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Abstract 

Motivation. The relaxation behavior of dielectrics in time dependent external electric and magnetic fields plays 
an important role in the determination and understanding of chemical structures. For example, NMR often 
requires the evaluation of spectral densities to determine relaxation parameters. Traditionally, spectral densities 
are represented by semi–infinite integrals with oscillatory integrands. Special algorithms are needed to compute 
these accurately, and this affects evaluation of all related properties. A new procedure is presented in this paper 
for the fast and accurate calculation of the spectral densities that involve the Kohlrausch/Williams–Watts decay 
function. Comparisons with previously published benchmarks show that our procedure is numerically stable and 
can be used safely for a wide range of parameters. 
Method. NMR spectral densities obtained using the Kohlrausch/Williams–Watts decay function is usually 
represented by a semi–infinite integral containing an oscillating integrand. For certain values of the parameters, 
these oscillations for certain parameters are very strong and pose challenging difficulties from a practical point 
of view since classical integration techniques are usually unable to interpolate accurately the integrand. In this 
investigation, we propose to evaluate the spectral densities of interest by means of an infinite series which is 
obtained from the initial integral representation. However, based on two theoretical results, our series are shown 
to converge logarithmically which makes direct summation techniques extremely costly. To circumvent this 
difficulty we apply Wynn’s epsilon algorithm to accelerate the convergence of the infinite series hence allowing 
an efficient numerical procedure to be obtained. 
Results. Thorough comparisons with previously published data by Dishon et al. (J. Res. Natl. Bur. Stand. 1985,
90, 27–39) are carried. Selected numerical data are presented in several tables showing the agreement of our 
calculations with those in the literature. In addition, the result of a large scale comparison is provided as a gray 
level image in which the axes represent typical values of some parameters (used in practice) while the gray level 
provides the number of exact digits. 
Conclusions. It is shown that the procedure developed in this paper allows spectral densities to be accurately 
computed accurately. Thorough comparisons with previous work show the stability of the numerical approach. 
In addition, the proposed algorithm is very general and is therefore useable for a wide range of parameters that 
are needed in practice. 
Keywords. Kohlraush/Williams–Watts decay function; NMR spectral densities; oscillating integrands; 
logarithmic convergence; convergence accelerators; epsilon algorithm. 
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1 INTRODUCTION 

In the past few years, numerous papers in which Kohlrausch/Williams–Watts, abbreviated to 
KWW, decay function was used to model experimental data [1–4] have reinforced the status of this 
function as a valuable tool for experimentalists. When the literature is examined, one finds that 
generally speaking, KWW function is often used in connection with modeling relaxation 
phenomena. And because the latter occurs in many areas of engineering and applied sciences, e.g.
dielectrics, nuclear magnetic resonance, polymer dynamics, semi–conductors, KWW function 
became one of the most commonly used models for fitting experimental data, hence allowing 
experimentalists to extract relaxation parameters. In a recent review paper by Anderssen et al. [5], 
the properties of KWW function were extensively discussed and a few applications related to visco–
elasticity and polymer dynamics were presented. 

The spectral density, )(J , arises in the field of NMR and dielectrics in connection with 

relaxation phenomena. In this paper we develop a new procedure geared towards an efficient 
evaluation of )(J in which the correlation term is approximated by the so–called KWW decay 

function also known as the stretched exponential. This adds to the arsenal of tools available in the 
literature, namely the numerical algorithm of Weiss et al. [7]. In the original work of Weiss et al.,
the authors expanded the integral of interest as an infinite series whose summation was then 
accelerated by means of the so–called Aitken 2  non–linear sequence transformation [8]. The 
Aitken transformation is certainly a good starting point when dealing with convergence acceleration 
of infinite series but in the past decades tremendous progress was made in this field [8–10] which 
led to numerical procedures far better than Aitken’s. It must be emphasized that one such 
procedure, also known to be amongst the most versatile and general purpose, was obtained by 
Wynn who referred to it as the epsilon ( ) algorithm [11]. Incidentally, Aitken’s 2  procedure can 
be obtained as a special case of Wynn’s. 

2 MATHEMATICAL PRELIMINARIES 

When dealing with NMR experimental data, one is usually required to compute few parameters 
characterizing the relaxation of the sample under study. Quantum mechanically, such parameters 
can be computed using a numerical procedure involving a quantity known as the spectral density 
[12],

0

)()()exp()()j( iKJdttitG (1)

where G(t) is the auto–correlation function. In the context of a macroscopic study of the spin 
relaxation behavior of a sample material subjected to a time varying magnetic field, experience has 
shown that the KWW function ])/(exp[)( tt  is probably the most adequate analytical form 
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allowing a good description of the correlation. As a consequence, replacing the correlation 
function )(tG in Eq. (1) by )(t yields,

)()()( zVzQj (2)

where z and:

0

0

)sin()exp()(

)cos()exp()(

duzuuzV

duzuuzQ
(3)

Note, that the above definitions of )(zQ and )(zV  were previously derived by Dishon et al.
[6]. In what follows, we focus on the function )(zQ , also known as the Lévy law density [5]. Of 
course, the procedure developed for )(zQ , can equally be applied to )(zV without any further 

modifications.

2.1 Evaluation by Means of Infinite Series Expansion
The difficulty in computing the functions )(zQ  and )(zV stems from the fact that the 

integrands are highly oscillatory for large values of z. Consequently, classical numerical integration 
techniques, such as Gauss–Laguerre or a combination of Gauss–Legendre and Gauss–Laguerre, are 
likely to fail since the interpolation polynomials cannot fully capture the extreme oscillatory nature 
of the integrand. To circumvent this shortcoming, we first start by expanding the function )(zQ as 

infinite series. However, instead of expanding some (or all) terms occurring in the integrand as in 
Ref. [7], we rather express the integration range as a sequence of adjacent and finite sub–intervals.
The upper and lower boundaries of each of these sub–intervals are chosen to be consecutive roots of 
the function )cos( uz . After some straightforward algebra we can finally write, 

duuzuduuzuzQ
n

zn

zn

)cos()exp()cos()exp()(
0

2

0 0

)2/()32(

)2/()12(

(4)

In previous work Weiss et al. [7] proposed a series expansion of )(zQ , obtained by expanding 

the exponential term and integrating term by term. The resulting infinite series written as, 

2
sin

!
]1[)1(1)( 1

1

1 n
zn

nzQ n
n

n with 10 (5)

converges for values of 10 . In the above expansion, because the parameter z appears in the 
denominator, the numerical algorithm based on Eq. (5) is likely to suffer from numerical 
instabilities for small values of the z. To circumvent this difficulty the authors proposed another 
series expansion, which although formally divergent is semi–convergent in practice and very useful 
for small values of z,
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The aim of the present work is to obtain a numerical algorithm that unifies the evaluation of the 
function )(zQ and this regardless of the magnitude of the parameters  and z. Indeed, from Eq. (4) 

it can be seen readily that the same formulation can be used for any set of parameters 0 and z.
To make the far right side of Eq. (4) slightly simpler, we introduce a new variable 

)2( znux allowing the expansion of )(zQ to be re–written as: 

2/

0

)()(

0

)2/(3

)2/(

122
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exp)1()cos(exp)(

zUzU

n

z

z

n

nn

dxzx
z

nxduzuuzQ
(7)

As can be seen, the infinite summation in the above expansion can be expressed as a difference 
of two subsequences )(2 zU n and )(12 zU n of positive terms. For numerical stability (and especially 
when the terms to be summed are small), it is advisable to evaluate )(2 zU n and )(12 zU n  separately 
before performing the subtraction leading to the numerical value of )(zQ . Since efficiency is the 

focus of this work, it is important to analyze the convergence of the series given in Eq. (7) in order 
to provide a theoretical ground justifying the necessity of using a convergence accelerator. 

To shed some light on this issue, let’s start by recapping two principal results regarding the 
convergence of a sequence of numbers, 

(1) Let S be a sequence such that 
sS
sS

n

n

n

1lim , where n

k kn aS
0

stands for the thn partial 

sum of the sequence whose limit is s. According to Wimp [9], the series converges linearly if 
1and logarithmically if 1. From a practical point of view, a linearly converging series 

can generally be evaluated using a brute force algorithm in which terms of the series are added 
until a pre–defined accuracy threshold is reached. Although, this is not necessarily the best 
procedure to perform the summation, the computational time required by this procedure may 
nonetheless be within reasonable bounds. However, in the case of logarithmically converging 
series, it is extremely hard, if possible in practice, for brute force procedures to achieve 
acceptable accuracy. Perhaps the most widely cited example in this category is the Riemann 
function )1(  that after summing a million terms yields 14.3927, giving a false sense of 
convergence. Of course, based on theoretical considerations, the function )1(  is known to 

diverge. As a consequence, for such extremely slow diverging (or converging) series, 
convergence accelerators become one of the most useful, if not necessary, tools for carrying out 
the summation efficiently. 

(2) For practical purposes, the definition above cannot be applied straightforwardly to determine 
the type of convergence of the sequence S since it requires the knowledge of the limit s. Luckily 
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numerous theorems are available that simplify the experimental work. These include two 
theorems due to Clark, Gray and Adams [14] that state the following, 

Theorem 1 [Clark, Gray and Adams] [14] 

Let .1 nnn aaR If na is of constant sign and,

sSnn
lim  and RRnn

lim then R
Ss

Ss

n

n

n

1lim

More explicitly,

n

n

n

nk
k

nk
k

n a
a

a

a
1

1

2 limlim

Theorem 2 [Clark, Gray and Adams] [14]

Let nnn aaR 1 and n
n

n ca )1( , where 01nn cc .

 If 1lim RRnn
then R

Ss
Ss

n

n

n

1lim .

Moreover, if 1R and 1
1

1
lim 1

n

n

n R
R

, then the above result holds.

Since the infinite expansion in Eq. (7) fits the description of the sequence considered in Theorem 
2, i.e. n

n
n ca )1( , let us show that the terms nc  satisfy the condition 01nn cc . In fact, this is 

true since over the range )2/(3),2/( zz ,

(1) The integrand )cos()2/(exp zxznx is always positive and greater than 0. 

(2) The function )cos()2/(exp)cos()2/(exp 21 zxznxzxznx  for any 1n
and 2n such that 21 nn .

This clearly proves that the first two conditions of Theorem 2 are fully satisfied. Note that for the 
rest of the proof, we do not necessarily need to include the negative sign in the asymptotic 
expansions since what matters is the ratio of the terms of the expansion. 

In order to apply the results of Theorem 2 to the series expansion given by Eq. (7), we proceed to 
obtain the general asymptotic expression of the integral over )]2/(3),2/([ zz  which will be 
referred to as ),( zI n . Using the approximation 11 , for small values of , we can 

finally write, 
)2/(3

)2/(

1

)cos(
2
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2
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z

z

n
n dxzxx

z
n

z
nzI (8)
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where the notation )(~)( ngnf  means that )(ng  is equivalent to )(nf  for large values of the 

parameter n. Performing the integration (using a simple integration by part) we obtain the 

following, 
11

12 2
exp1

22
exp

)2/()(
)1(~),(

z
n

zz
n

z
n

znz
zzI

n

n (9)

At this point, let us compute the ratio ),(),(1 zIzIR nnn as needed by Theorem 2. In fact, 

when the above expression is examined, one can notice that two separate cases, corresponding to 
1and 1, need to be studied. The case for which 1 is not considered in the following 

analysis since the integral in Eq. (4) can be evaluated analytically. For the computation of nn
Rlim , it 

can easily be shown that the limits of two terms is constant regardless of the value of ,

1
)2/()1(

)2/()(lim 212

212

znz

znz
n

 and 1
)2/()(/)(exp1

)2/()1(/)(exp1lim 1

1

znz
znz

n
(10)

During the calculation of the limit of nR , as required by Theorem 2, the terms given above can be 

ignored, hence leaving only the following, 

1
1

1

)2/(explim
)2/()2/()(exp

)2/()1()2/()1(explimlim nz
znzn

znznR
nnnn

(11)

Clearly, for 1, 0lim nn
R  which according to Theorem 2 and the introductory remarks given 

above (after Eq. (7)), proves that the series given in Eq. (7) converges linearly. However, for 1,
we have 1lim nn

R . In this case, Theorem 2 states that extra work is required in order to make a 

final decision. Starting from Eq. (8) the ratio nR can be written asymptotically as following: 

2121
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Using the above asymptotic expansion we can calculate the limit: 

1/11
1)1/(11111lim

)1(
)1()2(lim

1
1

lim 1
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The rightmost ratio occurring in the above equation can be shown to be asymptotically 
equivalent to )1/(nn . Therefore, we can write: 
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1
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11lim
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1
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(14)

The calculated limit fits the requirement of the second part of Theorem 2. As a consequence, we 
can conclude that for 1the infinite series in Eq. (7) has a logarithmic convergence and this 
constitute a compelling reason for using a convergence accelerator to speed up the summation 
process.

The approach developed above can also be applied to prove, based on Theorem 1, that the 
subsequences )(2 zU n and )(12 zU n converge linearly for 1and logarithmically when 1. In 
other words, for 1 the convergence of both series )(2 zU n and )(12 zU n is expected to 

increasingly deteriorate as moves away from 1 towards 0. 

3 RESULTS AND DISCUSSION 

At this point, it worth emphasizing that the series expansion given by Eq. (5), originally obtained 
by Weiss et al. [7], becomes highly unstable for intermediate values of  and z approaching 0. A 
visual illustration of this difficulty is provided by Figure 1 in which we have plotted the values of z
below which Eq. (5) becomes numerically inaccurate. 

Figure 1. Smallest value of z at which a quadruple precision representation 
of the series (5) becomes numerically stable. 

It is important to understand that such inaccuracies result from the fact that some of the terms in 
Eq. (5) are so large that their representation (even in quadruple precision) becomes very 
questionable. This is illustrated in Table 1 in which we have listed some values showing the 
increase in magnitude of the terms of Eq. (5) as a function of the parameters  and z .
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Table 1. Selected terms from the series (5) for special values of and z. Numbers in parentheses denote powers of 10. 
n  = 0.7, z = 0.1  = 0.8, z = 0.1  = 0.9, z = 0.1 
1 4.05762707504030996940(01) 5.58901135278897660070(01) 7.54552167791987681270(01) 

11 –1.21572386917817723210(05) 3.48456704737518832430(07) 8.93329649127300387180(08) 
21 –5.03712952431457129190(07) 2.35944365366829821050(12) –1.38827001254994818550(17) 
31 1.22461181160589835300(09) 5.92731637245849240470(16) –3.29640872515700556710(23) 
41 4.28255169457987741110(10) 7.72166009659665693290(20) 2.24688795443089074920(31) 
51 –1.85687129482744724810(11) 6.14593703686924384740(24) 3.00301625859414043780(37) 
61 –1.71562952429965891540(12) 3.29655021749892924710(28) –1.31342481142038702730(45) 
71 2.51105636854255890480(12) 1.27204683583812823050(32) –1.22225896347704901600(51) 
81 9.26510206505249432890(12) 3.70004900607748196860(35) 3.93664646805022690400(58) 
91 –6.12238620178277251930(12) 8.40249044573847336010(38) 2.81036367413132963280(64) 

101 –1.11995371933538248570(13) 1.53097688296965975770(42) –7.16396566480630114630(71) 

To make things worse, the values of )(zQ as given by Eq. (5) require subtracting such large 

terms making the summation procedure highly unstable in some cases. Maple, Mathematica and 
other symbolic algebra systems support unrestricted precision arithmetic that provides numerical 
tables for use as benchmarks. The precision that is needed in the body of the calculation of the 
functions )(zQ and )(zV can be very high. Indeed, using )(9.0 zQ , computed by means of the 

series (5), as a case study, we have gathered in Table 2 the parameters illustrating the need for an 
extended precision. Successive columns contain, 

(1) z, the value of the argument in )(9.0 zQ

(2) P, the precision that was specified in Maple for the calculation of intermediate results. 

(3) N, the number of terms that were summed before convergence is achieved (for the first four 
cases).

(4) maxT , the largest term involved in the computation of )(9.0 zQ  by means of the series 

expansion (5). 

Table 2. Number of exact digits requested from Maple for an accurate evaluation 
of Q0.9(z) using Eq. (5). Numbers in parentheses denote powers of 10. 

z P N Tmax

0.50 20 667 7.71580099734361515220(08) 
0.45 40 1387 3.62764041426130157368(22) 
0.40 80 4147 3.61556432108705841037(64) 
0.35 300 13498 8.15817918733981458525(213) 
0.30 500 44527 2.09785217744968958974(855) 

The last line in Table 2 shows that even after summing 44527 terms, represented accurately 
using an extremely extended accuracy (500–digits), it was impossible to obtain the exact value of 

)3.0(9.0Q . Indeed, in the fourth column it can clearly be seen that the largest term involved in the 

summation process requires (in the worst case, i.e. if there is no repeating sequence) 855 digits to be 
accurately represented. 

Clearly, as z decreases towards 0, the precision provided by Maple must be increased to ensure a 
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proper representation of the terms of the series, hence allowing an accurate of )(9.0 zQ . However, 

extending the number of exact digits comes with a substantial penalty in terms of computational 
time which can go from few minutes to hours in some cases. To circumvent, the abovementioned 
difficulties, Weiss et al introduced a semi–convergent series (6) useful for computing the values of 

)(zQ and )(zV for small values of z .

An interesting alternative to the series presented in Ref. [7] is our series expansion (7) the use of 
which leads to a unified algorithm (working for arbitrary values of z and 0 ) that can be used for 
the evaluation of )(zQ and )(zV . For numerical efficiency and since we have shown above that 
the auxiliary series of interest including )(2 zU n and )(12 zU n converge logarithmically as  gets 

closer to 0. In such particular cases a direct summation becomes too costly and this becomes a 
compelling reason to rely on convergence accelerating technique to speed up the numerical 
procedure. Note, that in their previous work, Weiss et al. used the Euler transformation to enhance 
the convergence of summation procedure based on Eq. (6). In this respect, it should be mentioned 
that although the findings of the authors confirm the practical usefulness of the Euler 
transformation, the pattern of the terms of the series (6) is not very regular (i.e., strictly monotonic 
or oscillating). This fact is of importance, since generally speaking convergence accelerators 
perform better on monotonous or oscillating series for which a good deal of results is available in 
the literature [13,15]. 

Accordingly, there may be some advantage in using the series proposed in this work. Indeed, it 
was found that for ]1,0( and 2500001.0 z , the application of the Wynn's algorithm to the 
first 20 partial sums of the auxiliary series )(2 zU n  and )(12 zU n (as defined in Eq. (7)) yields (at 

least) an accuracy comparable to the benchmarks published in [1], i.e. 6 digit precision. 

Table 3. Accuracy of the series (7) developed in this work as compared to the values in Ref. [1]. Numbers in 
parentheses denote powers of 10. 

z Q0.5(z) a Q0.5(z) b Q0.7(z) a Q0.7(z) b Q1.0(z) a Q1.0(z) b

0.001 0.636582 0.636582 0.402922 0.402922 0.318310 0.318310 
0.002 0.636467 0.636467 0.402916 0.402916 0.318309 0.318309 
0.003 0.636277 0.636277 0.402906 0.402906 0.318307 0.318307 
0.004 0.636011 0.636011 0.402893 0.402893 0.318305 0.318305 
0.005 0.635671 0.635671 0.402875 0.402875 0.318302 0.318302 

0.1 0.476436 0.476436 0.384759 0.384759 0.315158 0.315158 
0.5 0.170762 0.170762 0.220440 0.220440 0.254648 0.254648 

1 0.861071(–1) 0.861071(–1) 0.117027 0.117027 0.159155 0.159155 
5 0.123487(–1) 0.123487(–1) 0.133356(–1) 0.133356(–1) 0.122427(–1) 0.122427(–1) 

10 0.487226(–2) 0.487226(–1) 0.449934(–2) 0.449934(–2) 0.315158(–2) 0.315158(–2) 
50 0.503342(–3) 0.503342(–3) 0.319872(–3) 0.319871(–3) 0.127273(–3) 0.127273(–3) 

100 0.184054(–3) 0.184054(–3) 0.100049(–3) 0.100049(–3) 0.318278(–4) 0.318278(–4) 
500 0.172135(–4) 0.172135(–4) 0.659746(–5) 0.657745(–5) 0.127323(–5) 0.127323(–5) 

1000 0.615026(–5) 0.615025(–5) 0.203692(–5) 0.203692(–5) 0.318310(–6) 0.318310(–6) 
2500 0.157046(–5) 0.157046(–5) 0.430026(–6) 0.430026(–6) 0.509296(–7) 0.509296(–7) 

a Values obtained after applying Wynn’s  algorithm to the first 20 sums calculated using Eq. (7). 
b Benchmark values extracted from the tables in Ref. [1]. 
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A sample of the results illustrating the accuracy and the usefulness of the approach described 
above are gathered in Table 3. A larger scale comparison is also provided in Figure 2 in which we 
represented the accuracy (number of digits achieved by expansion in Eq. (7)) as a gray scale image. 
The (X, Y) coordinates of each pixel in Figure 2 correspond to a pair of values ( z, ) as selected by 

Dishon et al. [6]. For this particular experiment, we have limited our comparisons to the values of 
 such that 10 which is the range that is mostly used in practice. 

Figure 2. Comparison of our values with those of Dishon et al. in Ref. [6]. The values of the parameters  and z
corresponding to the X and Y axes are such that: 10 and 2500001.0 z (c.f. Ref. [1]). White areas 
correspond to exact matches (6 digits), gray and dark pixels to 5 and 4 digits respectively. 

Although in most practical cases the value of the exponent lies within ]1,0( , it is of importance, at 

least from a mathematical perspective, to address the case where 1. Note that for 1, the 
functions )(zQ and )(zV can be evaluated by means of their closed analytical formulae, easily 

obtainable using integration by part, 

)1(
)(

)1(
1)(

21

21

z
zzV

z
zQ

(15)

As for 1, the approach presented above still applies. However, in this case, because the 
integrand )cos(/exp zxznx has a single peak within the range )2(3),2( zz  which 

becomes sharper as n increases, it is crucial to use a reliable algorithm to compute the partial sums. 
In this respect, it was found that for 2 , some numerical instabilities occur as soon as 10z . To 
understand the origin of this problem, we remind that our procedure is built as a two–component 
algorithm: evaluation of the partial sums which is carried out using a Gauss–Legendre Gauss 
numerical quadrature followed by the application of the convergence accelerator. To isolate the 
faulty component, we have thoroughly experimented with the case in which 2 and 25z .
Using Maple (with a 50–digit internal accuracy), we have generated the first 20 partial sums of 

)25(2nU and )25(12nU required by the Wynn’s algorithm. When proceeding as described, we 

were able to reproduce the result of Dishon et al. [6]. Clearly, it is the evaluation of the partial sums 
that were at the origin of the numerical instabilities and this is mainly due to the presence of a sharp 
peak in the integrand that makes low order Gauss–Legendre quadrature unable to capture accurately 
the shape of the integrand. To circumvent this difficulty we have selected an adaptive integration 
scheme. This algorithm proceeds by adjusting the number of points to be used during the 
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interpolation step based on the value of the derivative. As a consequence, in fast varying regions (as 
is the case in the close vicinity of the sharp peak), the magnitude of derivative increases drastically 
which hints the algorithm to use more points. 

4 CONCLUSIONS 

In this work, we have proposed an efficient numerical procedure that could be used to evaluate 
the NMR spectral densities using the KWW decay function. Using the integral representation of the 
quantities of interest as a starting point we derived a series representation which was shown to 
converge logarithmically. Because of this, use of convergence accelerating techniques is crucial. It 
was shown that our numerical values by applying Wynn’s  algorithm applied to the first 20 partial 
sums of the series in (7) are in agreement with those published in the literature. Our procedure 
provides a unified approach for the computation of the spectral densities regardless of the 
magnitude of the parameters. This is novel. This work can be viewed as an improvement to the 
procedure proposed by Weiss et al. [7] who had to use different series based on the parameters. 
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