determine the type of distribution, we defined the respective total 
information content, I(x), and the mean information content, )(xI , as 

i ii zzzzxI 22 loglog)( (2.10)

and
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respectively. 

A third information function termed differential information, Ix(z), was also defined as the 
increase in the atomic information content Ix(z) in a chemical element with atomic number z and 
combination of atomic quantum numbers x, as compared to that of the element having atomic 
number z–1:
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)1()( zIzII xxx (2.12)

The filling of a given electron subset (shell, subshell, etc.) k+1 begins and ends most frequently 
at a constant population of the preceding k subsets. Then, eq (2.12) may be transformed into 

))1(log)1(log()1(log)1(log 12112122 kkkkx zzzzzzzzI (2.13)
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Figure 1. Differential information on the distribution of atomic electrons over electron shells. 

The properties of the differential information function (2.13) enable the characterization of 
periodicity of chemical elements by a sharp maximum in the first element of each period or s–, p–, 
d–, and f– subperiod, followed by a gradual decrease to a minimum in the corresponding last 
element, as shown in Figure 1. This regular trend is best demonstrated by periods II and III. In 
periods IV to VII, the filling of the d– and f–subshells with delay makes the increase in the In index
upon adding d–electrons lesser than that upon adding p–electrons, and the corresponding increase 
for the f–electrons lesser than that for the d–electrons:

In ((n–2)f) < In ((n–1)d) < In (np) < In (ns) (2.14)

The violations in the “ideal order” of filling electron f– and d–subshells, caused by the 
accelerated adding of (n–1)d– or (n–2)f–electrons at the cost of the decreased population of the ns–
subshell is also mirrored by the information function by a sharp minimum for the extra d–electron 
in Cr, Cu, Nb, Pd, etc., and by a maximum for restoring the “normal” trend in Mn, Zn, Ag, etc. The 
minimum in the f–elements, appears in the element returning the extra d–electron from the 
preceding element(s) back to the s–subshell: Tb after Gd, Np after Pa and U, Cf after Cm and Bk. 
The minima and maxima for the “anomalous” f–elements are lower than those for the corresponding 
d–elements, following the ordering, given above in inequalities (2.14). 
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2.4 Derived Information Equations For the Periods and Groups In the Periodic 
Table [19,20] 

The first equation of this type, Eq. (2.15), contains the period constant A in which is equal for 
periods I through VII to 0, 2, 19.51, 37.02, 87.75, 138.48, and 242.51 bits, respectively. The group 
constants knl = 1 or 2 for groups 1 and 2, knl = 1 to 10 for groups 3 to 12, and knl = 1 to 6 for groups 
13 to 18, respectively: 

l nlnlnl kkAzzI 22 loglog  (2.15)

The total information on electron distribution over atomic orbitals, expressed in bits per atom, is 
another equation for the periods and groups in the Periodic Table: 

bzbazbazI AO 0020 )(log)( (2.15)

Here, b is the number of paired electrons in the atomic orbitals of the element. In the ground 
state of the atoms of elements of groups 1, 2, and 13 to 18, the group constant a is equal to the 
lowest valence of the element (1, 0, 1, 2, 3, 2, 1, 0), whereas in the highest valence state it equals 
the old numbering of the eight main groups (1 to 8). The period constant zo is the atomic number of 
the noble gas that ends the preceding period (zo = 2, 10, 18, 36, 54, 86). 

The information on electron distribution over the values of the magnetic spin quantum number 
ms = +1/2 and ms = –1/2 provides yet another period/group equation for chemical elements: 
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Here, b and the period constant zo are those from the previous paragraph. The group constant k = 
a2/(2ln2) includes the number of unpaired electrons a. The error produced by the approximation 
used decreases with the fourth degree of z, and even for Li, #3, is only 0.0015. 

2.5 Information Theoretic Interpretation of the Pauli Exclusion Principle and
Hund’s First Rule [21]

The information equations for electron distributions in atoms provided a new interpretation of 
some of the physical principles and rules controlling the building of the atomic electronic structure. 
The Hund first rule, which requires maximum filling of atomic orbitals in s–, p–, d–, and f–
subshells with unpaired electrons, may be interpreted as a rule demanding maximum information on 
atomic orbitals, Inlm. This follows directly from our Eq. (2.16), which maximizes when the number 
of paired electrons b = 0. 

According to Eq. (2.10), the atomic information content reaches its absolute maximum when all 
zi = 1. This case corresponds to electron distribution over spin–orbitals, SO, defined by the four 
quantum numbers n, l, m, and ms, and controlled by the Pauli exclusion principle. 
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maxlog2 zzI SO (2.18)

In our study [20], the above ideas were generalized by information theoretic analysis of the 
irreducible representations of the SN symmetry group of the particles. It was concluded that the 
Pauli exclusion principle is associated with a trend toward acquiring maximum information content 
of atoms and molecules or any system of fermions. Conversely, the bosons were shown to be 
always associated with minimum information content. Another study [22] has shown that light 
emission from atoms is associated with a decrease, while light absorption is accompanied by an 
increase in the atomic information content. 

2.6 Predicting the Properties of Transactinide Elements # 113–120 
The information indices introduced in the foregoing describe adequately both atomic electronic 

structure and the structure of the Periodic Table [15,17,18]. One might expect on that basis the 
information indices to describe the properties of chemical elements better than the atomic charge, 
which presents only the total number of electrons, but not their distribution. These ideas were tested 
by a comparative study [23] of the atomic charge and the information indices correlations with a 
total of 19 physico–chemical properties of elements from groups 1, 13, 16 and 17. In 18 of the 
series the correlations with the information indices were higher than those with the atomic number. 
Additional test was performed with 37 properties of the elements from these groups. Again, with 
the exception of only one series, the information indices provided much higher correlation than the 
atomic number. The standard deviation was in some cases 5–to 10–fold smaller. 

The structure–property analysis described in the previous paragraph was performed in 1979–
1980. For the Kananaskis 2003 Conference [24], this part of the study was updated [25] with a 
wider number of properties, and the most recent data, focusing on all 23 properties known for group 
1 elements: five atomic, twelve thermodynamic, and six physical properties and parameters. In all 
twenty–three cases examined, the correlation coefficient of the models derived with the information 
indices was higher than the one produced by the atomic number. In the majority of cases, the 
standard deviation of information models was at least 2–fold to 5–fold smaller than that of their 
atomic number counterparts. It went down for absolute entropy in solid state from 1.33 to 0.12 
kJ/mol, for covalent radius from 6.55 to 0.51 pm, for melting point from 117.9° to 8.6°, for 
resistivity from 3.33 to 0.12×10–8 om m, for boiling point from 2.24° to 0.04°, and for the enthalpy 
of fusion from 0.0155 to 0.0002 kJ/mol. 

The models obtained with the atomic information indices provided a basis for predicting twelve 
properties of unsynthesized elements from the upper end of the Periodic Table [26]. We have taken 
into account the relativistic effects, and additionally adjusted the information models to match better 
periodicity trends in groups and periods, in line with the Mendeleev tradition. It is not yet possible 
to verify these predictions with experimental values. However, the continuing progress in shifting 
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up the upper end of the Periodic Table, culminating with the recent syntheses of several atoms of 
elements 114 and 116, has brought us closer to this goal. 

2.7 Information Content of Atomic Nucleus 
In describing atomic nucleus we proceeded similarly with the distribution of protons and 

neutrons into nuclear shells, subshells, etc., as well as according to the nuclear quantum numbers 
[27,28]. We briefly mention here only the information index on the proton–neutron composition of 
atomic nuclei, Ip,n, which exhibits interesting properties [29]: 

nnzzAAI np 222, logloglog (2.19)

It follows from Eq. (2.19) that the symmetric nuclei having equal number of protons and 
neutrons, p = z = n, have maximum information on the proton–neutron composition. The total 
information on proton–neutron composition of these nuclei is equal to mass number A, whereas the 
mean information is exactly 1 bit. Such are the symmetric stable nuclei of the elements from the 
beginning of the Periodic systems: 2H, 4He, 6Li, etc., up to 40Ca. With the increase of the atomic 
number of the element, the filling of the proton energy levels in the nucleus proceeds with delay. 
The resulting excess of neutrons is termed isotopic number: = n–z = A–2z.
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Figure 2. Average information on the proton–neutron composition of atomic nuclei. 

Figure 2 illustrates the basic features of the Inp index for all stable nuclei up to 204Hg, showing 
the line of nuclei with maximum mean information content of 1 bit, and the increasing deviation 
from this line with the increased atomic mass. The minimums in the figure correspond to the largest 
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excess of neutrons for series of several isotopes of the same chemical element. Conversely, the 
maximums after 40Ca refer to the least possible excess of neutrons. 

The mean Inp index per nucleon was approximated with a sufficient accuracy to 

2
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2 )2(
2ln2
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11
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Inp (2.20)

Equation (2.20) shows that the information index on the proton–neutron composition of atomic 
nuclei increases with the increase in the mass number A and atomic number z, and it decreases with 
the increase in the isotopic number and the number of neutrons. These trends are however reversed 
for a small number of light nuclei having negative isotopic number. 
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Figure 3. The defect of information on proton–neutron composition of atomic nuclei as a new Atomic Nuclei Chart, 
classifying the nuclides into five classes: isotopes (z = const), isobars (A = const), isotones (n = const), isodifferents (
= n–z = const), and isodefect (i = const). 

2.8 The Concept for “Defect” of Information 
The total information on the proton–neutron composition of a nucleus, Inp, expressed in bits 

according to Eq (2.19), is very close to the mass number A. The difference Inl
* between the two 

quantities was introduced in our studies [29] as “defect” of information by analogy with the defect 
of mass upon atomic nuclei formation. Since this deviation results in a decrease of the binding 
energy, we have conjectured that the defect of information can be regarded as a negative component 
of the binding energy, Eb. In fact, we found that Inl

* coincides (with a transition coefficient k = 
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25.1 MeV/bit) with the parameter of the relative symmetry of the nucleus, , in Weizsäcker’s 
equation for nuclear binding energy. Equations relating Inp and Inl

* with the total nuclear binding 
energy were also derived for series of nuclides with a constant isotopic number .

The concept for a defect of information also resulted in a new systematic of nuclides [28]. 
Besides the classes of isotopes (z = const), isobars (A = const), isotones (n = const), and 
isodifferents (  = const), a new class was formed for nuclides having the same mean defect of 
information i. Figure 3 shows a segment of the new Chart in defect of information/mass number 
coordinates (i/A diagram), which allows all five classes of nuclides to be presented in a single 2D–
plot. Besides isobars along the vertical direction, and isodefect along the horizontal direction, one 
can also find in Figure 3 isodifferent series descending gradually from left to right, e.g. the  = 18 
series, descending from 100Nb to 120Sb. The isotone series descend steeply in the same left to right 
direction, as shown with the series from 120Ba to 105Nb. The isotope series ascend steeply from left 
to right; the example selected is the Rh series from 100Rh to 114Rh. The direction and magnitude of 
change for these three series are described by derived information equations. 

2.9 Information Equations Derived for the Four Main Classes of Nuclides [30] 

 Equations                                                                      Constants 
I. Isobars (A=const) 

1 1222 )2ln2()2(11)( AczAccisobarsI np

2
2ln

4,
2ln
)1(2)(

A
b

A
AabzaisobarsInp

3 2)2()(* zAcAisobarsI np

II. Isodifferents (  = n–z = const) 

4
2ln2

1)(
2

2 d
A
dntsisodiffereI np

5
)2(

12)(
AA
dntsisodiffereI np

6
A
dntsisodiffereI np )(*

III. Isotopes (z = const) 
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A
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8
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 Equations                                                                      Constants 
IV. Isotones (n = const) 

10 ne
A
eisotonesI np 2)1(

2ln2
11)( 2

11
2ln2

4
)1(

)(
2ng

AA
gfisotonesI np

132 2)1(
2ln2

)(*
A
eAisotonesI np

2.10 Predictions of Nuclear Binding Energies of Nuclides of Elements # 101–108
The correlations found between the information on the proton–neutron composition or the defect 

of this information, and nuclear binding energy, along with the established similarity in the 
information equations describing nuclides and chemical elements, prompted us to search for direct 
relationships between nuclear and electronic energies. Equations were derived that relate fairly well 
the ground state electronic energy Ee of chemical elements to the nuclear binding energy Eb(id) of 
isodifferent series of nuclides [31]. 

Table 2. Comparison of the predicted and measured values of the nuclear binding energies of some nuclides of 
chemical elements # 101 to 108 [25] 

z A Eb(pred.) Eb(exper.) z A Eb(pred.) Eb(exper.) 
49 

50 

51 

52 

53 

103 
104 
105 
106 
107 
104 
105 
106 
107 
108 
104 
105 
106 
107 
108 
103 
104 
105 
106 
107 
103 
104 
105 

255 
257 
259 
261 
263 
258 
260 
262 
264 
266 
259 
261 
263 
265 
267 
258 
260 
262 
264 
266 
259 
261 
263 

1889.235 
1899.300 
1909.259 
1919.112 
1928.862 
1903.592   
1912.916 
1922.085   
1931.101 
1939.969 
1912.138 
1921.943   
1931.617 
1941.163 
1950.582 
1911.461 
1922.186 
1932.856 
1943.456 
1953.973 
1915.474 
1925.505 
1935.472   

1887.465 
1896.954   
1906.121   
1915.447 
1924.336 
1904.563 
1912.603 
1923.259 
1930.932 
1941.345 
1910.716 
1920.042 
1929.620 
1938.568 
1947.803 
1906.916 
1918.037 
1926.206 
1937.123 
1944.952 
1913.955 
1923.949 
1933.417   

53 

54 

55 

56 

57 

106 
107 
102 
103 
104 
105 
106 
102 
103 
104 
105 
106 
101 
102 
103 
104 
105 
101 
102 
103 
104 
105 

265 
267 
258 
260 
262 
264 
266 
259 
261 
263 
265 
267 
258 
260 
262 
264 
266 
259 
261 
263 
265 
267 

1945.166 
1954.800 
1913.639 
1924.599 
1935.477 
1946.285 
1957.026 
1916.513 
1926.384 
1936.086 
1945.581   
1954.913 
1910.768 
1920.146 
1929.240 
1938.056 
1946.616 
1918.088 
1928.501 
1938.762 
1948.874 
1958.840   

1943.199 
1952.342 
1911.128 
1919.621 
1930.934 
1939.257 
1950.468 
1916.569 
1926.418 
1936.563 
1946.224 
not synth 
1911.701   
1923.139 
1931.927 
1943.295 
unknown 
1917.837 
1928.317 
1938.413 
unknown 
unknown 

We were thus encouraged to use our models in predicting in the year 1980 the nuclear binding 
energies of unsynthesized nuclides of elements from the upper end of the Periodic Table [32]. Nine 
isodifferent series with = 49 to 57, atomic numbers within the 87–103 range, and mass numbers 
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between 224 and 257, have been used to obtain predictive models. The average standard deviation 
of the models was 0.13%. Forty–five extrapolations from these models were made for nuclides of 
elements # 101–108. Updating these results for the Kananskis Conference [24] in 2003, we found 
that forty–four of these forty–five nuclides have already been synthesized and the nuclear biding 
energies of 41 of them have been measured. The excellent agreement of the predicted and measured 
values is shown in Table 2 [25]. The standard deviation is only 1.9 MeV for a binding energy range 
of 1890–1950 MeV, i.e. the relative standard deviation is approximately 0.1%. 

3 INFORMATION THEORY IN DESCRIBING MOLECULES 

3.1 Prehistory 
The first molecular information descriptor (index) has been introduced in 1953 by Dancoff and 

Quastler [33], as “information on the kind of atoms in a molecule”. The elemental composition 
distribution incorporates subsets of atoms of the same chemical element. The entropy of this 
distribution called also information on chemical composition, Icc, calculated by eq. (2.5) is a 
measure of the compound compositional diversity. One may trace, for example, the increase in 
diversity within the series CH4, CH3F, CH2FCl, CHFClBr to be associated with the increase in Icc

(3.61, 6.85, 9,61, 11.61 bits, respectively). Dancoff and Quastler have used this information index 
to assess the total information content of various organisms, from cell to man. A similar approach 
was used to characterize the composition of complex molecules like protein, proceeding from the 
distribution of their aminoacid residues [34]. 

Rashevsky proposed in 1955 another measure termed topological information content,
proceeding from the distribution of atoms into subsets according to their equivalence in both 
chemical nature and symmetry, the latter being defined by the same first, second, etc. atomic 
neighborhood [35]. Trucco [36] refined the definition of topological equivalence of atoms in terms 
of the orbits of the automorphism group of the molecular graph. This type of molecular information 
content was later termed orbit’s information index, Iorb [37]. Mowshowitz [38] introduced in 1968 a 
second information index for graphs termed chromatic information content, Ichr. It is based on the 
graph coloring by the minimum number of colors, so that no two adjacent vertices are of the same 
color.

3.2 Some Measures of Molecular Information Content 
The studies mentioned in the preceding subsection cover almost all that has been done in this 

area before the start of my work on information theoretic characterization of atoms and molecules 
in the year 1970. The first information index we introduced was based on grouping the atoms in a 
molecule into equivalence classes determined by the point group of symmetry to which the 
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molecule belongs [39]. This molecular symmetry index, Isym, complements the orbit’s information 
index, in accounting for specific molecular geometry and conformations. Linear relationships were 
obtained between Isym and thermodynamic entropy for several homologous series of organic 
compounds. The constant information/entropy ratio indicates that each homologous series is 
characterized by a constant degree of organization of atoms. The family of information indices 
based on the equivalence of atoms by chemical nature, automorphism symmetry and point group 
symmetry included later the centric information index, Icentr [40], constructed from the distribution 
of atoms into radial layers of increasing distance to the center of molecular graph (vide infra).

Besides equivalence of atoms or graph vertices, information indices can be defined from the 
equivalence of bond (or graph edges) and even more complex substructures. Such an idea was 
mentioned in the second paper of Trucco [36], without further details. Such an information index 
based on the automorphism group of graph edges has not been studied. The next level index, based 
on the equivalence of the two–edge subgraphs, has been included as a component of the first Bertz 
complexity index [41]. Two other different types of graph edges equivalence were also proposed 
[37,42]. The first one is based on the value of the partial connectivity index ij of the edge {ij}to 
introduce an information analog I  of the Randi  connectivity index R [43]. The number of cycles 
to which a vertex or an edge belongs (vertex and edge cyclic degree) was used to define two kinds 
of information cycle indices of the graph [37,42]. 

All information indices discussed in the foregoing are based on some equivalence relation 
between molecular substructures (atoms, bonds, two–bonds fragments, etc.) or their corresponding 
molecular graph counterparts (vertices, edges, etc.). One may, as we did in 1977 [6], to term this 
type of information indices, as “equivalence–based”, and denote them by EI( ),  standing for the 
specific equivalence relation. This type of indices is not a very good basis for structure–property or 
structure–activity relationships, because it is highly degenerate. To improve the applicability of 
information theoretic indices we looked for ways to reformulate them. Such second avenue was 
offered in our study with Nenad on molecular branching [6]. The alternative type of information 
indices was termed “magnitude–based”, and denoted by MID (originally, the notation ID

W was used). 
The equivalence–based and the magnitude–based information indices were presented later in my 
monograph [42] as resulted from a generalized finite probability scheme describing a system of N 
elements having the overall magnitude (property, weight) of M, which are distributed into classes: 

Classes of elements      1       2   …   k 

Number of elements    N1     N2 …  Nk

E–probability Ep1
Ep2 … Epk

Magnitude                   M1     M2 …  Mk

M–probability Mp1
Mp2 … Mpk
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where Epi = Ni / Ni  and Mpi = Mi / Mi.

The first index of the new type was defined for the distances in the graph. As well known, the 
distance dij between vertices i and j is measured by the number of edges connecting these vertices 
along the shortest path between them. The equivalence–based distribution of N distances into k
groups having N1, N2, … , Nk distances, respectively, produces the standard type of Shannon’s 
entropy by Eq. (2.5). The distance magnitude distribution is the partitioning of the Wiener number 
W [3] (the sum of all vertex–vertex distances), into N1 distances of magnitude M1 = 1, N2 distances 
of magnitude M2 = 2, … , Nk distances of magnitude Mk = k. The two distance information 
descriptors are then, respectively, 

k

i
iiD

E NNNNI
1

22 loglog  

k

i
iiiD

M MMNMMI
1

22 loglog  
(3.1a,b)

The two information indices on the distances in molecular graph have found application in 
characterizing molecular branching and cyclicity (vide infra), for isomer discrimination [37], and 
for structure–property and structure–activity correlations [44–50], as part of the software packages 
OASIS [51], CODESSA[52], and Dragon [53]. Included in these packages was also the geometric 
3D–analogue of the Wiener number, WG, and its information counterpart, the IWG index, devised in 
our Bourgas laboratory [54]. (Regrettably, the WG index, which proved to be highly significant in 
QSPR and QSAR models, has always been referred to (renamed as 3D–Wiener) a later work of 
other authors). 

The extended probability scheme was applied to define several other information indices [6,42]. 
The information on the vertex degree distribution, Ivd, partitions the total graph adjacency A = 2E (E
being the total number of graph edges) into vertex degrees a1, a2, … , ak, and was shown to be an 
important characteristics of the graph connectivity. Similar definition was proposed for the 
information on the edge degree distribution, Ivd, proceeding from edge adjacency matrix, as well as 
for the information on the vertex distance degree distribution, Idd [42]. One of the important 
topological descriptors, the Hosoya index Z [4], was also reformulated as a magnitude–type 
information index. The Z index is defined as the sum of the non–adjacency numbers p(G,i), which 
count the number of ways the edges of graph G can be separated by i edges. Setting Mi = p(G,i) and 
M = Z in Eq. (3.1b) one arrives at the information index on the Hosoya graph decompositions, IZ

[6,42].

The major application of the information theoretic indices is in constructing quantitative 
structure–property and structure–activity models. Such applications are discussed in Section 4.8 
(vide infra). Another goal is to construct descriptors with low degeneracy for isomer discrimination. 
Since the individual indices cannot capture the entire complexity of chemical structure, we offered 
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to construct a topological information superindex, SI, which to combine several indices representing 
different structural features, and expressed in the same information theory language. The six terms 
incorporated in the superindex represent graph adjacency (vertex degrees), distances, vertex centric 
distribution, vertex chromatic distribution, the Hosoya decomposition, and vertex distribution over 
the orbits of the automorphism group of the graph. To preserve the information each of these 
indices contains, they were ordered as a vector: 

},,,,,{ orbZchrcentrD
M

vd IIIIIISI (3.2)

Eq. (3.2) is an open system to which other structural information descriptors might be added. 

Another potential area of information theoretic indices application is for classification purposes 
and for complexity estimates. The latter will be discussed in the section devoted to complexity, 
while the next subsection illustrates a specific illustration, in which information theoretic indices 
were constructed for elucidating a controversial problem in theoretical organic chemistry. 

3.3 The Information Index of Electron Delocalization [55,56] 
The electron distribution in molecules can be described by the charge–bond order matrix Q. The 

elements qij of this matrix can be transformed into probabilities of electron distribution over atomic 
and molecular orbitals: pij = qij / qij = qij / A with i and j running from 1 to k. Applying Shannon’s 
equations (2.4, 2.6a, and 2.7) one arrives at expression for the mean information content of the 
molecule (or molecular fragment), which measures the degree of unevenness in the distribution of 
electrons in the electronic state :

))((log)(1)(log)( 22
ij

ijij qq
AA

kI (3.3)

Conversely, the evenness of this distribution may be characterized by a reciprocal index 
)(~I termed information index of delocalization of molecule M or molecular fragment Mi in the 

ground or excited state :

)(/)0()(~ )( iMorMB III (3.4)

Here, IB (0) is the reference information content of benzene in the ground state. The information 
index of electronic delocalization can be calculated within each LCAO–MO–CI method for an 
arbitrary electronic state . It has been applied to the estimate of ring and total aromaticity in 
ground and excited states in a join work with the late talented Bulgarian quantum chemist Filip 
Fratev [55]. The information index provided the correct classifying of a large sample of conjugated 
compounds as aromatic, non–aromatic, and anti–aromatic within the ranges )(~I = 1 – 0.45, 0.45 – 

0.30, and 0.30 – 0, respectively. A later version of the method reformulated the delocalization index 
proceeding from the quantum mechanical superdelocalizability indices [56]. Reference [55] was 
among the first papers combining information theory to quantum chemistry, an area of research that 
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later became of considerable interest, as illustrated, for example, by the studies of Carbo [57]. 

Other applications of information indices to mention deal with the classification of bioorganic 
compounds based on the information capacity of molecules (Zhdanov, [58]), characterization of the 
specificity of chemical reactions [59], optimal strategy of organic syntheses (Bertz, [41]), and 
others. This concludes the brief summary of the work done in chemical information theory. More 
details, including different interpretations of entropy and information as applied to chemical 
structures, may be found in my monograph [42] and a recent book chapter [60]. 

4 MOLECULAR TOPOLOGY 

4.1 Molecular Branching [6,61–63] 
Wiener [3] first analyzed some aspects of branching by fitting experimental data for several 

properties of alkane compounds to the diversion of his “path number” W in branched alkanes from 
that of the linear isomeric compound. Later, several graph–invariants were tested as “branching 
indices” of acyclic molecules (the Hosoya index [4], the graph largest eigenvalue [64], the two 
Zagreb indices [65], and the molecular connectivity index of Randi  [43]), which correlate with 
their properties. Our work with Nenad Trinajsti  on the characterization of molecular branching [6] 
started in the beginning of 1976. We soon realized that the Wiener index offers the excellent chance 
to go beyond the fitting of experimental data and to try to understand the topological basis of 
molecular properties. We conjectured that the Wiener number decreases with the increase in the 
degree of branching of isomeric molecules. Eight specific topological patterns that enhance 
branching were identified, proved to be associated with a decrease in the Wiener number, and to be 
mirrored in a number of molecular properties. They are illustrated below, along with the derived 
formulae for the corresponding change in the Wiener number (N and N1 stand for the numbers of 
vertices in the main chain and the branch, respectively; j is the branch position in the main chain, n
is the number of branches): 

Rule 1:

0)1)(1(21 jNjNWWW

(4.1)

Rule 2:

0)1)(1( jjNW

(4.2)
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Rule 3:
0)1)(1( 1 NNW

(4.3)

Rule 4:
0)2)(1( jnjNW

(4.4)

Rule 5:
0)1)(1( 1 jNNjW

(4.5)

Rule 6:
0)1)(1( 21 NNNW

(4.6)

Rule 7:
0)1)(( jjNjjW

(4.7)

Rule 8:
0jjW

(4.8)

We have shown that the decrease in the Wiener index is associated with an increase in heats of 
formation, densities and refraction indices, and with a decrease in heats of vaporization and 
combustion, boiling points, molar volumes, molar refractions, and the coefficients of Antoine’s 
vapor pressure equation. Rules 1, 3, 4, 5, and 8 control all nine properties, whereas the only 
exception from the Rule 2 pattern occurs for 2–methyl substituents in four properties. The only 
branching rule that is not followed by the properties examined is Rule 7, which requires a 
monotonous change when the branch is shifted from a terminal to a more central position. Our 
branching rules 1–8 have been later confirmed by the branching theorems of Bertz [66] based on 
vertex degree analysis, and by the studies of Randi  [67], who used the path matrix eigenvalues. 
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Part of our rules overlap with later work of Ruch and Gutman [68] based on Young diagrams. 

In 1995, the branching rules were generalized [63] using two theorems, which simplify the 
calculation of the Wiener number variation W upon the graph transformations described by the 
branching rules [69,70]. W was shown to depend [Eq. (4.9)] only on the distance numbers d(u)
and d(v) of the vertices u and v between which a subgraph containing n1 vertices is transferred. The 
second theorem simplifies further the calculation [Eq. (4.10)] using as variables the length L of the 
chain uv, the position i of the branches located between u and v, and the number of vertices in these 
intermediate branches, nv,i and nu,i, which are located symmetrically with respect to u and v:

)]()([1 vdudnW (4.9)

)])(2[( ,,1 iviui nniLnW (4.10)

Eq. (4.10) was used to generalize the branching rules into five new rules covering more general 
branching patterns. Three of the new rules deal with the formation of new branches by different 
mechanisms, one with branch transformations related to a vertex degree redistribution, and one 
shows the topological identity of branch elongation to branch shifting toward a more central 
position. It was shown on this basis that the number of branches and the number of vertices of 
higher degree are considerably stronger branching factors than the branch length and branch 
centrality, although the role of centrality increases with the size of the system, and becomes 
dominant in polymeric macromolecules. 

4.2 Molecular Cyclicity [71–76] 
The success in describing topology of acyclic molecules prompted us to extend our studies with 

Mekenyan and Trinajsti  on the complex topology of molecules containing atomic rings. The new 
concept of molecular cyclicity was based on a similar conjecture that all structural patterns that 
increase the cyclic complexity of molecules are associated with a decrease in the Wiener number. 
Monocyclic structures opened the series of studies, followed by three classes of unbranched 
polycyclic structures [71], which differ in the topology of cycles connectivity – by a common edge 
[72], common vertex [73], or bridge [74] 

A variety of cyclicity patterns were analyzed for each of these classes, and inequalities for the 
associated Wiener number changes were obtained. The equations included structural factors like the 
number, size, and position of cycles, the number of elements (edges, vertices or bridges) they share, 

u

v

u1v1
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etc. Some of the typical molecular transformations that increase the cyclic complexity are shown 
below:

(i) Reduction in the cycle size for the creation of smaller cycles (1×26  2×14  3×10 
4×8  6×6) 

(ii) Transforming a linear chain of cycles into a zigzag–like one 

(iii) Increasing the number of cycles fused to a common edge (propelerity) 

The cyclicity rules for fused polycyclic compounds were confirmed later [77] proceeding from 
the Kirchhoff number, Kf, [78] as a measure of molecular cyclicity. This number is an analogue of 
the Wiener number, the graph distances in which are replaced by so–called “resistance distances”, 
based on Kirchhoff’s electrical network laws. Additional analysis of the problem was done recently 
by Randi  [79]. We examined the impact of the cyclicity patterns on a number of electronic 
properties of aromatic benzenoids [72]. Patterns of regular variation in the HOMO–LUMO gap 
were found upon the molecular cyclicity rearrangements described. Thus, when the Wiener number 
decreases in the transformations defined by ten of our rules, the HOMO–LUMO gap increases, and 
for one of the rules the gap diminishes (Figure 4). 

Figure 4. Increase, and respectively decrease, in the HOMO–LUMO gap of conjugated benzenoid hydrocarbons, 
predicted by the derived cyclicity rules, and the variation in the Wiener number. 

The topology of the branched polycyclic structures was investigated last [75,76]. This class is 
characterized by a complex interplay between branching and cyclicity. The studies comprised the 

LUMO

HOMO

LUMO

HOMO

W < 0,       E > 0 W < 0,      E < 0

Rules 3, 5–7, 9, 10, 12–15 [72]                 Rule
1



My Life–Long Journey in Mathematical Chemistry 
Internet Electronic Journal of Molecular Design 2005, 4, 434–490 

455 
BioChem Press http://www.biochempress.com

patterns of branching at a constant cyclicity, the variations in cyclicity at a constant branching, and 
the interconversion of cycles and branches. The rules derived were tested by eight physicochemical 
properties of cycloalkanes. 

4.3 Molecular Centricity (Centrality) 
The definition of a center of a molecule is necessarily associated with that of a graph. The first 

definition of a graph center given by Jordan in 1869 is limited to acyclic graphs (trees). It is based 
on a procedure called “pruning of a tree”, which eliminates in successive steps all terminal vertices 
until a single central vertex or a single central edge (a bicenter) is obtained. 

The general definition for a center of any graph has been given by Harary [80]. It states that the 
center is the vertex with the lowest eccentricity e(i), eccentricity being defined as the longest 
distance from a given vertex to any other vertex in the graph. In the 1980s, attempts were 
undertaken jointly with Balaban, Mekenyan, and Randi  [81–84], to find a more rigorous graph 
center definition. The definition of Harary was regarded insufficient, because it frequently classifies 
as central several graph vertices that are not equivalent (belong to different orbits of the 
automorphism group of the graph). A solution that would order centrically the graph orbits would 
certainly be in advantage. In the search for such an approach, we proposed a hierarchical definition, 
which includes several criteria [81]. Harary’s definition was regarded as the first such criterion. The 
second criterion reduces the set of central vertices to those, which in addition to the lowest 
eccentricity have also the smallest sum of the distances to all the remaining vertices in the graph. 
This sum is termed vertex distance, d(i), or distance degree, or distasum. When several vertices 
have the same minimal eccentricity and the same minimal vertex distance, then the third criterion, 
requiring a minimal occurrence of the largest distance, n(i,j;max), is used: 

Criterion 1: min)),(max()( jidie (4.11)

Criterion 2: min),()(
j

jidid (4.12)

Criterion 3: minmax);,( jin (4.13)

Although a considerable improvement, the solution based on the hierarchical criteria 1–3 still 
does not always eliminate all nonequivalent vertices from the set of central vertices. Adding three 
more criteria, similar to (4.11)–(4.13) but based on paths instead of distances [82], also failed to 
solve the problem. The “ultimate” solution found [83] was based on the Iterative Vertex–Edge 
Centricity (IVEC) concept: 
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Central are those vertices that are incident to the most central edges and, vice versa, central 
are those edges that are adjacent to the most central vertices. 

This seemingly circular definition is based on the IVEC algorithm, which resolves effectively the 
problem for centric ordering of the vertex and edge orbits of the automorphism group of the graph. 
It starts with ordering centrically all vertices and all edges, according to criteria (4.11–4.13), and 
ranks them numerically, beginning with the most central ones. Then, the sum of ranks of all edges 
incident to each vertex are calculated and used to refine the initial vertex ranks. The same is then 
repeated for each edge proceeding from the new ranks of their incident vertices. The steps are 
repeated until the same ranks appear in two consecutive steps, with one or maximum two iterations 
resolving the problem. 

Figure 5 below illustrates the algorithm. It shows first the centric ordering of vertices and edges 
after criteria (4.11)–(4.13) are applied, then the centric ranks assigned to the classes of equivalent 
vertices and edges and, finally, the calculation of the sum of ranks in the first iteration, which 
determines vertices 2 and 3 as a bicenter, and edge 1 as a single central edge: 

Criteria 1–3:   Vertices      (1,2,3), (4), (5)                                  Edges:  (1,2,3), (4,5), (6) 
Ranks:                                   1       2     3                                                     1        2       3

Iteration 1: v.1(2,3,6)  R(1)=1+1+3 = 5; v.2 (1,3,5)  R(2)=1+1+2 = 4 < 5  Vertices 2 and 3 are centers 
Centric ordering:           (2,3), (1), (4), (5)            (1), (2,3), (4,5), (6) 

Figure 5. Illustration of the hierarchical algorithm IVEC for centric ordering of the classes of topologically equivalent 
of vertices and edges and rigorous defining the graph center. 

We used the centric ordering of graph vertices and edges in layers equidistant from the center to 
construct centric topological indices [42,81]. The number of vertices in each layer forms an ordered 
sequence, beginning with the center, and ending in the outmost layer. For the example shown 
above, the vertex centric ordering obtained after applying criteria 1–3 is {3,1,1} and that of edges is 
{3,2,1}. This centric vertex and edge distribution is converted either into a Shannon–type centric
information index, VIC and EIC, or into a radial centric index, VCr and ECr , respectively, the latter 
calculated as the sum of the corresponding squared layer cardinalities. This approach generalized a 
previous study by Balaban [85], which produced centric indices for acyclic graphs by applying the 
Jordan pruning procedure. This paper resulted from my long-term cooperation and friendship with 
Sandy Balaban, then a Professor at the Bucharest Polytechnics in Romania and, later, Vice-President of 
the Romanian Academy of Sciences. This fruitful cooperation, which started in 1979, and included 
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many visits to Bucharest, resulted so far in 24 joint papers. It was a part of the very active “Balkan 
mathematical chemistry triangle”, i.e., Zagreb–Bucharest–Bourgas. 

The centric indices contain information that is not available in other topological indices, as 
proved in the study of indices intercorrelation [86]. This makes the centric indices a necessary 
component of the regression models in QSPR and QSAR. The centric ordering of graph vertices was 
studied later in detail by Dobrinin et al. [87,88]. The ideas of centric ordering of atoms in molecules 
have also found application for a centric nomenclature of benzenoid hydrocarbons [89], and in 
developing the principles of a general centric nomenclature of chemical compounds [90]. Later work 
extended the centricity analysis to molecules containing multiple bonds [91], and to determining the 
centric ring in polycyclic molecules [92]. A recent area of application is the centrality of nodes in 
biological and ecological dynamic networks. 

4.4. Molecular Complexity 

4.4.1 Early studies 

The first attempts to evaluate complexity of molecules and their graphs began 50 years ago [33], 
and have been based on Shannon’s information theory. The information on the kind of atoms in a 
molecule introduced by Dancoff and Quastler (See Section 3.1) measures compositional diversity, 
which is one of the major components of molecular complexity. The pioneering work of Rashevsky 
[35] added a structural component in the assessment of molecular complexity by constructing his 
topological information index. Mowshowitz [12] translated these ideas into the precise language of 
graph theory performing an extensive information theoretic analysis of complexity of graphs. 
Minoli [93] was the first to propose a method for evaluating complexity of graphs without resorting 
to information theory as a final arbiter. His complexity measure (termed combinatorial complexity) 
is a combination of several graph invariants: the number of graph vertices V, edges E, and paths P:

P
EV

VEMI (4.14)

Unfortunately, this index is highly degenerate, particularly for acyclic graphs, for which it 
produces the same value for all species having a given number of vertices. In order to diminish the 
degeneracy, I modified the Minoli index by replacing the number of paths P by the total length of 
all paths, Lp [94]. Another approach, directed specifically to complexity of cyclic graphs describing 
chemical reaction networks, started being developing since the year 1980 jointly with Temkin and 
Kamenski [95] (See Section 5.4 for more detail). The method was based on the count of maximal or 
spanning trees (acyclic subgraphs having the same number of vertices as the graph itself). Later, the 
same measure was independently applied to assess complexity of graphs by Mallion and coworkers 
[96].

A new impulse for the study of molecular complexity came from the work of Bertz, who used as 
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complexity measure the number of two–edge subgraphs (which he called “connections”) and its 
information theoretic analogue, later known as the Bertz index [41]. The success of the latter 
resulted from the more detailed structure description provided by the two–edge subgraphs 
(compared to vertices and edges used earlier) and from the additional size–term added to the 
Shannon formula to distinguish between molecules of different size having similar distribution of 
the graph elements into equivalence orbits. Bertz successfully applied his index as a criterion for 
selecting the critical path in complex organic syntheses. He also developed the first hierarchical 
concept of complexity [97] presenting it in three such levels, including both topological (branching, 
rings, multiple bonds) and nontopological (size, symmetry, functionality, and elemental 
composition) structural features. The more detailed scheme concept proposed several years later by 
Bonchev and Polansky [98] defines first the overall molecular complexity as determined by such 
factors like size, topology, physical nature of atoms, specific metric, point group of symmetry, etc. 
Topological complexity is then presented in full detail as a multi–layer hierarchical scheme. The 
basic level of connectedness distinguishes important classes of structures described by 
disconnected, connected, and nonplanar graphs. The next level of adjacency on its turn determines 
directed, undirected and multigraphs as separate complexity classes. The next level includes basic 
topological patterns, such as linearity, bridging, branching and cyclicity. The fourth hierarchical 
level makes use of graph symmetry, and the upper levels include graph metric presented by 
distances, paths, and walks or, alternatively, sugraphs of increasing orders [99]. 

The work of Bonchev and Polansky [98] also discussed in detail the requirements, which a 
complexity measure should satisfy, a topic first put into consideration by Minoli [93]. Later 
discussion by Bertz and Wright [100], Rücker and Rücker [101], Randi  and Plavši  [102] and 
Nikoli et al. [103] contributed considerably to the elucidation of the problem. A consensus among 
mathematical chemists seems to emerge around the following criteria: A complexity measure 
should increase with increasing connectivity, branching, cyclicity, number of weighted vertices and 
edges (e.g., heteroatoms and multiple edges) and (at comparable other complexity features) with 
decreasing symmetry. Recent interest in dynamic evolutionary networks in biology and ecology 
[104] seems to add to the list the increased cliquishness (closeness of subgraphs to complete graphs 
having the same number of vertices), the widely used cluster coefficient being a measure for the 
cliquishness of the subgraph formed by a vertex and its first neighbors. It is still debatable whether 
size may be regarded as a complexity factor or rather only a complicating one. The subtle difference 
between the two originates in the basics of complexity theory [105,106], which consider complexity 
to be relational [107]. It describes the system as a whole, and its properties as emerged from the 
interactions between its ingredients but not reducible to their properties. The early attempts to 
quantify complexity did not make this distinction, when proceeding from individual information 
theoretic or graph theoretic indices. The more mature approaches described in the next subsection 
focus on the overall representation of the system as a whole. 
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4.4.2 Overall measures of molecular complexity 

The new approach toward assessing molecular complexity emerged in the second part of the 
1990s, independently, and simultaneously by the present author [108–111] and Bertz [100, 112]. It 
proceeds from the idea of a more complete characterization of molecular structure by counting all 
subgraphs of molecular graph. Such a descriptor termed subgraph count (SC) has been proposed in 
a single sentence a decade earlier in a paper by Herndon and Bertz, devoted to molecular similarity 
[113]. Bertz applied the subgraph count as a criterion for selecting the critical path in organic 
synthesis as the path of maximum gain in complexity. My work was oriented toward transforming 
the SC index (which I initially called “complexity index K”) into an optimized molecular descriptor 
for QSPR and QSAR. For that purpose, the subgraph count was presented as a sequence of terms, 
counting the subgraphs of increasing size, beginning with 0SC for the number of vertices, 1SC for 
the number of edges, 2SC for the number of two–edge subgraphs, etc.: 

SCSCSCSCSC E...210 (4.15)

The partial subgraph counts, eSC, where e stands for the constant number of edges, were tested 
with success as individual descriptors in QSPR studies [109,110]. The quality of property models 
derived was increased further [111,114] by partitioning the subgraphs from a given e–class into 
several terms describing species with different topology, like paths, stars, and triangles for 
subgraphs having three edges. Indeed, the latter improvement of our approach was strongly 
influenced by the molecular connectivity series of descriptors of Kier and Hall [115, 116], which 
made an epoch in the area of drug design. 

In my work, the subgraph count was regarded only as the first class of descriptors in the series of 
overall topological indices. The idea for characterizing molecular complexity dealing with the 
structure as a whole was more general, and regarded the subgraphs weighted by some structure 
invariant, and then summed–up to produce the corresponding overall index. The most natural 
invariant to be considered was the subgraph total adjacency (the sum of vertex degrees). The 
resulting index was initially [108–110] termed somewhat broadly topological complexity, TC, and 
later renamed to overall connectivity, OC:

OCOCOCOCOC E...210 (4.16)

Other graph invariants were also applied to generate overall indices, such as the overall Wiener
index, OW [117], based on the Wiener indices [3] of the subgraphs, and the overall Zagreb indices,
OM1 and OM2 [118], based on the Zagreb indices M1 and M2 [65], the predecessors of molecular 
connectivity indices: 

OWOWOWOW E...21 (4.17)

OMOMOMOMOM E...210 (4.18)

All overall indices were shown to correlate highly with the physicochemical properties of 
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alkanes, used as benchmark, the overall connectivity indices being #1. This successful match stems 
from the properties of the overall complexity measures, which were shown to vary regularly with 
such complexity patterns like increasing branching, cyclicity, and centrality (See examples below). 

The total walk count, TWC, introduced by Rücker and Rücker [101,119], is another important 
measure of molecular complexity. Being not based on counting subgraphs, it may still be regarded 
as another kind of overall complexity descriptor, with individual contributions from walks of 
different length l, lWC:

WCWCWCWCTWC V 1321 ... (4.19)

Figure 6. Subgraph Count (SC), Overall Connectivity (OC), and Total Walk Count (TWC) order similarly the 18 octane 
isomers, according to their increasing complexity (increasing number, size, and more central position of their branches). 

As seen in Figure 6, subgraph count, overall connectivity, and total walk count are very sensitive 
toward subtle variations in molecular topology, satisfy the criteria formulated above for a 
complexity measure, and assess complexity of molecules in a rather similar manner. 

4.4.3 Overall measures of molecular complexity 

Shown below are some formulae we derived [114] for the subgraph count and overall 
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connectivity of some basic classes of graphs having chemical relevance (v and e stand for the 
number of vertices and edges in the respective subgraphs, while V and E are the total number of 
vertices and edges in the graph, respectively). 

Path Graphs (PV):

2
)1()(;)( VVPSCeVPSC VV

e (4.20a,b)

3
)4)(1()(;])1([2)( 2 VVVPOCeeEPOC VV

e (4.21a,b)

Cyclic Graphs (CV):

1)(;)( 2VCSCeVCSC VV
e (4.22a,b)
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e (4.23a,b)

Star Graphs (SV):
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The equations given in the foregoing define global complexity measures X (G). For comparative 
purposes one may also use relative measures, Xr (G) or kXr (G), obtained by dividing the global 
index by the value that index has for the complete graph KV having the same number of vertices V.
Bertz and Herndon [113] have first used such an approach to compare similarity of a molecule to 
the most complex molecule of the same size. We defined [120] similarly the kth order relative 
complexity index, kXr(G), by dividing the kth order index kX(G) by the kth order of X in the respective 
complete graph: 

)(
)()(

V
r KX

GXGX ;
)(

)()(
V

k

k

r
k

KX
GXGX (4.26a,b)

Noteworthy, the approximate complexity measure of networks called connectance [121,122] or 
(more correctly) connectedness (Conn) [123,124] appears naturally within our scheme as a relative 
edge complexity Er (or relative adjacency Ar):
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)( (4.27)

Average complexity per vertex and per edge, which can be of use in large networks, were also 
defined [120]: 

VGXvertexX /)()( ; VGXvertexX kk /)()( (4.28a,b)
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EGXedgeX /)()( ; EGXedgeX kk /)()( (4.28c,d)

Developed initially as measures of molecular complexity, overall complexity indices may find 
application in assessing complexity of biological networks [123–127] for a broad range of 
comparative and evolutionary studies. Due to the large size of these networks, containing hundreds 
or thousands of nodes, it suffices to use only the first three terms in Eqs. (4.15), (4.16), and (4.19). 
It is also preferable to use relative or normalized measures, as defined by Eq. (4.26), rather than 
global complexity measures. For this purpose, we derived equations for the subgraph count and 
overall connectivity terms of subgraphs in the complete graph having up to three–edges [127]: 
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Other measures of network complexity have also been introduced and tested. The information on 
the vertex degree distribution, Ivd,

V

i
iivd aaI

1
2log  (4.40)

was also shown to match closely SC, OC, and TWC complexity patterns [123,125]. 
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A new, combined complexity measure was proposed very recently. Networks with high 
complexity are characterized by both high vertex–vertex connectedness and small vertex–vertex 
separation (the “small–world” concept of Watts and Strogatz [122]). Therefore, it seems logical to 
use jointly the two quantities in characterizing network complexity. The ratio A/D = <ai>/<di> of 
the total adjacency and the total distance of the graph or, equivalently, the ratio of the average 
vertex degree <ai> and the average distance degree <di>, may be regarded as a logical approach to 
such a complexity measure [126]. At a constant number of vertices, the A/D index has a minimum 
value in path graphs, PV, which are characterized by low connectivity and long distances. In 
contrast, the A/D ratio has a maximum value in the complete graphs, KV, which are maximally 
connected and all of their vertices have only a unit distance separation. The classes of star graphs, 
SV, and monocyclic graphs, CV, are of intermediate complexity and their A/D indices are between 
these two extremes: 
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It follows from Eq. (4.42) that all graphs have their A/D values within the 0 to 1 range. Like all 
normalized complexity indices this index decreases rapidly with the graph size for path graphs, 
monocyclic graphs, and other weakly connected graphs, the distance in which dominates strongly 
over adjacency. Another version of the A/D index can be used when more subtle topological 
features are to be characterized. The ratio bi = ai / di of the vertex degree ai and its distance degree di

is a local invariant with interesting centric properties. It is  1, the equality occurring for the central 
vertex in the star graphs, as well as for every vertex in the complete graph. The sum over the bi

values of all graph vertices behaves similarly to the A/D ratio, with less degeneracy and more 
sensitivity to local topology. We defined this sum as a new complexity index B, more details about 
which are given elsewhere [126]: 
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4.4.4 Complexity of directed networks 

In contrast to the extensive analysis of complexity of undirected graphs, there were no studies 
dealing with complexity of directed graphs. The problem was of importance for assessing 
complexity of biological and ecological networks. It was shown in our recent publications 
[124,126] that substructure count, overall connectivity, walk count and information on vertex 
degree distribution can again be used for assessing complexity of directed graphs, after taking into 
account the partitioning of the vertex degree into in–degree and out–degree. Another specifics of 
directed graphs is that there is no more a complete vertex–vertex connectedness in both directions; 
some vertices cannot be reached from other vertices. A useful characteristic of directed graph was 
introduced [124] and termed vertex accessibility. It accounts for the degree to which the vertices in 
directed graphs are mutually accessible by counting the pairs of vertices connected by a finite path. 
More specifically, the vertex accessibility Acc(DG) of directed graph DG is defined as the ratio of 
the number of finite distances in the directed graph, Nd(DG), and the total number of distances in 
the parent undirected graph Nd(G):
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We used Eq. (4.46) to produce a more realistic estimate of the average degree of separation of a 
pair of vertices in a directed graph. Dividing the average distance in a directed graph, <d> = D/Nd,
by vertex accessibility, one normalizes this quantity to the case of complete vertex accessibility. 
The adjusted average distance (adjusted average path length), AD(DG):
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thus defined, is larger than the average distance in the parent undirected graph, and can be used for 
comparisons of the average degree of separation in directed graphs. 

Vertex accessibility was also used to define a more realistic measure of directed graph 
connectedness, as the simplest complexity measure. The new measure might be termed accessible
connectedness, AC(DG):
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4.5 Topology of Crystals 
This section reviews the series of joint studies [128–136] of the Bourgas Laboratory of 

Mathematical Chemistry (Bulgaria) and Dr. Hans Fritsche from Friedrich Schiller University in 
Jena, Germany, performed during the years 1979–1989. Dr. Fritsche was awarded for these studies 
with a special award for originality of research of the State Agency for Science of East Germany. 
The main idea of these studies is that it is topology that determines the equilibrium forms of crystals 
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and atomic clusters. The criterion used in most studies was the minimum atom–atom separation in 
terms of minimum total distance of the corresponding graph, as expressed by the Wiener number 
[3], which was shown to predict well the most compact (the most stable) structure. Alternatively, 
the maximum total adjacency was used as stability criterion in a number of cases, both criteria 
showing similar structural patterns. 

4.5.1 Crystal growth [128] 
This idea was tested first with three models of crystal growth. The detailed sequences of crystal 

growth were constructed by adding an atom at each step, and by selecting from a number of candidate–
structures the one with the minimum Wiener number. The first model reproduced a shape maximally 
close to the spherical shape typical for the free nucleation in vapor phase, and crystallization under 
zero–gravity conditions (Figure 7). 

Figure 7. Selected steps of the Wiener–number–based modeling procedure of crystal growth in vapors or zero gravity 
conditions. The structures shown are those with the minimum value of the Wiener number at given number of atoms. 

Figure 8. Three–step pyramid built as a Wiener–number–based model of crystallization on a substrate with low surface 
energy.

The second model reproduced nicely crystallization on a substrate with a low surface energy. The 
best model was built by allowing the crystal to grow on a very limited surface. The Wiener number 
was calculated by including also the distances to all surface lattice points in addition to those between 
the atoms of the growing crystal. A multi–step pyramid resulted in agreement with the periodic bond–
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   W=972        

  W=5536                
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chain–vector crystal model and the experimental findings (Figure 8). 

The third model reproduced successfully the crystallization on a substrate with a high surface energy, a 
result obtained by involving interaction with a considerably larger surface area. The criterion of 
minimum Wiener number in this case restricted the crystallization in a monolayer in agreement with 
the Kossel–Stransky theory and experimental observations. 

4.5.2 Modeling of Crystal Vacancies and Defect Atoms [129–131] 

A challenging idea was to try to predict the most probable locations of crystal vacancies [129,130] 
and defect atoms [131]. This goal was pursued by maximizing the difference in the Wiener number 
with and without vacancy (defect) as a selection criterion: 

max0WWW (4.49)

Equations were derived for a series of two– and three–dimensional models of crystal lattice with 
variable vacancy locations. Thus, for a simple cubic crystallite having N = 3x3x3 atoms, the variation 
in the Wiener number is expressed as: 
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where i, j, k are the lattice nodes along the x, y, and z coordinate axes, respectively. The analysis 
showed that W has a minimum when the vacancy is located in the lattice center and it increases when 
going from volume to face to edge to corner. The predicted location of vacancies on the corners of the 
crystallite is in agreement with thermodynamic theory and quantum chemical calculations. The same 
approach was used to model the diffusion of vacancies and defects through the lattice, and even for 
semi–quantitative estimates of the activation energy of these migrations. 

4.5.3 Modeling of Atomic Clusters [132–135] 

The Wiener number minimum was used again as a criterion for determining the optimum topology 
of small clusters [135]. Seven basic polyhedra were used in constructing small clusters: tetrahedron, 
square pyramid, octahedron, pentagonal pyramid, trigonal prism, centered hexagon, and pentagonal 
bipyramid. Adding one atom at a time over a certain crystal face and connecting this atom to all face 
atoms built cluster genetic lines. Two of the genetic lines produced an icosahedron, two others yielded 
a cubo–octahedron, and another line generated an anticubo–octahedron. Our predictions agreed with 
the experimental data for all cluster sizes. Thus, the topologically preferred shape for clusters with 
three atoms is the cyclic one, which is observed experimentally for Sc3, Cu3, Li3, Ag3, and Na3. The 
ESR data for Be4, Mg4, and Ca4 also confirmed our results. Other theoretical methods predict different 
cluster geometry for Li4, Na4, K4, and Al4. Our method predicted the pentagonal bipyramid as the most 
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stable clusters with seven atoms in agreement with the experimental data and quantum chemical 
calculations for Li7, Na7, and K7. The minimum of the Wiener number in the icosahedral cluster also 
explained the “magic” number 13, for which a maximum intensity of cluster mass spectra has been 
observed. Similarly, our topological approach predicted correctly the doubly magic metal superclusters 
[(M13)13]n, where M = ruthenium, rhodium or gold [133], as well as the stable argon clusters at the 
magic numbers 13, 19, 23, 26, 29, and 32 [132,134]. The Wiener number variation was also used to 
predict correctly the ordered structure of absorbed gases in host lattices [136]. 

4.6 Topology of Polymers 

4.6.1 The TEMPO approach [137–141] 

In the early 1980s, we started a series of studies extending the topological ideas of branching and 
cyclicity from small molecules to polymers. The direct approach, which uses the Wiener number as a 
criterion, was not applicable, due to the very large size of polymer macromolecules. We offered a 
modified version of the Wiener number, called “Wiener infinite”, W , which has a finite value for an 

infinitely large polymer chain [137]. Later, the method was named TEMPO, an abbreviation for 
Topological Extrapolation Method for Polymers [138]. The Wiener infinite index, was defined as the 
limit of the Wiener number of a polymer having N atoms, normalized by dividing it by the total 
number of distances in the corresponding polymer graph, N(N–1)/2, and the total number of bonds, 
E =N+C–1, where C is the number of independent graph cycles: 
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Figure 9. Nine polymer series analyzed by the TEMPO method. 

The novel index has thus the meaning of average graph distance per polymer bond. The polynomial 
in the numerator of Eq. (4.51) is obtained from a distance matrix analysis of the initial members of 
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the polymer–homologue series. The index preserves the patterns of the Wiener index to decrease 
with increasing branching and cyclicity of molecular skeleton, which is a basis for polymer 
structure–property relationships. A larger number of polymer structures, including acyclic, as well 
as cata–, peri–, and corona–condensed polycyclic structures were analyzed by the TEMPO 
technique. One such series is shown in Figure 9, along with an illustration of Eq. (4.51) for structure 9:
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The Wiener infinite index correlates well with the electronic characteristics of polycyclic 
conjugated compounds. Thus, for a large series of 25 such compounds a linear correlation with the 

–electron energy was obtained: 
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The HOMO–LUMO gap also correlates well with W , and a search was done (in collaboration 

with Oskar Polansky) for some modifications of polymer topology that would lead to a zero gap, as 
a prerequisite for a potential organic superconductivity [139]. Work on other applications of the 
technique developed showed that some properties of industrial polymers can be predicted with a 
reasonably good accuracy [140]. The method may be regarded as a viable alternative to the 
traditional methods of calculating polymer properties based on group–additive methods or the Padé 
approximants, which require a large number of empirical parameters. 

Recently, a joint study with Teodor–Silviu Balaban and Alexandru Balaban [141] revisited and 
substantially improved the method. Eq. (4.51), which requires derivation of polynomials, was 
transformed into a simple equation incorporating only topological invariants of the monomer unit. 
These are the numbers of atoms N1 and cycles C1 in the monomer unit, as well as the number of 
bonds d (or the graph distance) between two neighboring monomer units: 

)(3 11 CN
dW (4.54)

Examples: 

D = 2, N1 = 4, C1 = 1, W = 2/15; d = 4, N1 = 6, C1 = 1, W = 4/21

4.6.2 New Types of Polymer Graphs and Derived Wiener Index Equations [142,143] 

This is a research performed during the period of 1997–2001 for the Exxon Chemical Polymer 
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Research Center in Houston in collaboration with Armen Dekmezian and Eric Markel. We 
introduced several different types of polymer graphs for modeling properties of polymers obtained 
by different mechanisms of polymerization. The preliminary analysis of polymers with a statistical 
distribution of their branches by number, size and position along the macromolecule main chain has 
shown that counter to intuition the more random the polymer structure, the simpler the graph that 
adequately describes polymer properties. We have thus defined Random Distribution Graph (RDG)
as a graph containing only branched and terminal vertices. The Uniform Distribution Graph (UDG)
matches a favorite model in polymer theory, in which all macromolecule chains (branches, spacers 
separating branches, and end fragments) are of equal length. The third type of polymer graph, 
termed Long–Chain–Branch Graphs (LCBG), was introduced to describe the class of LCB
polymers developed during the last ten years, characterized by long branches of equal length, and a 
constant branch/spacer length ratio (Figure 10). 

Figure 10. Illustration of the three types of polymer graphs introduced. Random distribution graphs contain branched 
and terminal vertices only. All branches, spacers, and terminal chains in uniform distribution graphs are of the same 
length. The long–chain–branch graphs have branches of equal length and a constant branch/spacer ratio. 

We derived equations for the Wiener number of these classes of polymer graphs, and some of 

their most important subclasses. Two of these equations are shown below: 

1)1()7)(1()1(
6
1)( 22 fBBBBfRDGW (4.55)

}6]6)2)(1)()[({(
6
1

3
1)( bsbBBBbsbsbBnLCBGW (4.56)

where B is the number of branches, f is the vertex degree of the branched vertex (f = 3 or 4), b and s

are the number of vertices in the branch and the spacer, respectively. 

RDG

UDG

LCBG
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4.6.3 Theorems linking the Wiener number to the radius of gyration and viscosity of polymer 
melts and solutions 

We have used the Wiener number to define the topological radius of a (macro) molecule, as the 
average distance in the respective molecular or polymer graph. More precisely, this is the total 
distance of the graph averaged over all N2 distance matrix entries (the Wiener number is a sum of 
the N(N–1)/2 entries in the symmetrical off–diagonal submatrix): 

2

2
N
WRtop (4.57)

This definition was used to prove the following theorems: 

Theorem 1: The mean–square radius of gyration Rg
2 of a macromolecule containing no atomic 

rings is proportional to its topological radius: 

W
N
bRb

R top
g 2

22
2

2
(4.58)

where b is the length of the covalent bond connecting two monomer units. 

Theorem 2: The Zimm–Stockmayer [144] branching ratio g of a branched macromolecule 
containing no atomic rings is equal to the normalized Wiener index W  of the respective polymer 
graph:

W
W
W

R

R
g

linling

g
2

,

2

(4.59)

where Wlin and Rg,lin
2 are the Wiener number and the mean–square radius of gyration of the linear 

polymer having the same molecular weight with the branched macromolecule, respectively. 

This is an important result, which makes it possible for the first time to measure a topological 
index experimentally (Rg

2 and g are measured by laser light scattering). This result sheds also light 
on the meaning of topology and molecular graphs. The example shown below illustrates the point: 

g (3–arm star) = linWW /  = (3x1+3x2) / (3x1 + 2x2 + 1x3) = 9/10 = 0.9

The simple calculation of the Wiener number of the two random distribution graphs produces 
immediately the well–known experimental value g = 0.9 of statistical 3–arm star polymers. This 
value does not depend on the polymer molecular weight or the branch length and position; it 
depends solely on the star–like topology. The same value of 0.9 is obtained in the classical theory of 
polymer dimensions of Zimm and Stockmayer [144] after a complicated averaging of 3D–distances 
over all possible configurations that the singly branched macromolecule could have. How is it 
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possible to replace this complex procedure by the simple calculation shown above? My answer to 
this question is: because topology may be regarded as average metric.

We presented a second, more direct derivation of Eq. (4.58) within the framework of the 
viscoelastic theory of polymers of Rouse and Zimm [145]. The two basic matrices used in this 
theory, the Rouse matrix and the Zimm matrix, are in direct correspondence to the adjacency matrix 
and the Kirchhoff (or Laplacian) matrix in graph theory. We made use of the formula relating the 
mean–square radius of gyration with the eigenvalues i  of the Zimm matrix [146]: 

1

1

2
2 1N

i i
g N

bR (4.60)

b and N having the same meaning as in Eq. (4.58). Combining (4.60) with the formula connecting 
the Wiener number of acyclic graphs to i , one arrives at our Eq. (4.58). Continuing along this line 

we obtained a direct link between the Wiener number and the zero–shear viscosity of acyclic 
polymers melts: 

W
N

cb
2

2

0 6
(4.61)

where is the friction coefficient, and c is the number of polymer chains in a unit volume. A 

generalization of our formulae (4.58) and (4.61) was made to polymer containing cycles of atoms 
by replacing the Wiener number by the Kirchhoff number, Kf:

Kf
N
bRg 2

2
2 ; Kf

N
cb

2

2

0 6
(4.62)

It should be mentioned that our Eqs. (4.58), (4.61), and (4.62a,b) are the first equations 

connecting topological indices (the Wiener number and the Kirchhoff number) directly to physico–

chemical properties, tracing the way for future development of chemical graph theory applications – 

from QSPR and QSAR to direct relations with the properties of molecules and polymers via 

appropriate dynamic models. A special attention here should also be paid to the Kirchhoff number, 

which is the sum of resistance distances [149], calculated for any pair of vertices in the graph 

proceeding from the electric resistance rules of Kirchhoff. For acyclic graphs, resistance distances 

coincide with the graph distances and, therefore, the Wiener number may be regarded as a specific 

case of the more general Kirchhoff number. 

This raises important questions: “Why are the variable and mostly noninteger resistance 

distances more general than the constant integer graph distances? What have the electric networks 

rules to do with graphs and molecules?” Some light on the first question may be shed proceeding 

from the nonreductionist complexity theory, which demands description of the systems in their 
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entirety, not just as by summing contributions of system components. The Kirchhoff number, whose 

value for the distance between two vertices depends on the connectivity of the entire structure, 

seems to be the only topological index completely satisfying this requirement. The second question 

should perhaps be related to the more fundamental question for topology of space–time, as a 

prerequisite of any physical explanation of phenomena, including quantum mechanical one. The 

recent topological theory of discrete space–time [150] might mark the beginning of a development 

toward this goal. 

4.7 Other Molecular Topology Studies 
4.7.1 Theorems for the Wiener number semi–additivity [151] 

In 1986, an idea of Oskar Polansky turned into a joint publication [151] on calculating the Wiener 
number of any graph G, W(G), from the Wiener numbers W(Gi) of its subgraphs Gi G. The formulae 
derived find application for fast calculations with combinatorial libraries [152]. The approach is based 
on “covering” graphs upon a common subgraph, which can be a vertex, an edge, a path or two 
disjoined edges. An illustration is given in Figure 11 with the simplest case of covering upon a vertex; 
with d (u G) and d (ui Gi) being the distance numbers of the common vertex u in graph G and in 
its ith component Gi.

i iiii i GudnGundGWGW )()()()( (4.63)

Figure 11. Illustration of the covering of subgraphs in a vertex, a procedure used to prove the theorem for calculating the 
Wiener number of a graph from the respective Wiener numbers of its subgraphs. 

Other formulae showing how to calculate the Wiener number of a graph from covering upon an 
edge, a path or two disjoined edges can be found in [151]. 
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4.7.2 Topological atomic charges and bond orders 

An intriguing result was obtained (although published with some delay [153]) during my four–
month visit to Monty Kier in the year 1990. By counting the self–returning walks k

iSRW of order k

that start and end in atom i, we found for a large series of compounds that the relative atomic 
moments of energy, k

if , have a limit if equal to the respective squared atomic coefficient in the 

principal eigenvector 2
1ic :

11

limlim 2
1

kk

c
SRW
SRWff ik

k
ik

ii (4.64)

Later, this result was rigorously proved [154,155]. Thus, the relative atomic moments appear as 
partial atomic charges; they express the one–electron charge distribution on atoms produced by the 
principal eigenvector. This result was interpreted as showing that each atomic self–returning walk is 
associated with electron motion near the nucleus of the atom. It was also considered reminiscent of 
the Feynman path integral method, which accounts for all electron paths [156]. This conclusion was 
confirmed by the work of Nagao, Nishikawa and Aono [157], who applied the path integral method 
to the Hückel model and reproduced known results for the number of self–returning walks in linear 
and monocyclic graphs. On this basis, we concluded that each self–returning walk in molecular 
graph corresponds to an individual Feynman’s electron trajectory [158]. Similar interpretation was 
made for the open–end walks, which also produce path integral contributions. We thus generalized 
that molecular graphs encode the averaged information on all electron Feynman’s trajectories in
the molecule. This might be a possible explanation of why molecular graphs describe so well 
molecular properties. The study [158], performed in collaboration with Katya Gordeeva, contained 
also theorems, corollaries, and relationships for the atomic and bond moments of energy in 
molecules and solids. Topological atomic charges, valencies, and bond orders were introduced from 
the limit distributions of the self–returning walks. Topological atomic and bond reactivity rules 
were formulated, which account for the alternating positive and negative contributions to the atomic 
and bond moments, shedding thus some light on the topological basis of chemical reactivity. The 
topological atomic charges introduced were found to correlate well with the CNDO/2 charges on 
carbon atoms in alkanes [159]. These charges were also shown to mirror closely the patterns of the 
topological charge stabilization principle of Gimarc [161] in heterocyclic conjugated compounds. 
Topological atomic charges were recently modified and used along with other modified topological 
indices (molecular connectivity, extended connectivity, overall connectivity, and the Zagreb 
indices) as a basis for generating 2D–chirality descriptors (joint study with Alexander Tropsha and 
Alexander Golbraikh [162, 163]). The modified indices included a chirality correction, which was 
added to the vertex degrees of asymmetric atoms in molecular graphs. The modification enabled 
circumventing the inability of conventional topological descriptors to distinguish chiral or 
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enantiomeric isomers, which has been a major drawback as compared to 3D–descriptors of 
chemical structure. 

4.7.3 The hierarchically ordered extended connectivity (HOC) concept [164–170] 

This series of studies, performed in the mid 1970s with Sandy Balaban and Ovanes Mekenyan, 
was initially developed for the purpose of unique coding of molecular graphs and unique numbering 
of atoms (vertices) in them. The new concept improved the popular Morgan extended connectivity 
algorithm [171] by adding supplementary discriminating factors in a hierarchical iterative manner. 
Four versions of the HOC–procedure were proposed for application to molecules of increasing level 
of complexity [164–166]. The HOC–1 procedure reassigned the rank of each vertex at the kth

iteration, according to the sum of the (k–1)th ranks of the respective adjacent vertices. Several 
additional criteria, such as the number of cycles to which the vertex belongs, and the complete 
vertex degree distribution for each graph cycle, are used for more complex structures. Mathematical 
proof was presented for sufficiency of the various HOC procedures for vertex canonical numbering 
and graph orbit finding. An illustration of the HOC–1 algorithm is shown in Figure 12. 

Besides for the purposes of atoms canonical numbering and molecules coding, the hierarchical 
extended connectivity (HOC) concept found also application for recognition of graph isomorphism 
and graph symmetries [167], as well as for assessing graph similarity, ordering of graphs, and 
defining of new topological indices [168]. The HOC–ordering of atoms was found in excellent 
agreement with that of the experimentally determined 1H NMR chemical shifts of polycyclic 
benzenoid hydrocarbons having two to five fused rings [169]. Predictions were made on this basis 
for more than 200 proton chemical–shift orderings in 21 hexacyclic benzenoid hydrocarbons [170]. 

Figure 12. The HOC canonical vertex numbering: A) Vertices are ranked first by their degrees; B) Calculated extended 
connectivities; the two values EC = 5 differ by their summands; C) Reranking with additional differentiation within the 
classes of the first ranks; D) Recalculating the ECs of vertices with equal second ranks; E) Final ranks. 
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4.8 Applications of Molecular Topology to QSPR and QSAR 

4.8.1 Quantitative structure–property relationships (QSPR) 

The studies on the application of molecular topology to modeling properties of chemical 
compounds focused mainly on going beyond structure–property correlations by identifying and 
characterizing topological patterns in these properties. This line produced fruitful results from the 
very beginning, when a large number of physicochemical properties of alkanes have been shown to 
follow our rules of molecular branching [6]. The studies on characteristic patterns in cyclic 
compounds continued along the same line of trends in physicochemical properties, bringing also 
useful relationships with the electronic characteristics of conjugated benzenoids [44,71–76,172]. A 
possible generalization of the Wiener–number–based branching and cyclicity patterns was sought in 
the more stringent criterion requiring several graph invariants to vary in a similar manner. The 
concept for comparability graph CG was thus devised and tested with a larger number of properties 
[173–176]. The CG is a graph the vertices of which represent molecules of isomeric compounds, 
whereas a directed edge between two vertices stands for an isomerization transformation, associated 
with the same type of change (increase or decrease) for all topological indices used in the graph 
construction. We selected four representative topological distances: the total graph distance (the 
Wiener number), Randi ’s molecular connectivity index [43], Hosoya’s non–adjacency number [3], 
and the number of self–returning walks [153]. The isomers located on the same path in the 
comparability graph are regarded comparable, because they show a stable pattern of change of these 
four basic graph–invariants (Figure 13). 

Figure 13. The boiling point subgraph of the comparability graph of C7 alkane isomers. The compounds located on the 
same path are regarded as an optimized correlation sample, because they obey the same topological patterns: a decrease 
in the Wiener number and an increase in the Randi  molecular connectivity index, the Hosoya index, and the number of 
fourth–order self–returning walks.

When a correlation sample is composed only of such comparable isomers, it is predicted to show 
a high correlation with a variety of molecular properties. That was demonstrated by modeling seven 
thermodynamic properties of C9 and C10 alkanes [175] and spectral properties of benzenoid 
hydrocarbons [173,176]. The limitation to deal only with isomeric compounds was removed in the 
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last paper of the series [176] by constructing a supercomparability graph, the number of vertices in 
which may vary in a broad range. Thus, our dynamic comparability approach proved to be a 
promising method for constructing optimized compound samples for quantitative structure–property 
or structure–activity models. 

Another methodological question related to QSPR/QSAR was related to the manner in which a 
new topological index has to be tested before being used for property/activity correlations. Usually, 
testing against a series of isomers is preferred in order to eliminate the size effect. However, while 
this is a good test for sensitivity of the examined new descriptor toward subtle topological features 
of molecules, it has never been proved that topological indices that are good for isomers will have a 
good predictive power for nonisomeric compounds. Moreover, there were indications of the 
opposite [177]. The conference organized in occasion of the 25th anniversary of molecular 
connectivity concept of Kier and Hall [115,116] was a good opportunity to investigate this problem 
[114]. The best five–parameter models derived in parallel for boiling points and molar volumes of 
C8 alkanes and for C3–C8 ones were extrapolated to the 35 nonanes. The standard deviation of the 
best C8 model is only 1.14ºC vs. 1.74ºC for the best C3–C8 one. However, the extrapolation from 
the C8 model to nonanes resulted in a disastrous standard deviation of 6.00ºC, whereas that of the 
C3–C8 model, although increased to 2.08ºC, was very close to the 2.03, the value obtained for the 
best C3–C9 model. Even worse was the result for molar volumes, for which the C8  C9 
prediction had a standard deviation of 5.70 l/mol versus 0.62 l/mol for the C3–C8  C9 prediction, 
which again is close to the best C3–C9 model value of 0.52 l/mol. 

Another methodological problem, related to the same conference, questioned a key element of 
molecular connectivity paradigm: the lack of any prove that the mathematical function, introduced 
by Randi  [43], 

edgesall ji aa/1 , is the best function for the molecular connectivity series of 

topological descriptors of Kier and Hall. The idea to use a product of the vertex degrees for each 
atomic bond is very logical; the question was only whether the reciprocal square root is the function 
that provides structure–property models with the least standard deviation. To verify that, a 
comparative study was performed between the Randi  function, its predecessor, the second Zagreb 
index,

edgesall jiaaM 2 , the intermediate function 
edgesall jiaaON /1 (later renamed as 

“modified Zagreb index” [178,179]), and the simple summation of vertex degrees, 
i ia , which 

was the basis of our overall connectivity series of indices [108–111]. The comparison comprised the 
best linear 1– to 5– parameter models of ten physicochemical properties of C3–C8 alkane 
compounds. It was shown [114] that the performance of the inverse–square–root connectivity 
function is about the same as that of the simple inverse function, and slightly worse than that of the 
direct proportionality to the ( ji aa ) terms. The best performance was shown by the overall 

connectivity models, which are based on sums of vertex degrees. These models produced the 
smallest standard deviations for nine of the ten examined properties. This result demonstrated the 



My Life–Long Journey in Mathematical Chemistry 
Internet Electronic Journal of Molecular Design 2005, 4, 434–490 

477 
BioChem Press http://www.biochempress.com

potential of the overall connectivity indices as molecular topology descriptors. 

4.8.2 QSAR (Quantitative Structure–Activity Relationships) studies [46–51,54,180–187] 

An idea of Ovanes Mekenyan has led to a study on the possible types of electronic drug–receptor 
interactions [180]. The latter were classified according to the number of reaction centers, the 
presence and number of parallel and consecutive steps, rate ratios of the target and side reactions, 
etc. It was shown that the increase in interaction complexity, due to the larger number of competing 
side reactions or to the larger number of receptor sites involved, increases the probability of finding 
correlations with extremal values of biological activity. 

The major effort undertaken in the Bourgas Laboratory of Mathematical Chemistry and 
Chemical Informatics in the area of QSAR studies was the OASIS concept and software for 
multivariate regression analysis, initiated and developed with great energy by Ovanes Mekenyan 
[54,47,51,181]. The approach was applied in a series of joint studies with Nenad Trinajsti  [182–
185], Christiane Mercier and Jacque–Emil Dubois [48,186], as well as in the studies performed 
during my two years work at the M. D. Anderson Cancer Center in Houston [49,187]. 

OASIS is an abbreviation for Optimal Approach based on Structural Indices Set. It might be 
regarded as a second generation QSAR methodology, which goes beyond the classical Hansch 
approach [188] in dealing with the molecule as a whole, but not with selected atomic groups within 
it. This is essentially nonreductionist approach, which characterizes quantitatively molecules in 
three complementary levels: (i) molecular topology, described by graph theoretical descriptors, (ii)
molecular 3D–geometry, and (iii) quantum chemistry. The arsenal of topological indices used 
included the Wiener index [3,189], the Randi  connectivity index [43] and its generalization in the 
Kier and Hall series of molecular connectivity and valence connectivity indices [115,116], the 
Hosoya nonadjacency number [4], the Zagreb indices [65], the centric indices [81,190], Balaban’s 
distance connectivity index [191], electropy [192], as well as several of the information theoretic 
indices we developed [6,37,42]. The geometric 3D–descriptors were the Wiener number 3D–analog 
and its information theoretic version [54], the largest interatomic distance, and some characteristic 
interatomic Euclidean distances. Several physicochemical properties of molecules, such as 
molecular volume, molecular refraction, and the n–octanol/water partition coefficient, were 
borrowed from the Hansch and Leo method [188]. The quantum mechanical SCF electronic 
structure in the molecules ground state was characterized using semiempirical methods like PM3, 
AM1, and others, proceeding from optimized molecular geometry. Later important improvement of 
the approach, developed by Ovanes Mekenyan’s Laboratory in Bourgas included accounting for up 
to several hundred molecular conformations in building the QSAR models [193]. The software 
developed in this laboratory has found a broad application for assessing environmental toxicities 
[194].
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5 TOPOLOGY OF COMPLEX CHEMICAL REACTIONS 
5.1 Kinetic Graphs 

Complex chemical reactions are described as a set of elementary steps, which form reaction 
routes, and are related by common substrates, products, and intermediates. The manner in which 
these reaction species are interrelated determines the topology of chemical reaction. There are 
numerous approaches to apply graph theory to the mechanistic description of chemical reactions 
[195–197]. My 15 years collaborative work with Oleg Temkin and his coworkers from the Moscow 
Institute for Fine Chemical Technology concentrated on those chemical reactions the steady–state 
rate laws of which can be directly derived from some invariants of specifically constructed graphs 
[198–206]. This class of catalytic and enzymatic reactions are characterized by a linear reaction
mechanisms, the elementary steps of which incorporate one intermediate on both the left– and 
right–hand sides. We called the graphs depicting such a linear mechanism kinetic graphs (KGs). 
The vertices in these cyclic graphs represent only the reaction intermediates, while edges stand for 
their interconversions [207]. The specific version of the method, developed by M. I. Temkin [208], 
allows incorporating steps that do not contain intermediates by introducing “zero–intermediates” as 
graph vertices. An essential part of the Horiuti–Temkin [208,209] method is the concept of reaction
route, a subset of steps whose summing cancels all intermediates. In kinetic graphs, each route is 
presented by a cycle. The method is illustrated below by the catalytic reaction of methanol 
synthesis, which is regarded as a two–route reaction with five reaction steps and four intermediates. 
The catalyst is denoted by Z, whereas the intermediates it forms include dots to symbolize the 
formation of complexes with the reaction species. 

1
Z H2O + CO2  Z H2O CO2

2
Z H2O CO2  Z CO2 + H2O

3
Z CO2 + H2  Z CO2 H2

4
Z H2O H2 + 2H2  Z H2O + CH3OH 

5
Z  CO2 H2  Z H2O + CO 

–––––––––––––––––––––––––––––––––––––––––––––– 
CO2 + 3H2  CH3OH + H2O

CO + 2H2  CH3OH

The reaction is thus represented by a kinetic graph having four vertices, five edges, and two 
cycles: 

X1 X4

X2 X3

1

2

3

4

5
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Our studies [95,198–206] have shown that graph theory provides the necessary tools for 
classifying, coding and enumerating the complex chemical reactions having a linear mechanism, 
proceeding from the mechanism topological structure. Solving these problems was essential for the 
development of computer–assisted methods for the generation of mechanistic hypotheses and for 
their discrimination. 

Figure 14. The four basic classes A, B, C, and D, of linear mechanisms, and their subclasses AI, CK, and ZV,
determined by the number of edges I in the bridge, the shared number of edges K between two cycles, and the the 
number of edges V separating two nonadjacent cycles, respectively. 

5.2 Classification and Coding of Chemical Reactions with Linear Mechanisms 
A hierarchical set of classification criteria was constructed: 
(i) Number of linearly independent reaction routes (KG cycles), M = 1,2,3,… 
(ii) Number of intermediates (KG vertices), N = 2,3,4,… 
(iii) Types of interconnection of a pair of KG cycles (classes of two–route mechanisms; see 
Figure 14) 
Class A – bridging of cycles; Class B – cycles sharing a common vertex 
Class C – cycles sharing a common edge; Class Z – disjoint cycles (linkage via other cycles) 
Prefix n – number of KG vertices with degree a  3 
(iv) Subclasses of mechanism (number of elements connecting a pair of KG cycles): 
Subclasses A, A2, A3,… (the length of the bridge, I)
Subclasses C, C2, C3,… (the number of common edges, K)

A1 = A A2                                                                 A3

C1 = C C2                                                           C3

A B C Z = ZI

Z0                                                                       Z1                                                             Z2
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Subclasses Z0, Z1, Z2,… (the number of edges separating a pair of cycles lacking connections of 
type A, B or C. The case V = 0 corresponds to a KG the two disjoint edges in which are actually 
connected by a bridge, one of the vertices of which belongs to a third cycle; see Figure 14) 
(v) The number of vertices in each cycle, Ni

The linear code based on the above classification criteria is: 
M – N – n – AI

i Bj CK
k ZV

v – N1, N2, … , NM

The linear code given above is abbreviated; it contains generalized classes with superscripts 
showing the number of times the particular type of cycle linkage occurs. Alternatively, one can use 
specific classes, which list all pairwise cycle linkages, e.g., ACZ2CZ, B2ZC3, A2BZAZ, etc. The 
mechanisms containing irreversible steps are presented by directed kinetic graphs. In such cases, the 
code is supplemented by the list of all edges Ei given with their type: i,  and e, for forward 
direction, reverse direction, and both directions, respectively. When the KG incorporates terminal 
(pendant) vertices, the code also includes the total number of these vertices, Np, and the locations ni

of the vertices to which the pendant vertices P are attached. Thus, the code of a linear mechanism 
containing irreversible steps and pendant vertices becomes 

M – N – n – AI
i Bj CK

k ZV
v – N1, N2, …, NM – E1, E2,…, EE – Np: n1, n2, … , np

5.3 Enumeration of Linear Mechanisms and Their Classes 
A large–scale enumeration was performed [204] of all theoretically possible distinct linear 

mechanisms of chemical reactions involving up to six reaction routes, and up to twelve 
intermediates (with the exception of cases with M = 6 and N = 11 and 12, which were demanding 
unreasonably high computational time). The program KING (KINetic Graphs), which generates 
exhaustively all nonredundant KGs for a given number of cycles and vertices, was written by 
Ekaterina Gordeeva, a former coworker of the Laboratory of Mathematical Chemistry of Acad. 
Zefirov from the Moscow State University. The results obtained are summarized in Tables 3 and 4. 

Table 3. Total number of kinetic graphs with M = 2–6 reaction routes and N = 2–12 intermediates 
M \ N 2 3 4 5 6 7 8 9 10 11 12 

2 1 2 4 7 10 14 19 24 30 37 44 
3 1 3 12 27 65 129 245 422 710 1113 1710 
4 1 5 23 85 276 764 1935 4466 9583 19291 36859 
5 1 6 43 210 924 3403 11242 33156 89789 224621 526346 
6 1 8 72 469 2652 12644 52727 194909 651008 CE* CE* 

*Combinatorial explosion 

Table 4. Total number of classes of linear mechanisms having 2–6 reaction routes and 2–12 reaction intermediates 
M \ N 2 3 4 5 6 7 8 9 0 11 12 

2 1 1 1 0 0 0 0 0 0 0 0 
3 1 2 6 3 2 1 0 0 0 0 0 
4 1 4 14 24 33 19 11 4 1 0 0 
5 1 5 30 85 192 249 250 153 77 26 7 
6 1 7 55 239 798 1746 2800 3082 2576 CE CE 
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It was found that, at a constant number of reaction routes and an increasing number 
intermediates, the number of classes passes through a maximum and behaves close to the normal 
distribution. The very high number of classes and mechanisms found far exceeded some previously 
published estimates. This indicates that enumerations based on mechanistic chemical information 
only, do not take into account the very high degree of variety of mechanisms topological structure. 
On the other hand, it also signals that some topologically allowed mechanisms could not be 
chemically possible. More studies are needed for the ultimate elucidation of the problem. Other 
unanswered problems remain with the inclusion of irreversible and equilibrium steps, which in 
graph theoretical terms is equivalent to a transition from undirected graphs to directed graphs and 
such with pendant vertices.

5.4 Complexity of Linear Reaction Mechanisms 
Early in the development of our graph theoretical approach to chemical reactions networks, we 

felt the necessity to introduce a quantitative estimate of mechanistic complexity [95,202,203,207]. 
Such a measure would be beneficial for the process of (i) hypothesis formulation, assuming some 
upper limit above which the hypotheses would become unreasonably complex; (ii) selecting the 
simplest mechanism in situations when several mechanisms fit equally well the experimental data; 
(iii) constructive enumeration of kinetic graphs. We constructed a complexity measure that mirrors 
both levels of mechanistic complexity – the complex topology of the kinetic graph, and the 
complexity of the derived kinetic model. The complexity index K developed for mechanisms 
containing only reversible steps has the following form: 

M

p

k

k
pki DNTNMNK

1

(max)

0
2)1( (5.1)

Here, Ti is the number of spanning trees having a root at vertex i. Dpk is termed algebraic 
complement of cycle p. It is the base determinant of the subgraph resulting from contracting the pk
cycle to a single vertex. The double sum counts the number of spanning trees of the KG subgraphs 
obtained after each such pk cycle contracting for each of the p cycles. Since the calculation of K
depends heavily on the number of spanning trees, we derived general formulas for Ti of linear 
networks having one, two, three, and four reaction routes. This helped in calculating the complexity 
level of all topologically distinct mechanisms having two to six reaction routes and 2 to 12 
intermediates. Eq. (5.1) also helped in identifying the trends that increase mechanistic complexity. 
They are listed below in a hierarchical manner: 

i) The strongest complexity factor is the number of reaction routes M.

ii) At a constant number of routes M, the number of intermediates N is a stronger 
complexity factor than the route connectedness and the intermediate connectedness for 
networks having 2 to 4 intermediates. However, for N = 5, the two factors are 
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comparable, whereas for N  6 the enhanced connectedness prevails. 

iii) At a constant number of routes and intermediates, the enhancing of the route 
interconnectedness increases network complexity when the additional cycle connection is 
of class C (common reaction step), but keep constant for classes A and B connectedness. 

iv) At a constant number of routes and intermediates, and a constant number of route 
interconnections, complexity index increases with a rate following the relationship: 

A < B < C.

v) At a constant number of routes and intermediates, and a constant type and class, the 
complexity index increases depending on the number of reaction steps connecting the 
two routes, according to the inequalities: A3 < A2 < A, and C < C2 < C3.

The complexity analysis also revealed classes of transformations, which do not change the KG 
complexity. All isocomplexity relationships found for a given number of routes were summarized in 
flowcharts (see Figure 15). The classes with the same complexity are located in the flowcharts 
along vertical lines, whereas horizontal or diagonal lines show the relations of increasing 
complexity. 

Figure 15. Complexity flowchart for types L and classes of three–route reaction networks with linear mechanism. 
Complexity increases along horizontal and diagonal lines and keeps constant along vertical lines. The type index L
shows the number of interconnections between the three routes. 

The possibilities for extending the topological approach from reaction networks with linear 
mechanisms to those with nonlinear mechanisms were discussed in our monograph [197]. Other 
general problems of chemical reaction networks were discussed in that book, such as dealing with 
chemical reaction as a combinatorial object, classification of reaction mechanisms based on 
bipartite graphs, and the relation between the topological structure of a mechanism and the structure 
of its kinetic model. 

K

L

A
3

A2 B

B3

A2C
B2C BC2 C3

A2 AB
AC

B2

BC C2

2

1



My Life–Long Journey in Mathematical Chemistry 
Internet Electronic Journal of Molecular Design 2005, 4, 434–490 

483 
BioChem Press http://www.biochempress.com

6 SOME TOUGHTS ON THE FUTURE DEVELOPMENTS IN 
MATHEMATICAL CHEMISTRY 

The variety of areas and problems in discrete applied mathematics (chemical graph theory and 
chemical information theory) discussed in this article illustrates many of the main avenues of this 
relatively young branch of theoretical chemistry. Focused on characterizing chemical structure and 
the relation between structure and properties, mathematical chemistry obtained important results 
and developed powerful tools, which helped in the design of new chemical products and drugs. 
Topological indices are invaluable for fast data mining of combinatorial libraries of chemical 
compounds. After looking back one has to turn to the future and ask: “What lies ahead: variations 
on the same theme or radically new developments?” The recent explosive development of 
mathematical biology and bioinformatics offers a golden opportunity for potential applications of 
the accumulated knowledge in mathematical chemistry. Biological and ecological networks 
manifest topological patterns similar to those of atomic and molecular networks. The gigantic task 
of explaining the specific biological functions proceeding from the structure of cellular protein–
protein interaction networks, metabolic, and gene regulatory networks, might be regarded as a 
natural extension of what we have learned about molecular topology and the topology of chemical 
reaction networks. Chemical graph theory could only be enriched from the interaction with this new 
area of research, which attracts many mathematicians, physicists and chemists. However, there is a 
major difference between the way graph theory is applied to molecules and to a cellular network. 
The latter is a dynamic, evolving network, whereas molecular structure is regarded as static. The 
lack of dynamic molecular graph theory limits the possibilities for deriving molecular properties 
from molecular topology. Statistical regression models result but the next step – from correlation to 
functional topology–property relationships, based on a certain mechanistic dynamic model – is still 
to be done. My recent work [143] on deriving relationships between the Wiener and Kirchhoff 
topological indices and the radius of gyration and viscosity of polymers within the dynamic Rouse – 
Zimm model might be regarded as a step in this direction. 
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