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Abstract 

The topological index J is one of the widely used indices for QSAR and QSPR studies, and has the advantage of 
discriminating nonisomorphic graphs that represent molecules of restricted size. It is of interest to see if this 
property can be generalized for any connected graph. A proof is provided for the theorem stating that for almost 
all connected graphs G there is a nonisomorphic graph G’ such that G and G’ have the same topological index J.
Since the index J is among the least degenerate topological indices, our results imply that a fortiori other 
topological indices are even more degenerate. Hence, none of them can be used in discrimination of general 
graphs. 
Keywords. Balaban index; topological index J; degeneracy; topological index; molecular descriptor. 

1 INTRODUCTION 

Among molecular descriptors, topological indices [1–9] occupy a well–established place and are 
frequently used for quantitative structure–activity relationship (QSAR) studies [10]. By analogy, 
one uses similar acronyms for physical–chemical properties (QSPR) or toxicities (QSTR). 

For saturated hydrocarbons, their connected and hydrogen–depleted graph consists in vertices 
symbolizing carbon atoms and edges symbolizing single C–C covalent bonds. The topological 
index J [11–12] (average distance sum connectivity) was modeled after the Randi  index  [13] and
it was designed to be both less degenerate (by using topological distance sums instead of vertex 
degrees as for ), and less dependent on the graph size and cyclicity (by compensating through the 
use of the number of edges and the cyclomatic number µ). 

Indeed, for an infinitely long linear graph (idealized polyethylene) it was proved [14] that the 
value of J becomes equal to the number , and for idealized infinite polymers having chains with 
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regularly placed branches such as poly(propylene) or poly(isobutene), the value of J is a rational 
multiple of  (in the two above examples J is 3 /2and 2 , respectively). 

A computer program was published for computing index J  [15]. For molecules having 
heteroatoms and/or multiple bonds, suitable changes were proposed [16–18]. It was found that the 
index J parallels in many ways the less discriminating Wiener index, e.g. in the way these indices 
order alkane isomers [19,20]. An application of J for polymers was described [21]. The index J  has 
found many applications; the most interesting of these was developed by Lahana and his coworkers 
[22], and it involved index J along with 12 other molecular descriptors for reducing the number of 
possible immunosuppressive decapeptides in a virtual library of about 250,000, by a factor of 
10,000, resulting in improving the activity of the lead decapeptide about 100 times. Another 
interesting application of J and  was published by Bermudez et al. [23], and it involved adding to 
these indices contributions of hydrogen bonding for computing pairwise associations between 
nucleotide bases in transfer RNA of E. coli for clustering tRNA into two groups, confirming 
Wong’s coevolution theory of the genetic code [24]: biological evolution led to gradually increasing 
numbers of amino acids till they reached the present number of 20, and thus the 64 triplet codons 
had to be reassigned from time to time according to evolving biochemical pathways. 

In a previous publication [25], it was proved that the highly discriminating index J starts to 
become degenerate for acyclic graphs with n > 11 ( n  is the number of vertices), for monocyclic 
graphs with n > 7, and for polycyclic graphs with even smaller n values. Thus, despite the fact that J
has a higher discriminating ability than most other single topological indices, it may be inferred that 
for almost any graph J is degenerate. A formal proof of this conjecture is the object of the present 
paper.

2 NOTATIONS 

Let x  be any real number. By x  we denote the largest integer smaller than x  and by x  we 
denote the smallest integer larger than x . Let S  be any finite set; by S , we denote its cardinality, i. 

e. the number of elements in .S  Let G  be a simple connected graph (i. e. a connected graph without 
loops or multiple edges). By V G  we denote the set of vertices of G , and by E G  the set of edges 
of G . Also we denote their cardinalities by v G V G  and e G E G . Let ,x y V G . By 

Gd x , we denote the degree of vertex x , and by ,Gd x y  the topological distance between vertices 
x  and y . We also define the sum of all distances from vertex x by ,G G

v V G
D x d x v .

The Balaban index J G  is defined by 

1 / 2

1 1 G G
uv E G

e G
J G D u D v

e G v G (1)
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For the sake of simplicity, we define 1 / 2
G G GE uv D u D v . The last relationship can be 

rewritten as 

1 1 G
e E G

e G
J G E e

e G v G (2)

Let nG  be the set of all simple graphs G  such that 1 2, , ..., nV G SV v v v , where n  is an 
arbitrary number. Note that n v G  for each graph in the class nG . Denote by: 

1) nC  the set of all connected graphs with the set of vertices SV .

2) nD  the set of all graphs with the set of vertices SV  such that at least two of them are not 

connected and have no common neighbors. 

3) 'nD  the set of all graphs with the set of vertices SV  such that 1v  and 2v  are not connected and 

have no common neighbors. 

4) nL  the set of all graphs with the set of vertices SV  with maximum degree at least 2 / 31
2

n n .

5) 'nL  the set of all graphs with the set of vertices SV  such that 2 / 3
1

1
2Gd v n n .

6) nS  the set of all graphs with the set of vertices SV  with minimum degree at most 2 / 31
2

n n .

7) 'nS  the set of all graphs with the set of vertices SV  such that 2 / 3
1

1
2Gd v n n .

8) nW  the set of connected graphs G  with the set of vertices SV  such that there is a graph 'G

such that G  and 'G  are nonisomorphic and that they have the same Balaban index. 

More formally, we can write: 

1 2 1 2

2 / 3

2 / 3
1

:  is connected graph

:  or 2

' : vertices v  and v  are not connected or , 2

1:  the maximum degree of  is at least 
2

1' :
2

n n

n n n

n n G

n n

n n G

n

C G G G

D G G G C diam G

D G G d v v

L G G G n n

L G G d v n n

S G 2 / 3

2 / 3
1

1: the minimum degree of  is at most 
2

1' :
2

:  there is a graph '  such that  and '  are 
nonisomorphic and '

n

n n G

n
n

G G n n

S G G d v n n

G C G G G
W

J G J G

(3)

In order to prove our main result, we shall need the Stirling formula: 
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!lim 1
2

nn

n
n n
e

(4)

3 RESULTS AND DISCUSSION 

Let us give an auxiliary result: 

Lemma Let a  and b  be arbitrary natural numbers and let 1 2, , ..., ax x x  be any fixed real numbers. The 
number of sums of b  summands from 1 , ..., ax x  is at most min , 1 aba b .

Proof: The number of different sums is at most the number of ordered b –tuples from the set 
1 , ..., ax x , hence it is at most ba . Note that each sum can be rewritten in the form 

1 1 2 2 ... a ak x k x k x , where ik  is the number of occurrences of the number ix  in the observed sum, 
for each 1, ...,i a . Also, note that 0 ik b , for each 1, ...,i a . Hence each of the sums is uniquely 
determined by the a –tuple of the numbers 1 2, , ..., ak k k  where 0 ik b , for each 1, ...,i a and

1 ... ak k b . The number of these a –tuples is at most 1 ab . This lemma is proved. 

Let us prove the following theorem: 

Theorem 1. We have lim 1n

n
n

W
C

.

Proof: The last relation is equivalent to \
lim 0n n

n
n

C W
C

. Obviously, \
lim 0n n

n
n

C W
C

. Hence it is 

sufficient to prove that 

\
lim 0n n

n
n

C W
C (5)

Note that \ \ \ \n n n n n n n n n n n nC W G W D L S G W D L S , hence 

\ \
lim lim

\ \
lim

\

\ \
lim

n n n n n

n n
n n n

n n n n n n n n n

n
n n n n

n n n n n n n n n

n
n n n

C W C W G
C G C

D L S G W D L S G
G G G C

D L S G W D L S G
G G D

Therefore, it is sufficient to prove that 

lim 0n

n
n

D
G (6)
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lim 0n

n
n

L
G (7)

lim 0n

n
n

S
G (8)

\ \
lim 0n n n n n

n
n

G W D L S
G

(9)

Let us prove relationship (6). We have 

'
2

lim lim
n

n

n n
n n

n
D

D
G G

Let G  be any graph in 'nD . Note that 1 2v v E G . Also for each , 3, ...,jv j n  at least one of the 

edges 1 jv v  and 2 jv v is not in E G . Therefore 
2 3

2 2' 3 2
n n

n
nD . It follows that 

2 3
2 22

2 31
2

' 3 2 3
2 2 2

lim lim lim
2

2

8 3 8 3lim lim
2 29 4 9 4

n n
n n

n

nn nn n n
n

n
n

n
n n

n n n
D

G

n n

Note that 8 3 3lim
2 9 4 4

n
n

n . Therefore, 8 3lim 0
2 9 4

n

n
n

n .

Now, let us prove relationship (7). We have 

'
lim limn n

n n
n n

L n L
G G

Let G  be any graph in 'nL . Note that at least 2 / 31
2

n n  of edges in 1 2 1 3 1, , ..., nv v v v v v  are in E G .

Hence, we have less than 2 / 3

1
1
2

n

n n
 choices for these edges. Therefore, 

1 2
2

2 / 3 2 / 3 2 / 3

1 11
2

1 1
21 1 1

2 2 2
lim lim lim lim

2 2
2

n n

n
n nn nn n n n

n

n n n
n n n

n n n n n n
L
G

1
2 / 3 2 / 3

!lim
2 1 1! !

2 2

nn

n n

n n n n
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2/ 3

2 / 3

1
2

2 / 3

2 / 3

1
1
2

2 / 3

2 / 3

2
lim

1
12 2
2

2
1

12 2
2

n

n n n

n

n n

nn n
e

n n
n n

e

n n
n n

e

2 /3 2 / 31 1 1
2 / 3 2 / 3 2 22 / 3 2 / 3

lim
2 1 1 1 12

2 2 2 2

n

nn n n n n

n n n

n n n n n n n n

2 / 3 2 / 3

3 / 2

1 1 11 / 3 1 / 3 12 / 3 2 / 3 2 2

2 1lim
1 1 1 2 1 22 1
2 2

n n n n n

n

n n nn n n n

2/ 3

3 / 2 1 / 3 1

1 1 / 3
2 / 3 2 / 3 2 / 3 1 4 / 3 2

1 / 3 1

2 1 2 1lim
1 1 1 22 1 1 4 22 2 1 2

nn
n

n n n

nn n n n n n n
n n

1/3 2 /3
2 / 3

1/3 1/3
2 /3

1/3

3 / 2

2 / 3 2 / 3

1
1 21 2

4 1 214
4 4

1 / 3
2 / 3

1 / 3

1
2 / 3 1 4 / 3 1 / 32

2 / 3 1

2lim
1 12 1
2 2

1

1 11 1
1 1 2
4 4

1 4 2 1 2
1 4 1 2

n

n n n
n n n

n
n

n

n

n n n n

nn
n

n n n n
n n

2 / 3

/ 3 1

n

n

1/ 3

1/3 1/ 3

1 4 / 3

1 4 /3 2 / 3

2 /3
1

2 /3
1 1/ 3

1/31 2

3 / 2

4
2 / 3 2 / 3 2 1 2

1 2
1 4 / 3 2 1 4

1 42 / 3 1
1 1 2

1 / 3

2 1lim
1 12 1
2 2

1

2 11
1 4

1
1 2

n

n

nn
n n

n n
n

n n n
n

n n
n

n

n n n n e e

n n
n

n
n

1/3

1/3

3 / 2

12 4
2 / 3 2 / 3 1 2

2 1 1lim
1 12 1
2 2

nn
n

n
e

n n n n e
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1/ 3

1/3

1/ 3

1/3

1

3 / 2

2 4
2 / 3 2 / 3 1 2

2 1lim 0
1 12 1
2 2

n

n

nn
n

n e

n n n n e

Now, let us prove relationship (8). We have 

'
lim limn n

n n
n n

S n S
G G

Let G  be any graph in 'nS . Note that at most 2 / 31
2

n n  of edges in 1 2 1 3 1, , ..., nv v v v v v  are in E G .

Therefore, we have less than 2 / 3

1
1
2

n

n n
 choices for these edges. Therefore, 

1 2
2

2 / 3 2 / 3

11
2

2 / 3

1

1
21 1

2 2
lim lim lim

2
2

1
2

lim as it is earlier proved 0.
2

n n

n
nn nn n n

n

nn

n n
n n

n n n n
L
G

n
n

n n

It remains to prove relationship (9). Let us bound from above \ \n n n n nG W D L S . Denote 

An = {J(G) : G  (Gn \ Wn) \ (Dn U Ln U Sn)}. Note that for each graph nG G  there are at most !n

graphs 'G  such that G  and 'G  are isomorphic. Therefore, 

\ \ !n n n n n nG W D L S n A

Let G  be an arbitrary graph from the set \ \n n n n nG W D L S . Note that each vertex v V G

has more than 2 / 31
2

n n  and less than 2 / 31
2

n n  neighbors and all other vertices from \V G v  are 

on distance 2. Therefore, 

2 / 3 2 / 3 2 / 3 2 / 3

2 / 3 2 / 3

1 1 1 12 1 2 1
2 2 2 2
3 32 2
2 2

G

G

n n n n n D v n n n n n

n n D v n n

Hence there are less than 2 / 32n  possible values of GD v . Therefore for each e E G , there 
are less than 4 / 34n  possible values of GE e .

Let us observe the formula 
1 1 G

e E G

e G
J G E e

e G v G
. The value of the first factor 
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1 1
e G

e G v G
 can be chosen in 1

1
2

n n  ways ( v G  is prescribed and 1
0

2
n n

e G ). The 

value of the second factor G
e E G

E e  can be chosen in at most 
4/ 3 4/ 34 4

1 1
1 1

2 2

n n
n n n n

ways. (Note that there are at most 1
2

n n  summands and each of them can take one of 

4 / 34n values and use Lemma 1). Therefore,
4 / 3

4 / 3 4 /3

4

2 8 101 1
1

2 2

n

n n
n

n n n n
A n n n .

Hence,
4/ 310\ \ ! n

n n n n nG W D L S n n

It is sufficient to prove that 
2 / 310

1
2

!lim 0

2

n

n nn

n n

Let us prove this 
4 /3

4 / 3 4 / 3 4 /3

4 / 3

10 10 11 11

1 1 1 1
2 2 2 2

!lim lim lim lim

2 2 2 2

n

n n n n

n n n n n n n nn n n n
n

n n n n n n

Note that 
4/ 3

11

1

2

lim 0,

2
n nn

n

n  hence indeed 

4 / 3

4/ 3

11

1

2

lim 0

2

n

n nn
n

n . This proves our theorem. 

We would like to establish what portion of connected graphs are graphs that have nonisomorphic 
graphs with the same Balaban index, more formally, we would like to calculate /n nn N n N

W C .

Unfortunately, this is impossible, because both nominator and denominator of the last ratio are 
infinitesimal. The best that we can do is to calculate 

1 1
lim /

x x

n nx n n
W C

It is obvious that 
1 1

lim / 1
x x

n nx n n
W C . In order to prove that 

1 1
lim / 1

x x

n nx n n
W C , it is sufficient to 

prove that for each 0 , we have 
1 1

lim / 1
x x

n nx n n
W C . Denote by 0 0n n  the smallest natural 

number such that we have 1
2

n

n

W
C

 for each 0n n . It follows that: 



D. Vuki evi  and A. T. Balaban 
Internet Electronic Journal of Molecular Design 2005, 4, 491–500 

499 
BioChem Press http://www.biochempress.com

0

0

0

0 0

0

0

11

1 1

1 1 1

1 1

1 1

1
2

lim / lim lim

1
2

lim

xx

nnx x n nn
n n x n xx n n x x

n n n
n n n n

x x

n n
n n n n

n xx

n n
n n n

CW
W C

C C C

C C

C C

Note that 
0

1

n

n
n

C  is a finite number and that 
0 1

lim
x

nx n n
C  is an infinite number. Therefore, we can 

conclude that 
0

0 1 1
lim 1

2

nx

n nx n n n
C C . It follows that 

0

0 0 0

0 0

0 0

1 1 1 1

1 1 1 1

1 1 1
2

lim lim 1

nx x x

n n n n
n n n n n n n

n nx xx x

n n n n
n n n n n n

C C C C

C C C C

Hence, indeed 
1 1

lim / 1
x x

n nx n n
W C .

4 CONCLUSIONS 

From the discussion above, the following conclusion follows: For almost all connected graphs
G there is a nonisomorphic graph 'G such that 'J G J G . Since index J is among the least 

degenerate topological indices, our results imply that a fortiori other topological indices are even 
more degenerate for general graphs. It remains to be seen whether indices with even lower 
degeneracy than J, such as BCUT [26–28], obey the theorem proved here. 
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