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Abstract 

Motivation. To determine the structural features of flavones required for the reversal of P–glycoprotein (P–gp) 
mediated multidrug resistance, we studied the quantitative structure–activity relationships (QSAR) of a series of 
flavones specifically binding to the C–terminal nucleotide–binding domain of mouse P–gp. 
Method. Pharmacophore modeling using DISCOtech and comparative molecular field analysis (CoMFA) 
methods were applied to the dataset to identify the pharmacophoric features as well as their 3D distribution. 
Results. The proposed pharmacophore model including two hydrophobic and two hydrogen bond acceptor sites 
characterizes the necessary structural features of flavone inhibitors. CoMFA was also applied to the dataset, 
resulting in several 3D–QSAR models with good statistical indices (R2 > 0.9 and Q2 > 0.5). 
Conclusions. All these models would be helpful for development of novel flavone–based P–gp inhibitors. 
Keywords. P–glycoprotein (P–gp); flavone; pharmacophore; CoMFA; comparative molecular field analysis; 
QSAR; quantitative structure–activity relationships. 

1 INTRODUCTION 

The resistance of tumor cells to a broad array of chemically diverse cytostatic agents, a 
phenomenon termed multidrug resistance (MDR), remains a major obstacle to successful cancer 
chemotherapy [1]. One of the classical protection mechanisms of cancer cells involves an increased 
expression of drug efflux transport proteins like P–glycoprotein (P–gp) [2]. P–gp, a human MDR1 
and MDR3 or rodent Mdr1a, Mdr1b and Mdr2–encoded product, is a 170 kDa transmembrane 
glycoprotein. P–gp belongs to the ATP–binding cassette transporter family and expels a wide 
variety of hydrophobic compounds from the cell, thus resulting in reduced intracellular drug 

                                                          

# Dedicated on the occasion of the 65th birthday to Danail Bonchev.  
* Correspondence author; E–mail: yling@dicp.ac.cn. 



QSAR of Flavones Interacting with the C–Terminal Nucleotide–Binding Domain as P–Glycoprotein Inhibitors 
Internet Electronic Journal of Molecular Design 2006, 5, 1–12 

2
BioChem Press http://www.biochempress.com

accumulations. The wide P–gp distribution in cancer tissues [3] including acute leukemias, breast, 
ovarian, head and neck tumors, and non–Hodgkins lymphoma has strongly suggested that the 
overexpression of P–gp plays a significant role in MDR phenotype. Therefore, the development of 
pharmacological agents to inhibit P–gp–mediated drug efflux is a promising way to overcome 
MDR, which leads much of research interests. 

Up to now a wide panel of resistance modifying agents including channel blockers, calmodulin 
antagonists, immunosuppressants and protein kinase inhibitors [4] have been proven to be potent P–
gp inhibitors. However, the clinical use of these modulators have been hampered, partially due to 
the unendurable toxic side effects resulting from the suprapharmacological doses used which are 
required to achieve an effective reversal of MDR. Some other drugs such as antiprogestin RU486 
have satisfactory inhibitory effects on P–gp transport in vitro, whereas clinical use might be a risk 
due to their hormonal consequences [5]. Therefore, the search for safe and effective P–gp inhibitors 
with higher selectivity and potency has been in great demand. 

Flavonoids are a group of polyphenolic compounds particularly abundant in fruits, vegetables, 

nuts, flowers, tea and wine, and constitute important components of normal human food with a few 

hundreds of milligrams daily intake in the human diet [6]. Flavonoids display a remarkable 

spectrum of biological activities including antioxidant, antiallergic, anti–inflammatory, antiviral as 

well as free–radical scavenging activities, and especially anticarcinogenic actions that are beneficial 

for human health [7]. Many, but not all, flavonoids have been demonstrated to inhibit the growth of 

various cancer cell lines in vitro and reduce tumor development in experimental animals [8,9]. A 

wide spectrum of flavonoids such as Biochanin A, morin, phloretin, silymarin, various flavonols 

and flavones have been confirmed to promote the concentration of intracellular anticancer drugs by 

active against P–gp functions, and the interaction mechanism involved at least in part a direct 

interaction [10,11,12]. Some synthesized flavonoids like N–benzylpiperazine ones displayed more 

potent MDR–modulating activity than the calcium–channel blocker verapamil, a standard MDR–

reversing agent [13]. Therefore, flavonoids have been regarded as a new class of promising 

potential MDR modulators. 

Our goal was to determine the requisite structure features for flavonoid that specifically interact 

with the C–terminal nucleotide–binding domain (NBD2, “2” refers to the C–terminal NBD site) of 

P–gp. Though according to structural difference there are several subtypes of flavonoids, our 

research only focuses on flavone type of flavonoids, with attempt to help design and screening of 

flavone–like P–gp inhibitors of greater affinity and selectivity. Since as yet no high–resolution P–gp 

structure is obtained, the aid of proper computer techniques is of importance. 
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2 MATERIALS AND METHODS 

2.1 Dataset Building
A number of 32 flavones specifically binding to the NBD2 site of mouse P–gp [14] were used as 

dataset (supplementary materials). Their structure contains three conjugated rings, A and C being 
juxtaposed and B branched at position 2. The data of flavones directly binding to the NBD2 site by 
quenching of protein intrinsic fluorescence (KD) were used (see column 3, Table 1) [14]. The 
inhibitory activity evaluation was performed using pKD.

2.2 Molecular Modeling
All computations were performed on a Dell workstation running Linux RedHat 8.0 with Sybyl 

6.92. The 2D structures of flavones were obtained from a commercially available MDL–ISIS 
database. Conformational search and energy minimization were carried out using simulated 
annealing molecular dynamics, from initial 700 to 200K for 1000 fs with the distance–dependent 
dielectric constant of 1.0 and time increment of 0.5 fs. Each conformer was minimized by the 
Powell conjugate gradient algorithm using a standard Tripos force field with an energy gradient 
limit set to 0.05 kcal/mol/Å. The minimization was terminated when the energy gradient 
convergence criterion of 0.001 kcal/mol was reached. Partial atomic charges were assigned to each 
atom with Gasteiger–Huckel method [15]. The hydrophobicity parameters (logP) were calculated 
based on the number and nature of fragments [16]. 

To identify the general pharmacophoric features the dataset was studied at first by Distance 
Comparisons technique (DISCOtech), a distance constraint pharmacophore building method. 

2.2.1 Pharmacophore Modeling 

A stochastic search routine was run to generate a maximum of 100 conformers for each molecule 
on the basis of maximum diversity to cover as many probable conformers as possible. 3–OH–
flavone has the fewest rotating bonds and features in all molecules, and was selected as the 
reference compound [17]. For each conformation, the possible pharmacophoric elements were 
assigned. Seven (or fewer) conformations with maximum diversity selected for each molecule were 
then aligned to 3–OH–flavone. DISCO was initially run considering all the potential “feature” 
points, but additional runs with the specification of preserving only three possible features, e.g.
hydrophobic, donor and acceptor atoms, were executed as well. The distances between the feature 
points in each flavone conformation were calculated and compared with those of the reference 
compound. The distance tolerance was set stepwise from 0.25 to 2.5 Å by 0.25 Å. If all the 
intramolecular distances of identical features between the reference conformation and the calculated 
conformations of other flavones were met within the tolerance, a valid pharmacophore model was 
established. 
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After this, these flavones were further studied by comparative molecular field analysis 
(CoMFA).

2.2.2 CoMFA Study 

In CoMFA studies, the van der Walls and Columbic potentials representing steric and 
electrostatic fields respectively, were calculated using a Tripos standard force field at each lattice 
intersection. An sp3 hybridized carbon with a +1 charge on a 2.0 Å regular spaced lattice extending 
roughly 4 Å from each side of the molecule [18] was used as probe atom. Values of the steric and 
electrostatic energies were truncated at 30.0 kcal/mol with the attenuation factor  set to 0.3. After 
all these calculations, a spreadsheet was generated and the correlation between various descriptors, 
including steric, electrostatic, hydrophobic, HB donor and acceptor, as well as the logP, was 
analyzed by partial least squares (PLS), a standard statistical method used successfully in many 
QSAR studies for rationalization of those structure features affecting the biological activity [19]. 
PLS relates a matrix of dependent variables Y, in this case the inhibitory properties (pKD), to a 
matrix of descriptors X, here the logP parameter and various field descriptors. As long as the 
optimal number (OPN) of components was chosen that yielded the largest cross–validated Q2

values, a final PLS analysis was performed using the chosen OPN with no cross–validation. This 
generated a fitted correlation of the entire training set. Presently, flavones were studied with 7 (3, 4,
6, 10, 17, 23 and 29) selected as a test set and the remaining 25 ones as the training set. 8–Geranyl–
chrysin with the lowest–energy conformation and the largest inhibitory effect was chosen as the 
template molecule for alignment. 

3 RESULTS AND DISCUSSION 

3.1 Pharmacophore Modeling
Although several pharmacophore models have proven useful for identifying the molecular 

features required for P–gp substrates [20,21,22] and inhibitors [23], a pharmacophore model 
interpreting the interaction mechanism of flavone specifically binding to the NBD2 site is still 
unavailable, which prompted us to build a 3D–pharmacophore model for this site as the first step. 
Presently, a pharmacophore model (Figure 1) was obtained with score of 2.10 and tolerance 
distance of 0.25 Å. This model is consisted of four pharmacophoric features, defined as two 
hydrophobic center sites (H) in rings A and B, and two HB acceptor atoms (AA) around the oxygen 
atom in ring C as well as in the C–4 carbonyl group respectively. Figure 2 shows the arrangement 
of these features, which is a tetrahedral combination of six distances found to be common to all 
flavones: H1–AA1, 2.00 ± 0.25 Å; H2–AA1, 3.72 ± 0.25 Å; H1–AA2, 3.71 ± 0.25 Å; H2–AA2, 6.14 ± 
0.25 Å; H1–H2, 6.48 ± 0.25 Å; AA1–AA2, 4.01 ± 0.25 Å. The four sites of the distance constraints 
constitute the requisite elements of flavone inhibitors. 
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Figure 1. A stereoscopic view of the pharmacophore model of flavones derived from the DISCO technique. The stick 
frame representation of all individual flavones is shown in their overlapping conformations. There are four 
pharmacophore feature points, i.e., two hydrophobic center sites (shown by the yellow dummy center points in rings A 
and B) and two HB acceptor atom sites around the oxygen atom in ring C and in the C–4–carbonyl group respectively 
(shown by the red dummy atoms). The specific distances between these sites are given in Figure 2. 
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Figure 2. Schematic pharmacophore of flavones. Pharmacophore feature points include two H sites (+ points in rings A 
and B) and two AA sites (points around the oxygen atoms in ring C and in the C–4–carbonyl group respectively). They 
are annotated as follows: AA, HB acceptor atom, H, hydrophobic center. The distance between these sites are shown 
beside each straight line with angstrom unit. 

The features in our model, the aromatic rings A and B and the HB acceptor sites, naturally forms 
–bond–hydrogen bond– –bond ( –HB– ) interactions, which supports the speculation of Suzuki’s 

[24] that –HB–  interactions are requisite features for P–gp inhibitors. They studied the 
modulating activity of quinolines, a kind of P–gp inhibitors with a hydrophobic moiety composed 
of two separated aryl rings linked only by one C–C single bond in structure, and found that the 
presence and deviation of the two aryl rings from planarity in the hydrophobic moiety is essential 
for effective reversal of tumor cell MDR. Because in their experiments quinolines with two phenyl 
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rings, each of which deviated greatly from planar (e.g., by 80°, 56° or 43°), demonstrated greater 
activity than more nearly planar configurations (e.g., by 1° or 5°), due to the role of the –HB–
interactions produced between the HB donors of P–gp (set between the two separated aryl rings) 
and the hydrophobic moieties. Besides, though we don’t know if the binding mechanism of 
quinolines is the same as that of flavones with P–gp due to lack of related information, our model is 
close to theirs in the distance constraints of pharmacophoric features. In our model the distances 
between each centroid of the phenyl ring and one HB acceptor site of AA2 are about 3.71 and 6.14 
Å respectively. Thus the distance between the hydrophobic moiety (the midpoint between ring A 
and ring B centers) and AA2 is approximately 5 Å, which is consistent with Suzuki’s conclusion 
that the distance between the HB acceptor and hydrophobic moieties is at least about 5 Å required 
for P–gp inhibitors of high activity. We therefore assume that the pharmacophore features presented 
by our model are necessary for general P–gp modulators. However due to the difference of 
quinolines and flavones, our model has another HB acceptor site which remains further study. 

About the research on P–gp binding sites, recently Ekins and Pajeva independently proposed two 
pharmacophore models for the verapamil binding site using diverse sets of inhibitors. Despite that 
the verapamil binding site is possibly independent of the NBD2 site, we compared our results with 
theirs. Ekins [23] suggested the presence of at least four distinct groupings of features composed of 
two hydrophobic domains at the extremes of the figure, along with one HB acceptor and one ring 
aromatic feature both near one of the hydrophobic domains are necessary for P–gp recognition. Our 
model agrees with Ekins’ on emphasizing the importance of the hydrophobic regions and HB 
acceptor points as necessary elements for P–gp–inhibitor interaction. However, the two 
pharmacophores are different in the inter–site distances of pharmacophoric points. Pajeva [20] put 
forward another pharmacophore that is composed of two hydrophobic centers H1 and H2 around the 
centers of the aromatic rings, three HB acceptors A1, A2, AD, and one HB donor points DA. This 
model agrees with ours in two hydrophobic regions and two hydrogen acceptor atoms. Whereas, the 
two models are also different in both the number of HB acceptor atoms and inter–site distances. 
Though to date we are still lack of sufficient information about the 3D–structure of NBD site, our 
model together with the ones mentioned above, to some extent, indicate that the three 
pharmacophoric features of two hydrophobic regions and one HB acceptor atom are the basic 
structural features for general P–gp inhibitor. And the closer a new flavone molecule met with our 
model, the greater the possibility it has to be a potent P–gp inhibitor. 

3.2 CoMFA Studies
A common limitation to pharmacophore model is its failure to report on steric and electrostatic 

functionalities that result in short and long range ligand–protein interactions respectively. This 
limitation also exists in several computation methods commonly used in QSAR studies. Based on a 
Bayesian–regularized neural network (BRNN), Wang et al. [25] successfully built a model 
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correlating the inhibitory activities of flavonoids with their structures with high predictability. For 
comparison, they also built another model based on back–propagation neural network (BPNN). 
These models are very helpful for screening novel flavonoid P–gp inhibitors. Whereas, both 
BRNN– and BPNN–derived models are invisible, actually, they are “black boxes” which are 
difficult in demonstrating the specific 3D–distributions of the molecular descriptors. The 
application of CoMFA and its derived form, the comparative molecular similarity indices analysis 
(CoMSIA) techniques in QSAR studies, however, have achieved success in overcoming this 
limitation and are more intuitively helpful for chemists to understand the SAR of modulators, such 
as the pharmacophore feature model built for propafenone–type MDR–modulators [26] and the 
SAR studies of dihydro– –agarofuran sesquiterpenes as P–gp inhibitors [27]. Therefore, we 
extended our model by correlating variability in binding affinity to variations in molecular structure 
by implementing CoMFA techniques. 

Figure 3. Stereoview of the flavone inhibitors superimposed. 

Based on proper superimposition of flavones (Figure 3) three models with steric descriptors, 
electrostatic descriptors and CoMFA standard (std) (including both steric and electrostatic) 
descriptors were generated respectively. The statistical results are that for the steric model cross–
validated Q2 = 0.764, non–cross–validated R2 = 0.951, SEE = 0.200 and F = 97.586, for the 
electrostatic model Q2 = 0.789, R2 = 0.987, SEE = 0.105 and F = 291.573, and for the std model Q2

= 0.716, R2 = 0.980, SEE = 0.131 and F = 188.133 were obtained respectively, indicating strong 
relationship between the flavone structure and inhibitory activity. The predictivity of the models 
was also proven when they were validated by the test set, where the steric, the electrostatic and the 
std models achieved an SEP of 0.354, 0.299 and 0.242 respectively. Table 1 shows the actual, 
calculated and residual pKD values of these models. 
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To compare the individual influences of steric and electrostatic fields on P–gp–flavone 
interactions, the CoMFA std model was studied in detail. Figure 4 shows the actual vs. calculated 
inhibitory activities scatter graph (pKD values) of this model. 

Table 1. The Actual, Calculated and Residual pKD Values of CoMFA Models 
pKD

Std model Steric model Electrostatic model No Flavone
KD×106

(mol/l) Actual
Calc. Res. Calc. Res. Calc. Res. 

1 7–OH–flavone 34.9 4.457 4.776 –0.319 4.936 –0.479 4.629 –0.172 
2 Chrysin 8.9 5.051 5.001 0.050 4.999 0.052 4.997 0.054 
3 6–Methyl–chrysin 3.1 5.509 5.264 0.245 5.233 0.276 5.300 0.209 
4 Tectochrysin 6.3 5.201 5.212 –0.011 5.414 –0.213 5.580 –0.379 
5 Apigenin 10.1 4.996 4.917 0.079 5.082 –0.086 4.810 0.186 
6 3',4'–Difluoro–chrysin 6.3 5.201 5.120 0.081 4.875 0.326 5.218 –0.017 
7 4'–Iodo–chrysin 2.2 5.658 5.827 –0.169 5.725 –0.067 5.774 –0.116 
8 7–O–Isopropyl–chrysin 1.3 5.886 5.837 0.049 5.719 0.167 5.845 0.041 
9 6–Benzyl–chrysin 0.34 6.469 6.597 –0.128 6.754 –0.285 6.502 –0.033 

10 8–Benzyl–chrysin 0.99 6.004 6.435 –0.431 6.518 –0.514 6.277 –0.273 
11 6–Prenyl–chrysin 0.30 6.523 6.406 0.117 6.477 0.046 6.637 –0.114 
12 8–DMA–chrysin 0.20 6.699 6.606 0.093 6.529 0.170 6.673 0.026 
13 8–Prenyl–chrysin 0.28 6.553 6.457 0.096 6.543 0.010 6.501 0.052 
14 6–Geranyl–chrysin 0.045 7.347 7.322 0.025 7.467 –0.120 7.223 0.124 
15 8–Geranyl–chrysin 0.025 7.602 7.603 –0.001 7.429 0.173 7.622 –0.020 
16 8–DMA–apigenin 0.7 6.155 6.192 –0.037 6.089 0.066 6.163 –0.008 
17 3–OH–flavone 10.1 4.996 5.115 –0.119 5.149 –0.153 5.030 –0.034 
18 Galangin 5.3 5.276 5.393 –0.117 5.355 –0.079 5.236 0.040 
19 Kaempferol 6.7 5.174 5.024 0.150 5.145 0.029 4.994 0.180 
20 Kaempferide 4.5 5.347 5.376 –0.029 5.454 –0.107 5.393 –0.046 
21 Quercetin 7.0 5.155 5.198 –0.043 5.040 0.115 5.171 –0.016 
22 8–DMA–kaempferide 0.20 6.699 6.792 –0.093 6.727 –0.028 6.794 –0.095 
23 8–DMA–galangin 0.45 6.347 6.376 –0.029 6.126 0.221 6.295 0.052 
24 6–Prenyl–galangin 0.21 6.678 6.702 –0.024 6.721 –0.043 6.587 0.091 
25 8–Prenyl–galangin 0.22 6.658 6.596 0.062 6.717 –0.059 6.647 0.011 
26 4'–Fluoro–galangin 6.8 5.167 5.266 –0.099 5.136 0.031 5.333 –0.166 
27 2',4'–Dichloro–galangin 4.0 5.398 5.238 0.160 5.073 0.325 5.448 –0.050 
28 4'–Iodo–galangin 1.1 5.959 5.811 0.148 5.534 0.425 5.859 0.100 
29 4'–n–C8H17–galangin 0.06 7.222 6.847 0.375 6.664 0.558 7.821 –0.599 
30 3–Methyl–galangin 8.9 5.051 4.930 0.121 5.240 –0.189 5.073 –0.022 
31 8–DMA,3,7–dimethyl–galangin 0.15 6.824 6.920 –0.096 6.808 0.016 6.842 –0.018 
32 6,7–Dimethyl–chrysin 1.3 5.886 5.884 0.002 5.967 –0.081 5.913 –0.027 

The relative field contributions in the CoMFA models are shown in Table 2. Clearly, a common 
tendency could be observed that the hydrophobicity of flavones does contribute to their interaction 
with P–gp, with LogP accounts for no less than 23.5% in all models (23.5%, 35.0% and 24.4% for 
steric, electrostatic and std models respectively). The importance of hydrophobicity to flavone 
inhibitors can be clearly demonstrated by the fact that the chrysin analogs with geranyl substituents 
(the logP of geranyl is about 2.538 (data not shown, which was calculated based on the number and 
nature of fragments) are more active than those with prenyl ones (the logP of prenyl is about 1.444, 
data not shown) in the dataset. Comte et al. [28] also demonstrated that the increase of 
hydrophobicity of chrysin by alkylation of certain substituents was correlated with an increase in 
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affinity for in vitro binding to P–gp cytosolic domain. Table 2 also indicates the greater influence of 
the steric field than electrostatic field according to their contributions in the CoMFA std model 
(43.0% : 32.6%). 
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Figure 4. Scatter graph of actual versus calculated pKD values in CoMFA std model. : training set molecules; : test set molecules. 

Table 2. Relative Field Contribution of CoMFA Models. 
Relative contributions CoMFA  

descriptors Steric field Electrostatic field LogP 
Steric 76.5% – 23.5% 
Electrostatic – 65.0% 35.0% 
Std 43.0% 32.6% 24.4% 

Figure 5 depicts the steric and electrostatic (transparent) contour maps based on the CoMFA std 
model. In expression for steric interaction, the green and yellow contours describe the favorable and 
unfavorable bulk groups, respectively. Sterically favored green regions are found near the C–8 and 
C–6 positions of ring A, where all active compounds have geranyl, prenyl or DMA (dimethylallyl) 
substituents. The region near the C–4' of ring B is also sterically favored, which agrees with the fact 
that the activity sequence: compounds no. 29 > 28 > 26 corresponds to the size sequence of 
substituents at C–4': C8H17 > I > F. Sterically unfavored yellow regions occupy almost all of the 
molecular regions, especially covering both the up and down sides of rings A and B which can be 
explained by the –  conjugation effects above and below the two rings make the flavones a stable 
hydrophobic structure. It can also be seen from Figure 5 that the only regions which seem not very 
sensitive to the impact of any steric hindrances might be around ring C and part of ring A, which 
remains to be studied further. 
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Figure 5. The steric and electrostatic contour plots of CoMFA std model. Green contours indicate regions 
where bulky groups increase activity, whereas yellow contours indicate regions where bulky groups decrease 
activity. Blue contours indicate regions where positive–charged groups increase activity, whereas red 
contours indicate regions where negative–charged groups increase activity. 

In expression for electrostatic interaction, the blue contours indicate regions where positive–
charged groups increase activity and red contours indicate regions where negative–charged groups 
increase activity. In Figure 5, negative charge favored red regions were found near the carbonyl 
oxygen atom (of the C–4) which is a pharmacophoric point, and the C–5 where all active flavones 
contain an electronegative oxygen atom in the form of a hydroxyl group. Electrostatically favored 
blue or red regions are also found near the C–3, 6 and 7, indicating that these regions are very 
sensitive to electrostatic groups. In addition, an extra negative charge favored area is observed 
occupying the C–4', which supports the fact that 8–DMA–kaempferol exhibits more activity than its 
unsubstituted analogue 8–DMA–galangin. 

4 CONCLUSIONS 

Our work provided a detailed QSAR study on flavone inhibitors specifically binding to the 
NBD2 site of P–gp from 3D spaces. The pharmacophore model including two hydrophobic center 
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sites and one HB acceptor site constitutes the requisite structural criteria for flavone modulators. 
The CoMFA models with proper predictability further present chemically intuitive representations 
of the spatial characteristics of the molecules. All these models have extended the understanding of 
flavone structure–activity relationship, and are useful for rational design and screening of novel 
flavone–based P–gp inhibitors. 
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