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Abstract 

Motivation. Kohonen Self–Organizing Feature Map (SOM Kohonen map) is a technique used for pattern 
classification. The method can be applied to classify different classes of organic compounds based on 13C NMR 
chemical shift data. This can be a very useful tool in structure validation, which is one of the steps of automated 
structure elucidation process. In this paper we present the use of Kohonen ANN to predict and classify different 
skeletal types of diterpenes. 
Method. The Kohonen neural network was trained using Matlab version 6.5 with the package Somtoolbox 2.0. 
A total of 957 cases belonging to 12 different skeletal types of diterpenes were used to train the network. 
Results. During the training phase, 91.12% of the patterns were highly correctly classified, while for the testing 
phase, 75.22% of the input data were correctly classified by the Kohonen neural network. 
Conclusions. As demonstrated by these results, SOM Kohonen neural network can be a reliable tool to predict 
diterpene skeletal types from 13C NMR spectrum data. 
Keywords. Diterpenes; neural networks; Kohonen self–organizing feature map; structure elucidation. 

1 INTRODUCTION 

In natural products chemistry, NMR spectroscopy is one of the most important techniques 

available for structure determination of isolated compounds. Nevertheless, spectra interpretation is a 

task for a well–trained chemist and is a very time consuming step in the elucidation process. This 
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fact has inspired the development of expert systems for automatic structure elucidation [1–4]. Two 

revisions of expert systems in structural determination report the most important results of the area 

on these last years [5,6]. The computer–assisted methods on which these systems are based involve 

an artificial intelligence approach to structure elucidation. Problems can be efficiently be solved by 

the introduction of skeletal constraints that avoid combinatorial explosion to occur [7]. The first 

step during the interpretation of NMR data is to try to recognize the class the studied compound 

belongs to. We define here class as the major groups of secondary compounds as steroids, 

terpenoids, flavonoids, etc. The second step, used mainly in manual interpretation of spectra is the 

assignment of a skeletal type. Skeletons can be identified from 13C NMR [7], 1H NMR [8] or 

botanical data [9]. However, it is difficult to associate a spectral pattern to a group of substances of 

a same skeleton. The main reason for this is that the definition of skeletons or structure types is not 

standardized and the classification of skeletal types and subtypes goes beyond carbon connectivity 

and numbering. Thus, skeletons can be classified by configuration (E/Z, or R/S), ring junction 

geometry (clearodanes and cis–clerodanes), inversion of a sterogenic center (labdanes and ent–

labdanes) or even oxidation state changes. This leads to a great variety of skeletal and substructural 

types and even though they may cause variations in spectroscopy, it can be very hard to make a 

good identification of the compound skeletal type at a glance, since the appearance of spectra can 

be very similar for different skeletons. Due to this difficulty, a computer is a useful tool to solve this 

problem, as it can treat a large amount of data at the same time. 

Artificial neural networks (ANN) are one of the most used approaches to achieve computer 

classification and pattern recognition, since they are robust and able to detect groupings and 

patterns that may be unclear even by a trained human expert. Since ANNs are not restricted to linear 

correlations and can also take into account non–linear data correlations, they can be efficiently 

applied for modeling, prediction and classification. Hence, ANNs can be trained to aid the 

classification of compound skeleton types based on NMR data, since skeleton type identification is 

a pattern recognition and classification problem. 

The most used ANN architecture for pattern recognition and classification is the SOM [10]. A 

SOM can map multivariate data onto a two dimensional grid, grouping similar patterns near each 

other. Each neuron in the grid is associated to a weight and similar patterns stimulate neurons with 

similar weight, so that similar patterns are mapped near each other. In the field of natural product 

spectroscopy, supervised neural networks were used to classify oxidized terpenes (limonoids) [11]. 

Other specific applications of neural networks in 13C NMR are frequent [12–15]. Many efforts have 

been made towards classification 1H NMR data using SOMs, with success [16,17]. However, the 
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same did occur with 13C NMR data, as 13C NMR spectra provide much more information about the 

chemical structure than 1H NMR, classification of the former spectrum types is preferable than 

classification of the later type. 

Our research group has been developed an expert system named SISTEMAT to aid natural 

product chemists in structure determination [15] and chemotaxonomy [18] tasks. In our 

development of SISTEMAT, a Kohonen ANN was trained to automatically determine diterpene 

skeletal types from 13C NMR data. Diterpenes are one of the most widespread natural product class 

in the plant kingdom [19]. Many diterpenes present useful biological activities, such as 

antimicrobial [20] and anticancer [21]. This makes diterpenes a class of great interest for the 

pharmaceutical industries (Taxol [22], for example is a diterpene) and for researchers interested in 

new active compounds. Hence, SOM can be used to select compounds that may require further 

investigation, instead of performing detailed investigation on their spectroscopic data. 

2 MATERIALS AND METHODS 

All structure and 13C NMR data were extracted from the SISTEMAT database. An in–house 

program for data extraction was written in Java and subsequently used to select 2600 diterpene 

compounds. A computer worksheet was created, each line of which corresponds to a spectrum and 

contains the chemical shifts, multiplicities and carbon types as integers ranging from 1 to 11. The 

skeleton name each compound belongs to is also reported. Our definition of a skeleton is based on 

the connectivity between carbon atoms. However, the nature of some stereogenic centers is also 

considered as characteristic. The Figure 1 shows the skeletons we were interested in. The skeleton 

naming conventions follow the current usage that prevails in natural product journals. 

Table 1. Skeleton type selected for training 
ID Skeleton Name ID Skeleton Name 
1 12,13–sec–13–nor–totarane 7 clerodane
2 13–epi–rosane 8 ent–atisane
3 abietane 9 ent–labdane 
4 andromedane 10 phytane 
5 cembrane 11 isopimarane 
6 cyathane 12 labdane 

After data extraction, a Perl script [23] was run to build the training set. It retained 957 spectra of 

compounds belonging to 12 different skeletal types (Table 1). The script also checked whether each 

chemical shift value was compatible with the number of attached number of hydrogens and oxygen 

atoms and the aliphatic, olefinic, aromatic or acetylenic nature of the corresponding carbon atom, 

using appropriate chemical shifts range. Acetylenic carbons atoms (index 8 to 11) were not 
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considered as the corresponding molecules are under–represented within the database Code 10 

becomes 6 and 11 becomes 7. Only compounds with very high–quality spectroscopic data were 

selected for the training set. For the test set, 113 occurrences spectra were selected. Table 2 

describes the training and test set. A Kohonen ANN was then trained and tested for the recognition 

of diterpene types from 13C NMR spectra. 

3) ABIETANE

6) CYATHANE

1) 12, 13-SEC-13-NOR-TOTARANE

5) CEMBRANE

7) CLERODANE 8) ENT-ATISANE 9) ENT-LABDANE

10) PHYTANE 12) LABDANE11) ISOPIMARANE

4) ANDROMEDANE

2) 13-EPI-ROSANE

Figure 1. Examples of diterpenes skeletal types used to train the ANN. 
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Table 2. Summary of training and test set 
Diterpene types Training set Test set Total 
Name ID Train % total Test % total Total % total 
12,13–sec–13–nor–totarane 1 38 90.48 4 9.52 42 100.00 
13–epi–rosane 2 17 85.00 3 15.00 20 100.00 
abietane 3 94 91.26 9 8.74 103 100.00 
andromedane 4 28 77.78 8 22.22 36 100.00 
cembrane 5 150 92.59 12 7.41 162 100.00 
cyathane 6 12 80.00 3 20.00 15 100.00 
clerodane 7 186 89.86 21 10.14 207 100.00 
ent–atisane 8 29 82.86 6 17.14 35 100.00 
ent–labdane 9 47 92.16 4 7.84 51 100.00 
phytane 10 51 89.47 6 10.53 57 100.00 
isopimarane 11 97 90.65 10 9.35 107 100.00 
labdane 12 208 88.51 27 11.49 235 100.00 
Total  957 89.44 113 10.56 1070 100.00 

2.1 Neural Network Input Descriptors 
A worksheet containing 957 rows and 25 columns codifies the 957 diterpenes and their 

respective 13C NMR chemical shifts. In the last column we give the ID of the skeleton type 
corresponding to each diterpene, ID that serves only as a label for the SOM. The 13C NMR was 
coded from the first to the 25th column, 26th column with the skeleton ID. Each line of the 
worksheet contained 13C chemical shift for each compound. Another Perl script was used to create 
the input vector for the SOM training. For each compound, chemical shifts are grouped by carbon 
atom type, as defined in Table 3. Chemical shift values are sorted in ascending order within each 
group. Each carbon type is associated to a maximum number of retained chemical shifts (Table 3). 
If the number of shifts within a group is greater than the allowed maximum, the highest shift values 
are discarded. If the number of shifts within a group is smaller than the allowed maximum, fictitious 
shifts are added, whose value is first set as “missing”. According to Table 3, SOM input variables x1

to x4 correspond to chemical shifts of methyl group. If a compound has only three methyl groups, 
the value of x4, that is initially “missing” is finally replaced by the mean of all “non missing” x4

values. Of course the same processing is applied to all input variable values. 

Table 3. Diterpene carbon types and number of columns for each type in the input vector 
Carbon type 13C signal multiplicity # of columns 

–CH3 4 4 
–CH2– 3 6 
–CH– 2 4 
–C– 1 3 

=CH2 3 2 
=CH 2 3 
=C– 1 3 

The input vector structure was designed according to the frequency of each carbon type in 
diterpenes. For example, we found heuristically that the maximum number of carbon atoms 
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belonging to type 1 in diterpenes is 4, because a real structure often has functionalized positions. An 
overall number of 25 variables were found to be adequate for classification of diterpenes. Table 3 
summarizes each type of carbon and the respective number of columns in the worksheet. 

2.2 Neural Network Architecture 

A Kohonen ANN was trained using Matlab 6.5 computing environment by Mathworks [24] and 

SOM Toolbox [25]. Matlab is a powerful and easy to use scientific computing language and is the 

choice for most scientific simulation and data analysis. SOM Toolbox is a set of Matlab functions 

that can be used to develop and implement SOM neural networks. A SOM grid with square 

geometry and 31×20 dimension size was created and trained. The training was conducted through 

the Batch–training algorithm. In this algorithm, the whole dataset is presented to the network before 

any adjustment is made. In each training step, the dataset is partitioned according to the regions of 

the map weight vectors. After this, the weights are calculated as stated by Eq. (1): 
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where Xj is an input vector randomly chosen from the input dataset at time t, hic(t) is the 

neighborhood around the winner neuron and m is the i–th weight value. Within this algorithm, the 

new weight vector is simple averages. This feature allows missing values to be ignored by the net. 

The number of epochs is automatically chosen by the Toolbox, i.e., the neural network is trained 

until its convergence to minimal error. 

2.3 Computer Software and Hardware 
The neural network was trained on a Pentium IV HT 3.0 GHz with 1.0 GB of RAM running 

Windows XP. Matlab R13 (6.5) from Matworks Inc. The Self–Organizing Map Toolbox was 
employed to train the network. 

3 RESULTS AND DISCUSSION 

A summary of the obtained results are in Table 5. Figure 2 shows the obtained Kohonen map as 

clusters after training, while Figure 3 shows the same map in a PCA–like 3D fashion. In Figure 3, 

the data is projected according to the Euclidian distances among the clusters and contents of each 

neuron within the map. Table 5 presents the results of each classification both as absolute values 

and as percentages. The percentage representation is useful from an analytical perspective, since 

one error on a dataset of size 10 is much more significant than 4 errors on a dataset of size 50. 
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Figure 2. Kohonen map obtained after the training phase. The 
skeleton type and the respective color are shown in Table 4. 

Table 4. Types of skeletons and the respective colors of the regions on the Kohonen map in Figure 2 
ID Name Color 
1 12,13–sec–13–nor–totarane black 
2 13–epi–rosane gray 
3 abietane blue 
4 andromedane green 
5 cembrane yellow 
6 cyathane red 
7 clerodane orange 
8 ent–atisane brown 
9 ent–labdane purple 

10 phytane pink 
11 isopimarane dark green 
12 labdane cyan 

In order to test the ability of the network to generalize, the 113 test cases randomly selected from 
SISTEMAT’s database were applied to the trained network as new data, taking care that the test set 
contains representative samples of all trained skeletons. 

After training, the neural network was able to classify each skeletal type based on the 13C NMR 
of the compounds. During the training phase, 91.12% of the data set was successfully classified and 
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during the test phase 75.22% of the samples were correctly classified. Although the performance of 
the network during the test phase could be considered unsatisfactory by some chemometricians 
(only 75% accuracy), these results are still significant, considering the nature of the network 
(unsupervised) and the difficulty of differentiating diterpenoids types. 

Figure 3. 3D PCA–like projection of the Kohonen map after training. The distances among the clusters 
are easier to visualize in this mode. The skeleton type and the respective number are shown in Table 1. 

Tabel 5. Results obtained with test and training set 
 Traininig set Test set 

ID Match % Match % 
1 30 78.95 4 100.00 
2 14 82.35 3 100.00 
3 89 94.68 8 88.89 
4 24 85.71 5 62.50 
5 142 94.67 10 83.33 
6 12 100.00 2 66.67 
7 169 90.86 15 71.43 
8 27 93.10 5 83.33 
9 36 76.60 3 75.00 

10 40 78.43 4 66.67 
11 94 96.91 6 60.00 
12 195 93.75 20 74.07 

Total 872 91.12 85 75.22 

A detailed inspection of the Kohonen map shows that the neural network had correctly classified 
similar skeletons near each other similar and far from unrelated skeletons. An inspection of both 
maps clearly shows that the distribution of the diterpenes on the Kohonen map is influenced by the 
structural properties, which reflects on 13C NMR chemical shifts. The Kohonen map expresses this 
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fact without having knowledge about structural features of diterpenes, by placing diterpenes with 
similar structures in close vicinity on the map or even on the same neuron. 

Taking for example the percentage of success for very similar skeletons, such as ent–labdanes
(9) and labdanes (12) where the difference among skeletons is only the orientation of a methyl 
group attached to C–10, even with the lower accuracy of the neural network to classify ent–
labdanes, the performance of the neural network to classify it during the test set is as good as the 
overall performance of the net. It is also interesting to note that on the 3D projection, the distance 
between the neurons representing both skeletons is not high and in both diagrams, ent–labdane 
cluster is neighbor of isopimares (11), even though, structurally speaking, ent–labdanes is much 
more similar to labdanes. On the other hand, ent–labdanes are stereochemicaly similar to 
isopimaranes. Moreover, this means that the neural network is sensitive to minor variations in the 
spectral data, which reflects the structural feature and diversity in this specific case: a difference in 
stereochemistry. 

Another interesting feature of the maps is that skeletons that are similar from the biogenetic point 
of view form vicinal clusters. For example, the two simplest skeletons, from the biogenetic point of 
view, are the acyclic phytane (10) and cembrane (5). They appear as two neighbor clusters in the 
upper part of the map (Figure 2). 

In both map representations, the most disperse clusters are that of abietane (3, blue) and 
clerodane (7, orange). Even with the non–connectivity of both clusters, the accuracy of neural 
network to classify both skeletons is high for training set (90.86% for clerodanes, 94.68% for 
abietanes) and for the test set (71.43% for clerodanes, 88.89% for abietanes). It is remarkable to see 
that these skeletons are close to the clusters of cyclic skeletons [isopimarane (11), labdane (12), 
ent–labdane (9), 13–epi–rosane (2)] and share similar, but not identical, features with all these 
skeletons.

A noticeable feature is that although the accuracy for 12,13–sec–13–nor–totarane (1) and 13–
epi–rosane (2) during the training phase was low, they were the only two skeletons with 100% of 
match during the test phase. A careful look at both representation of SOM (2D and 3D PCA–like 
projection) shows that these skeletons are neighbors of skeletons that have some common features 
with them. 

Nevertheless, the unsupervised training is powerful enough to classify both skeletons, despite of 
the small number of spectra. In other words, the efficiency of the neural network to classify the 
skeleton type may depend on the number of occurrences of the skeleton present in the data set, but 
the relationship is not linear. Our SOM is able to detect features in a NMR spectrum that belong to a 
specific skeleton and to use this information to group clusters of a skeleton together or near a 
similar skeleton. 
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4 CONCLUSIONS 

Self–organizing feature maps can be a useful tool for structure elucidation process. The method 
can be a reliable tool to identify different types of skeletons with good accuracy. Hence, SOM can 
be used to choose spectra that may require further investigation. NMR spectra analysis is a 
laborious task and any system that may help the chemist in this task is welcomed. Analysis of 
spectra with the use of SOMs can also help the rapid classification of which compound that may 
require further investigation regarding biological activity or chemotaxonomy studies. 
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