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Abstract 

Motivation. The problem of the radial matrix elements in the infrared transition vJ v'J' of a diatomic molecule 
is considered. By using a new expansion in the perturbation theory of the eigenvalue and the eigenfunction of the 
two considered states in terms of the running number m we derived analytical expressions for the Herman–
Wallis coefficients of the rotational factor in the rovibrational matrix elements. The numerical application to the 
ground states of the molecule HCl shows that the present formulation provides a simple and accurate method for 
the calculation of the Herman–Wallis coefficients, even for the high order coefficients, without any restriction on 
the potential function, the operator f(r) and the vibrational levels v and v'. 
Method. The most important methods used in this investigation are the Rayleigh–Schrödinger perturbation 
theory and the canonical functions approach. 
Results. The main results reported in the paper are the determination of the Herman–Wallis coefficients. 
Conclusions. The method used for the determination of the Herman–Wallis coefficients in this work allows the 
calculation of these coefficients for any type of potential function and to any order of correction in the 
perturbation theory. 
Keywords. Herman–Wallis coefficients for infrared transitions. 

Abbreviations and notations 
CDC, centrifugal distortion constant RSPT, Rayleigh –Schrödinger perturbation theory 

1 INTRODUCTION 

For the infrared transitions vJ v'J' the radial matrix elements are defined by [1] 

0 'J'vvJ
'J'v

vJ dr)r()r(f)r(M (1)

where vJ is the rovibrational wavefunction, r is the internuclear distance, v and v' and J and J' are 
respectively, the vibrational and rotational quantum numbers of the lower and upper state, and f(r)
is a given operator. 
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Herman and Wallis [2] looked to simplify the problem of determination of the matrix elements 
(and then the line intensities) by defining the rotational factor in 'J'v

vJM  as: 

20'v
0v

'J'v
vJ

'J'v
vJ )M/M(F (2)

where 0'v
0vM  is the pure vibrational matrix element and by approximating this factor by using the m–

representation as: 

.....DmCm1F 2m'v
vm (3)

where the running number m = ((J’(J’+1)–J(J+1))/2 and C and D are the Herman Wallis 
coefficients [2]. In the conventional Rayleigh–Schrödinger perturbation theory (RSPT), the 
eigenvalue EvJ and the eigenfunction vJ of a rovibrational state vJ are expanded in terms of the 
integral number  as: 

...
4

v
L

3
v

H
2

v
D

v
B

v
E

v
E (4)

nfunction vJ of a rovibrational state vJ are expanded in terms of the integral number  as: 

where = J(J+1), Bv is the rotational constant, Dv, Hv, Lv, … are the centrifugal distortion constants 
(CDC). In the literature [3], the authors used this approach to find analytical expressions for the 
coefficients C and D; their calculations were limited to the second order of correction in Eq. (3) and 
to the Dunham potential because of the complexity in their mathematical expressions by passing 
from –representation for EvJ and vJ [Eqs. (4)–(5)] to m–representation for mv

vmF '  in the same 

perturbation theory, Eq. (2). This complexity may be removed by expanding the eigenvlue EvJ and 
the eigenfunction vJ in terms of the running number m. Recently [4] we presented respectively a 
m–representation for the eigenvalue and the eigenfunction for a given rovibrational state vJ as: 

0i

i
m

i
A

vm
E

0i

i
m

ivm

where the coefficients Ai and i are given by analytical expressions in the canonical functions 
approach [5]. The aim of this work is the use of this new approach in the perturbation theory to find 
analytical expressions for the Herman–Wallis coefficients, even for the high order coefficients, for 
any potential and any operator f(r).

2 THEORETICAL 

Within the Born–Oppenheimer approximation [6], the vibrational–rotational motion of a 
diatomic molecule is governed by the radial Schrödinger equation [1]: 
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where U(r) is the rotationless potential, r is the internuclear distance and 2/2  is a known 

constant for the considered molecule. In the conventional perturbation theory EvJ and vJ are 
expanded in terms of the integral number  [Eqs. (4) and (5)]. 

The eigenvalues and the eigenfuctions have been expanded [4] for the two considered states in 
infrared transitions in terms of the running number m as 
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where J' = J+j with j = –1 for the branch P and j = +1 for the branch R. The coefficients nA  (n = 1, 

2, 3, ...) for one state are given by the analytic expression: 

0

1n

1i
ini1n12nn I/)IATaT(A (9)

where 1a  = –1 for the lower state and 1a = +1 for the upper state, 

0/011 ITaA  , n0nn0n |P|T,I  , r2/P 2  , 

0  is the pure vibrational wavefunction and n  are solutions of a set of differential equations of the 

form [4]: 

)R(S)r(Z))r(UA)(/2()r("Z 0
2

These functions are given, for the vJ state, by one analytical expression as 
1

0n

)i(
n

)i(
ni )r(b  ; 0i  (10–1) (10)

where
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and for the v'J ' state the entities i , i
nb and n

i should be replaced by their primed 'i , i
n'b and )i(

n'

where the functions )i(
n  and )i(

n' are given by analytic expressions [4]. 

The rovibrational matrix elements of the normalized wavefunctions vm and m'v  [Eq. (8)] are 
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given by: 
2/1

m'vvmm'vvm
m'v

vm NN/|)r(f|M (11)

where vmN and m'vN  are the normalization factors: 

m'vm'vm'vvmvmvm |Nand|N (12)

By replacing Eq. (8) in the numerator of Eq. (11) we obtain: 

)m'v
0i

vm
0i

m'vvm (|)r(f|)(|)r(f| (13)

= i

0i
i00 mH (14)

With: 
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0p
00pi,pi H/H (15)

where

k'jjk |)r(f|H

By using Eq.(10) we obtain jkH  in terms of the canonical function )i(
n  and )i(

n' as:
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If we consider the orthogonality of the pure vibrational wavefunction )0(
v  to the rotation 

harmonics [8] )i(
v  (i  1) [Eq. (5)], one can find [9] that the orthogonality of 0  to i  (i  1). By 

replacing Eq. (8) in (12) and by using this property of orthogonality we obtain explicitly: 

...]m)2(m2m1[|N 4
0|0
3|3

0|0
3|13

0|0
2|12

0|0
1|1

00vm (16)

and for the mv' state the entities i  and Nvm should be replaced by their primed i'  and Nv’m.. Since 

the second, the third, the fourth and the fifth terms in Eq. (16) are small with respect to one, we can 
write: 
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By using these expressions, the normalization factors will be given in terms of the functions i

and i'  as: 
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where

kjjkkjjk '''I;I (20)

If we substitute Eqs. (10) in Eq. (20) we obtain the integrals jkI  and jk'I  in terms of the 
canonical functions i  and i'  as: 
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If we replace Eqs. (14) and (18) in Eq. (11), we obtain: 

)m(RMM 'vv
0'v
0v

m'v
mv (22)

where 0'v
0vM  is the pure vibrational matrix element: 

2/1
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000'v
0v )'II(

H
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and )m(R 'vv  is the rotational factor: 

i
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)i(
'vv'vv mG)m(R (24)

with:
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where p and pi  are given respectively by Eqs. (15) and (19). 
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In the literature the rotational factor )m(R 'vv  is presented under two forms:(i) the Bouanich–

Blumenfeld [10] representation; and (ii) the Herman–Wallis [2] representation. The Bouanich–
Blumenfeld representation is defined as: 

422
'vv m'Hm'Em'Dm'C1)m(R . (26)

In this work we used the Bouanich and Blumenfeld [10] representation; the comparison between 
Eqs.(26) and (24) gives 

'HG;'EG;'DG;'CG;1G )4(
'vv

)3(
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)2(
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)1(
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)0(
'vv (27)

The Herman–Wallis [2] representation, where the rotational factor is defined as: 
2
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and ..,,, EDC  are the Herman–Wallis coefficients. The derivation of these coefficients from our 

formulation can be obtained by the identification of Eqs. (24) and (29), one obtains: 
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'vvG2C (30–1)

2)1(
'vv

)2(
'vv )G(G2D (30–2)

)GGG(2E )2(
'vv

)1(
'vv

)3(
'vv (30–3)

2)2(
'vv

)1(
'vv

)3(
'vv

)4(
'vv )G(GG2G2H (30–4)

Thus, with the new m–representation of the eigenvalue vmE and the eigenfunction vm the

Herman–Wallis coefficients are given by simple analytic expressions [Eq. (25)] in terms of the 
canonical functions i and i' (i = 0,1). 

3 NUMERICAL APPLICATIONS 
In the m–representation of the eigenvalue vmE  and the eigenfunction vm , the determination of 

the Bouanich–Herman–Wallis coefficients )(
'

i
vvG  [Eq. (24)] is reduced to that of calculating the 

coefficients i  (Eqs.(19)) and 
i
 [Eq. (15)]. These coefficients are given by analytical expressions 

in terms of the canonical functions i and i'  for the two considered states where the determination 

of these functions, with high precision, is a solved problem [4]. In order to test the validity and the 
accuracy of the present formulation, we calculate the Bouanich–Herman–Wallis coefficients )(

'
i
vvG

by using Eqs. (25) with a Dunham potential [11] of the molecule HCl for the transitions 
4v'v1  and v = 0, 5, 10 (Table 1). 
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Table1. Values of the Bouanich–Herman–Wallis coefficients for several transitions (v = 0, 5, 10 and 4v'v ) for the 
ground state of the molecule HCl 

v v )1(
'vvG )2(

'vvG )3(
'vvG )4(

'vvG
0 1 –1.28558(–2) a 4.30991(–5) –8.66854(–7) –2.28678(–8) 
  2 –2.48105(–3) 1.74278(–4) –5.45974(–7) 2.33123(–8) 
 3 6.04177(–3) 2.47683(–4) 2.65309(–6) 4.42817(–8) 
 4 1.36266(–2) 6.82356(–4) 1.48075(–5) –1.09078(–7) 
5 1  –1.78362(–2) –9.29926(–5) –1.13719(–6) –4.69398(–8) 
 2  –4.04660(–3) 2.16239(–4) –1.48185(–6) 4.07718(–8) 
 3 5.29612(–3) 2.32292(–4) 2.12458(–6) 2.01231(–7) 
 4 9.04922(–3) 5.28196(–4) 4.13408(–6) 1.38309(–7) 
10 1 –3.97154(–1) –1.60597(–2) –1.92539(–6) –6.57557(–6) 
 2 –6.47960(–3) 3.83621(–4) –3.43933(–6) 4.78654(–8) 
 3 5.76187(–3) –1.46109(–4) 4.48213(–6) 2.81210(–8) 
 4 4.55807(–3) 5.43568(–4) –1.44991(–6) –2.57616(–7) 
a Number between parentheses stands for a multiplicative power of 10. 

Table 2.Values of the rotational factor )m(R 'vv , (Eq.(24), for several values of v, v, and m for the R–branch of the 
ground state of the molecule HCl. 

v v m = –2 m = –4 m = –6 
0 1 1.02589 a 1.05217 1.07884 
  1.02589 b 1.05217 1.07885 
  1.02518 c 1.05261 1.07935 
 2 1.00566 1.01275 1.02131 
  1.00566 1.01275 1.02132 
  1.00568 1.01272 1.14569 
 3 0.98888 0.97962 0.97204 
  0.98888 0.97961 0.97207 
  0.98899 0.98004 1.00949 
 4 0.97535 0.95544 0.93946 
  0.97535 0.95598 0.93991 
  0.97560 0.95708 0.94477 

5 1 1.03531 1.06992 1.10385 
  1.03531 1.06992 1.10385 
 2 1.00897 1.01975 1.03244 
  1.00897 1.01975 1.03247 
 3 0.99032 0.98273 0.97634 
  0.99032 0.98278 0.97635 
 4 0.98398 0.97203 0.96401 
  0.98398 0.97214 0.96468 

10 1 1.72998 2.33010 2.79667 
  1.72998 2.33008 2.79650 
 2 1.01452 1.03229 1.05349 
  1.01452 1.03231 1.05360 
 3 0.98785 0.97434 0.95924 
  0.98785 0.97436 0.95930 
 4 0.99307 0.99062 0.99287 
  0.99307 0.99068 0.99326 

a First entry: The present work 
b Second entry: Ref. [12] 
c Third entry: Ref. [11] 
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The dipole moment function f(r), Eq. (1), is a polynomial in ee rrr /)(  up to seventh order [11]. 

By using these coefficients we present in Table 2 (first entry) the values of the rotational factor 
)(' mR vv  calculated from Eq. (24). The comparison of these values to those calculated by a 

numerical method [12] (second entry of Table 2) and those of Kobayashi and Suzuki [11] shows a 
good agreement for the considered levels except for v = 4 and m = –6. For v = 10 ( v = 4 and
m = –6) the agreement deteriorates. 

This discrepancy for higher v and v may be explained by the limited region of validity of the 
Dunham potential around er , and the power series expansion of the dipole moment function f(r) 

which rapidly diverges outside the range of separation in which was determined. By using Eqs. (30) 
we calculate for the same molecule the Herman–Wallis coefficients, Eq. (29), for v 7 and v = 0 
(fifth column of Table 3). 

Table 3. Values of the Herman–Wallis coefficients for the transitions v = 0 and 7v'v  for the ground state of the 
molecule HCl

v v  Ref. [11] Present Work 
0 1 C –2.6(–2) –2.5712(–2) 
  D 2.5(–4) 2.5147(–4) 
  E – –2.8419(–6) 
  H – –2.1590(–8) 
 2  C  –5.0(3) –4.9621(–3) 
  D  3.5(–4) 3.5471(–4) 
  E – –1.9567(–6) 
  H – 7.9707(–8) 
 3 C 1.2(–2) 1.2083(–2) 
  D 5.3(–4) 5.3187(–4) 
  E – 8.2991(–6) 
  H – 1.8197(–7) 
 4 C 2.72(–2) 2.7253(–2) 
  D 1.55(–3) 1.5504(–3) 
  E – 4.8211(–5) 
  H – 6.5101(–7) 
 5 C 1.93(–2) 1.9312(–2) 
  D 1.78(–4) 1.7738(–4) 
  E – –2.3161(–5) 
  H – –4.5408(–7) 
 6 C 3.35(–2) 3.3488(–2) 
  D 7.88(–4) 7.8173(–4) 
  E – 6.6285(–7) 
  H – –3.2911(–8) 
 7 C 4.31(–2) 4.2953(–2) 
  D 1.08(–3) 1.1211(–3) 
   E – 1.3218(–5) 
  H – 1.2923(–7) 

The comparison of these values to those calculated by Kobayashi and Suzuki [11] shows a very 
good agreement for all the considered transitions (fourth column of Table 3). No comparison with 
other results for the high order coefficients H because they are given here for the first time. 
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We calculate also of the rotational factor )(' mR vv  of the molecule [8] CO for the transitions 

40 v  , v=0 and m=–6 by using Eq. (24) and a numerical method [10] which are represented 
respectively by )m(R wp

'vv and )m(Rnum
'vv  (not showed). The calculation of the ratio 

4/)
)m(R

|)m(R)m(R|
(

R
R 4

1v
num

'vv

num
'vv

wp
'vv  for the molecules CO and HCl gives: 

7
CO 10x7.4)

R
R(  and 4

HCl 10x4.1)
R
R(

To explain the high accuracy of this ratio for the molecule CO, we may notice that, in the 
perturbation theory the accuracy of calculation of the rotational factor )m(R 'vv  is inversely 
proportional to the ratio ee /B  of the considered molecule ( 9889000.0)/B( ocee and 

5541003.0)/B( HClee ). Similar applications were completed for other potentials (Morse and 

RKR potentials) as well as for the operator exp(–ar). In all of these cases results similar to those 
presented here were obtained (not showed). 

4 CONCLUSIONS 

In a previous work [3] we expanded respectively the eigenvalue and the eigenfunction of a 
rovibrational state vJ in terms of the running number m as: 

00
,

ii

i
m

ivm
i

m
i

A
vm

E

where the coefficients iA  and i  are given by analytical expressions. By using this new 

formulation we showed that the Bouanich–Herman–Wallis coefficients are given by simple 
analytical expressions in terms of the canonical functions i and i'  even for the high order 

coefficients with no restriction on the potential function, the operator f(r) and the vibrational level v
(even for high vibrational levels). The numerical application showed the high accuracy of the 
present formulation with a simple algorithm and simple analysis tools. 
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