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Abstract 

Motivation. Aromatic amines are well known mutagenic compounds, and their toxic effects have been 
thoroughly studied, thus making them a good test dataset for computational models. We developed a general 
approach to model compound toxicity, particularly to aquatic organisms. The model uses only diatomic 
fragments to estimate the compound biological response. We are now going to apply this model to a 95 
compound dataset of aromatic amines to predict their genotoxicity. In particular, the computed activities are 
compared to the Salmonella mutagenicity tests that are a sufficiently homogeneous set of experimental data. 
Method. The method used is very straightforward. Each molecule is dissected into diatomic fragments; each of 
them is represented by atom type, interatomic bond type, and neighboring bond type. In this way, the variability 
of atomic fragments is well represented and guarantees a good representation of the molecular differences. 
Statistical analysis uses both standard multilinear regression and neural network analyses. 
Results. The initial dataset has been analyzed several times, using both the complete dataset and four partitions 
of this dataset in order to: (a) validate the model; (b) discuss the meaning of the result from a chemical 
viewpoint. The results are interesting because they demonstrate that our modeling approach is of general 
application and that the statistical analysis allows for the identification of some hints on the molecular 
characteristics that differentiate the biological activity of each compound. 
Conclusions. This new application of our modeling approach demonstrates that it could be used in several 
different models and applications. 
Keywords. Genotoxicity; aromatic amines; QSAR; diatomic fragments; MLR; neural network. 

Abbreviations and notations 
QSAR, quantitative structure–activity relationships  MLR, multi linear regression 
DFG, diatomic fragment ANN, artificial neural network 

1 INTRODUCTION 

In the last three decades mathematical modeling has attained a special position in many chemical 
topics, from synthesis planning to structure activity–prediction. The use and manipulation of 
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theoretical molecular description, of interaction simulation, and of qualitative/quantitative 
correlation with experiments, have allowed the conception, realization, and application, of several 
original models that showed their usefulness and potency both in predicting unknown experimental 
results and in contributing to the better understanding of chemical data. On this line, toxicity 
prediction has moved its first steps more recently, as a consequence of the great interest shown by 
many parts towards the development of alternatives to experimental measures in order to reduce 
both costs and time [1–3]. Here, the number and types of different end points are particularly 
challenging, together with the variety and uncertainty of experimental data. In addition, the 
difficulty of the analyses at the molecular level due to the complexity of the modes of action made 
intricate the interpretation of the model reliability and applicability. Nevertheless, more and more 
efforts are put in the development of new models in the search of better hints to the solution of the 
toxicity modeling problem. The need to improve knowledge imposes the requirement of both 
restricting the compound diversity and making the effort of separating the diverse elements that 
determine the toxic effect at the molecular level. 

Aromatic and heteroaromatic amines are well known mutagenic and carcinogenic compounds 
[4–5]. Many experimental data concerning their bio–activity have been collected, thus they can be 
appropriately used as a test dataset in the elaboration of new models. Moreover, the existence of 
many good models of their toxicity, mainly of their mutagenicity, stimulates a productive 
discussion [6–17]. In this paper, we are going to present our models for the prediction of amine 
genotoxicity

2 MATERIALS AND METHODS 

2.1 Chemical Data 
We use a dataset containing 95 aromatic amines that are quite representative of diverse structural 

features, as ring number, functional group type and position. In addition, this dataset has been used 
by several authors [6–10,12–24] for toxicity prediction. The compound structures are reported in 
the Supplementary Material. 

2.2 Biological Data
The biological activity chosen to test the model of toxicity prediction is the compound 

mutagenicity as measured in the Ames test (Salmonella typhimurium) [4]. For the present work, we 
chose a dataset of experimental mutagenic potencies of aromatic amines (Table 1) towards 
Salmonella typhimurium TA98 + S9 microsomial preparation (expressed by the logarithm of the 
number of revertants per nanomole) previously utilized in the development of genotoxicity QSAR 
models [27]. 
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2.3 Statistical Analyses
The statistical analyses are performed using MLR and neural network as present in the Statistica 

software package [25]. The parameters used in modeling are: 

(a) MLR forward insertion: p1 = 0.05; F1 = 1.0; sweep delta = 10–7; inverse delta = 10–12; steps = 
8.

(b) MLR Backward elimination: p2 = 0.05; F2 = 1.0; sweep delta = 10–7; inverse delta = 10–12;
steps = 26. 

(c) Neural network (multilayer perceptron): 1 input layer, 1 hidden layer, 1 output layer; hidden 
nodes: 16 when using 28 variables, 8 when using 8 or 9 variables; logistic interval of the regression 
output function = 0.9; uniform casual initialization; learning coefficient = 0.01; momentum = 0.3; 
mixed at every epoch; resampling with cross validation; 30 resamplings; first phase uses back 
propagation algorithm for 100 epochs, second phase uses conjugate gradient descent for 500 
epochs. The partition of cases depends on the total case number and are: for 95 cases: 58 training 
cases, 29 selection cases, 3 test cases; for 77 cases: 38 training cases, 20 selection cases, 2 test 
cases.

2.4 Calculation of Diatomic Fragments
Structure descriptors are determined following the approach we previously developed and that 

was applied to the modeling of the aquatic toxicity of several compounds (96–h LC50) for the 
fathead minnow (Pimephales promelas) [26]. 

Molecular structures are analyzed by extracting atomic reference indexes, atom types, 
connectivity matrices, and bond orders. All hydrogen atoms are deleted from the original structures, 
then saturation level is calculated; for example, for the carbon atom, C, we can get the following 
atom types: C, CH, CH2, CH3, with 4, 3, 2, and 1 bonding positions, respectively. The program 
detects aromatic rings in the molecules. To all bonds belonging to an aromatic ring, a bond order of 
4 is assigned instead of the original alternating 1 – 2 values. Condensed aromatic systems are also 
considered, by increasing the bond order of common bonds by 1. For example, a bond order of 5 is 
obtained for the bond common to both naphthalene aromatic rings. The molecular representation 
described so far was used as the starting point to generate DFGs (Diatomic FraGments). A simple 
rule was adopted to break down each molecule. After the selection of each atom, each of its nearest 
neighbors was considered, and the resulting atomic pair was isolated from the surrounding atoms by 
cutting all bonds connecting it to other atoms, providing a DFG. 

DFGs from breakdown of the dataset molecules were afterwards collected and compared to 
eliminate redundancies and to account for multiple fragments occurrences. Three features were thus 
used to univocally identify each DFG: 
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(a) The main bond order, of the bond joining the DFG constituent atoms. 

(b) The elements of the constituent atoms, such as C, N, P, O, etc. 

(c) The nearest neighbor bond orders, i.e., the orders of all bonds connecting the constituent 
atoms with their nearest neighbors. 
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Figure 1. DFGs present in the dataset. Circled DFGs are those selected in almost all set partitioning. 

This scheme gave Ntot = 28 not unique different DFGs, describing the entire dataset (see Figure 
1). To each DFG we assigned an integer from 1 to Ntot. For each molecule a description array was 
then filled with integers accounting for fragments occurrences. For QSAR purposes, we created a 
matrix containing all descriptors and genotoxicity values. The matrix listing all molecules and their 
DFG representations was then partitioned four times. Each time a training set and a test set were 
obtained, with a ratio of 3:1. All 95 toxicity values were preliminary ordered in monotonic 
decreasing fashion. Then, beginning from the highest value, one out of four molecules was picked 
out and placed in the test set, leaving the other three in the training set. This procedure was repeated 
four times, picking out a different molecule each time. This partitioning guarantees that both the 
training set and the test set contain a representative amount of compounds showing different 
toxicity; in addition, all the compounds pass through the test phase. About 24 molecules were thus 
placed in each test set. The partitions obtained so far will be indicated as A, B, C, and D. This gave 
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us the opportunity to carry out a severe test to quantify the robustness and consistency of the 
method. The procedure of DFG selection has been repeated for each partition. 

To facilitate the understanding of the DFG we will describe four examples: DFG 7, 9, 11, and 
22. DFG 7 is defined by the oxygen atom and the aromatic carbon that is connected to it; the 
oxygen is also connected to an aliphatic carbon, the aromatic carbon is also connected to two other 
aromatic carbons. DFG 9 is defined by the oxygen atom and the aliphatic carbon connected to it; the 
oxygen is also connected to an aromatic carbon, the aliphatic carbon is unsubstituted. DFG 11 is 
defined by two aromatic carbons and the bond is part of only one ring; one aromatic C is connected 
to another aromatic carbon that has only one other aromatic bond, the other C is connected to two 
aromatic carbons, one mono–substituted, the second di–substituted. DFG 22 is defined by two 
aromatic carbons and the bond is part of only one ring; one aromatic C is connected to another 
aromatic carbon that has only one other aromatic bond, the other C is connected to two aromatic 
carbons, both of them are di–substituted.

3 RESULTS AND DISCUSSION 

We performed several analyses using our descriptor set and biological data. Initially, the analysis 
was done including all compounds in one dataset; in fact, this approach has been used in all the 
previous studies concerning the aromatic amine genotoxicity. We used different statistical 
approaches, including: multilinear regression, with or without variable selection, and artificial 
neural network (multi layer perceptron), as nonlinear analysis. The results are shown in Table 1. In 
the last line correlation coefficients are reported; they show a good prediction (from 0.77 to 0.91) 
that remains sufficiently good even in the LOO calculation (0.67, or 0.70 eliminating compound 92
that represents a special case, v.i.). The LOO calculation was performed for the MLR analysis using 
all the variables; we did not make similar calculations for the other models because our validation is 
based on the more significant leave–many out partitioning described in section 2. This result should 
be compared to the result reported by Maran et al. [27] (0.83, and 0.81 cv), that is the best 
correlation found in the literature. In their paper Maran et al. used quantum chemical descriptors 
plus the variable accounting for the number of rings present in each structure; this last variable 
explains 68% of the variance. This result clearly demonstrates that the molecular skeleton is 
important in this dataset of compounds that, in principle, react following a common mechanism 
involving the amino group. The use of quantum descriptors modulates the activity through the 
modeling of both transport and electronic features. However, Maran et al., through an accurate use 
of several other descriptors that can be assigned to the transport effect, demonstrated that the use of 
the ring variable is sufficient to account for this effect. As a consequence, the role of the quantum 
chemical variables should be related to the modulation of the electronic interaction of the compound 
with the biological target. 



Application of a Fragment–based Model to the Prediction of the Genotoxicity of Aromatic Amines 
Internet Electronic Journal of Molecular Design 2006, 5, 431–446 

436 
BioChem Press http://www.biochempress.com

Table 1. Analyses of the complete dataset 

Comp. log RExp
a MLR

log RPred
b

ANN 
log RPred

c
d

MLR
common 
variables 
log RPred

e

MLR
forward 
insertion 
log RPred

f

ANN 
forward 
insertion 
log RPred

g

MLR
backward 
removal 

log RPred
h

ANN 
backward 
removal 
log RPred

j

1 2.62 2.20 1.91 0.71 1.12 1.47 1.65 1.44 1.51 
2 –2.05 –2.39 –2.24 0.19 –1.97 –1.94 –1.95 –1.97 –2.08 
3 –2.00 –2.62 –2.11 0.11 –2.75 –2.75 –2.47 –2.74 –2.33 
4 –2.30 –2.27 –2.44 0.14 –1.97 –1.96 –2.06 –1.97 –2.08 
5 –0.60 –1.23 –0.63 0.03 –0.88 –0.89 –0.95 –0.86 –1.10 
6 1.13 0.89 1.18 –0.05 0.50 1.02 1.37 1.03 1.15 
7 2.62 2.21 2.09 0.53 2.91 2.91 2.83 2.90 2.77 
8 2.88 3.35 2.99 –0.11 3.86 3.97 3.30 3.96 3.19 
9 –1.14 –2.62 –2.11 0.97 –2.75 –2.75 –2.47 –2.74 –2.33 

10 0.75 1.01 1.09 –0.34 0.99 0.99 0.91 0.98 0.97 
11 –0.67 –0.47 –0.12 –0.55 0.14 0.14 –0.02 0.14 0.04 
12 3.16 2.76 2.04 1.12 1.89 1.88 2.03 1.89 1.99 
13 –0.55 –0.10 0.49 –1.04 –0.28 –0.33 –0.08 –0.31 0.03 
14 –1.32 –1.69 –1.55 0.23 –1.97 –1.93 –1.71 –1.97 –2.08 
15 0.89 1.08 1.40 –0.51 0.46 0.80 1.11 0.80 1.02 
16 0.81 1.19 0.61 0.20 –0.28 –0.29 0.20 –0.31 0.03 
17 –2.22 –2.15 –1.93 –0.29 –1.97 –1.94 –1.95 –1.97 –2.08 
18 0.48 1.68 0.60 –0.12 1.12 1.47 1.65 1.44 1.51 
19 3.31 2.78 2.94 0.37 2.79 2.71 3.11 2.72 3.16 
20 1.93 1.08 1.40 0.53 0.46 0.80 1.11 0.80 1.02 
21 –0.62 –0.29 –0.56 –0.06 –0.24 –0.10 –0.25 –0.08 –0.30 
22 –0.14 –0.82 –0.06 –0.08 –0.94 –1.00 –0.70 –0.95 –0.79 
23 –1.96 –2.39 –2.24 0.28 –1.97 –1.94 –1.95 –1.97 –2.08 
24 0.60 –0.55 –0.34 0.94 0.46 –0.44 –0.33 –0.44 –0.10 
25 –2.52 –2.68 –2.38 –0.14 –1.97 –1.94 –1.95 –1.97 –2.08 
26 1.52 –0.60 0.53 0.99 –0.20 0.13 0.10 0.15 0.33 
27 0.41 0.93 0.57 –0.16 1.12 1.47 1.65 1.44 1.51 
28 2.38 1.57 2.21 0.17 1.43 1.43 2.21 1.44 2.39 
29 –2.40 –2.15 –1.93 –0.47 –1.97 –1.94 –1.95 –1.97 –2.08 
30 –0.92 –0.29 –0.56 –0.36 –0.24 –0.10 –0.25 –0.08 –0.30 
31 –2.10 –2.85 –2.44 0.34 –1.97 –1.94 –1.95 –1.97 –2.08 
32 0.55 1.17 0.77 –0.22 1.35 1.35 1.08 1.35 1.12 
33 0.31 –0.36 –0.40 0.71 –0.66 –0.72 –0.99 –0.68 –0.87 
34 –2.00 –1.82 –2.10 0.1 –1.97 –1.94 –1.95 –1.97 –2.08 
35 –3.00 –2.83 –2.39 –0.61 –1.97 –1.94 –1.95 –1.97 –2.08 
36 –2.70 –2.22 –2.59 –0.11 –1.97 –1.94 –1.95 –1.97 –2.08 
37 –1.60 –1.32 –1.05 –0.55 –0.66 –0.72 –0.99 –0.68 –0.87 
38 0.01 0.71 0.20 –0.19 –0.28 –0.29 0.20 –0.31 0.03 
39 3.23 3.54 3.21 0.02 3.81 3.74 3.43 3.72 3.47 
40 –0.89 –0.29 –0.56 –0.33 –0.24 –0.10 –0.25 –0.08 –0.30 
41 3.35 3.35 2.99 0.36 3.86 3.97 3.30 3.96 3.19 
42 –2.15 –1.45 –1.24 –0.91 –0.66 –0.72 –0.99 –0.68 –0.87 
43 –2.52 –2.38 –2.27 –0.25 –1.97 –1.96 –2.06 –1.97 –2.08 
44 2.46 2.33 2.59 –0.13 2.45 2.45 2.83 2.45 2.98 
45 –3.32 –2.65 –2.44 –0.88 –1.97 –1.96 –2.06 –1.97 –2.08 
46 2.98 1.57 2.21 0.77 1.43 1.43 2.21 1.44 2.39 
47 –1.30 –0.22 –0.49 –0.81 –0.28 –0.33 –0.08 –0.31 0.03 
48 3.50 3.52 2.61 0.89 2.91 2.91 2.83 2.90 2.77 
49 –0.69 –1.16 –0.70 0.01 –1.97 –1.93 –1.71 –1.97 –2.08 
50 1.18 1.41 1.43 –0.25 1.12 0.85 1.12 0.82 0.99 
51 1.12 1.77 2.22 –1.1 2.01 2.02 1.83 1.99 1.89 
52 –2.67 –1.86 –2.26 –0.41 –1.73 –1.72 –2.43 –1.73 –2.09 
53 –3.00 –2.39 –2.24 –0.76 –1.97 –1.94 –1.95 –1.97 –2.08 
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Table 1. (Continued) 

Comp. log RExp
a MLR

log RPred
b

ANN 
log RPred

c
d

MLR
common 
variables 
log RPred

e

MLR
forward 
insertion 
log RPred

f

ANN 
forward 
insertion 
log RPred

g

MLR
backward 
removal 

log RPred
h

ANN 
backward 
removal 
log RPred

j

54 –1.30 –0.29 –0.56 –0.74 –0.24 –0.10 –0.25 –0.08 –0.30 
55 –0.92 –0.41 –0.25 –0.67 –0.24 –0.10 –0.25 –0.08 –0.30 
56 0.20 0.25 0.27 –0.07 –0.03 –0.04 –0.10 –0.02 0.00 
57 –1.03 –0.36 –0.40 –0.63 –0.66 –0.72 –0.99 –0.68 –0.87 
58 –0.54 –0.78 –1.11 0.57 –1.97 –1.93 –1.71 –1.97 –2.08 
59 –2.70 –2.61 –2.19 –0.51 –1.97 –1.94 –1.95 –1.97 –2.08 
60 –1.14 –0.09 –1.07 –0.07 –0.66 –0.72 –0.99 –0.68 –0.87 
61 –1.49 –1.00 –0.58 –0.91 –0.90 –0.77 –0.98 –0.72 –0.99 
62 0.04 0.25 0.27 –0.23 –0.03 –0.04 –0.10 –0.02 0.00 
63 0.43 1.00 0.55 –0.12 –0.20 0.14 0.39 0.15 0.33 
64 3.80 3.54 3.21 0.59 3.81 3.74 3.43 3.72 3.47 
65 –3.00 –2.46 –2.40 –0.60 –2.62 –2.61 –2.36 –2.61 –2.58 
66 –0.80 –0.80 –2.02 1.22 –1.97 –1.96 –2.06 –1.97 –2.08 
67 –1.17 –0.60 –1.22 0.05 –0.88 –0.87 –0.99 –0.86 –1.10 
68 0.69 –0.10 0.49 0.20 –0.28 –0.33 –0.08 –0.31 0.03 
69 –2.70 –2.04 –1.87 –0.83 –1.97 –1.96 –2.06 –1.97 –2.08 
70 –3.00 –2.61 –2.53 –0.47 –1.97 –1.94 –1.95 –1.97 –2.08 
71 0.15 0.23 –0.13 0.28 –0.28 –0.29 0.20 –0.31 0.03 
72 –1.24 –1.24 –0.95 –0.29 –1.97 –1.96 –2.06 –1.97 –2.08 
73 0.38 –0.69 –0.72 1.10 –1.31 –1.39 –1.31 –1.32 –1.34 
74 –0.99 –1.05 –1.20 0.21 –0.66 –0.69 –0.86 –0.68 –0.87 
75 3.00 1.79 1.91 1.09 1.12 1.47 1.65 1.44 1.51 
76 –0.39 –0.22 –0.49 0.10 –0.28 –0.33 –0.08 –0.31 0.03 
77 –1.77 –1.28 –1.31 –0.46 –1.24 –1.25 –1.46 –1.23 –1.55 
78 1.02 –0.10 0.49 0.53 –0.28 –0.33 –0.08 –0.31 0.03 
79 1.04 –0.10 0.49 0.55 –0.28 –0.33 –0.08 –0.31 0.03 
80 –0.01 0.41 0.11 –0.12 0.33 0.32 0.06 0.34 0.15 
81 0.23 –0.59 –0.74 0.97 –0.66 –0.69 –0.86 –0.68 –0.87 
82 –2.22 –1.74 –2.28 0.06 –1.97 –1.94 –1.95 –1.97 –2.08 
83 –3.14 –1.86 –2.26 –0.88 –1.73 –1.72 –2.43 –1.73 –2.09 
84 –0.48 –0.55 –0.34 –0.14 0.46 –0.44 –0.33 –0.44 –0.10 
85 –0.49 –1.86 –1.11 0.62 –1.97 –1.94 –1.95 –1.97 –2.08 
86 3.77 2.33 2.59 1.18 2.45 2.45 2.83 2.45 2.98 
87 0.20 –0.22 –0.49 0.69 –0.28 –0.33 –0.08 –0.31 0.03 
88 1.18 1.45 1.37 –0.19 1.89 1.88 2.03 1.89 1.99 
89 –1.04 –0.62 –0.85 –0.19 –0.20 –1.09 –0.92 –1.08 –0.79 
90 0.87 0.69 0.76 0.11 0.87 0.85 1.03 0.88 0.99 
91 –1.42 –0.74 –0.48 –0.94 0.50 –0.21 –0.51 –0.20 –0.41 
92 1.83 3.72 2.73 –0.90 3.74 3.74 3.00 3.74 3.06 
93 1.43 2.76 2.04 –0.61 1.89 1.88 2.03 1.89 1.99 
94 –1.77 –1.85 –2.12 0.35 –0.66 –0.69 –0.86 –0.68 –0.87 
95 3.97 1.77 2.22 1.75 2.01 2.02 1.83 1.99 1.89 
r2 k 0.85 0.91 0.77 0.78 0.84 0.78 0.84

LOO r2 l 0.67/ 
0.70         

a Experimental values expressed as the logarithm of the number of revertants per nanomole. b MLR predicted values 
using all 28 variables. c ANN (16–0.9–30) predicted values using all 28 variables. d Residuals of the ANN prediction 
using all 28 variables. e MLR predicted values using 7 variables common to all other MLR predictions. f MLR predicted 
values using 8 variables selected by insertion. g ANN (8–0.9–30) predicted values using 8 variables selected by 
insertion. h MLR predicted values using 9 variables selected by removal. j ANN (8–0.9–30) predicted values using 9 
variables selected by removal. k Regression coefficient. l Regression coefficient of Leave–one–out analysis; all cases 
and excluding compound 92.
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When using fragments we implicitly consider that the chemical structure contains all the 

information needed to describe the interaction of the compound with the environment. Therefore, 

the use of structural descriptors concerns both the reactivity and the transport. The use of fragments 

consequently needs a dataset where the structural characteristics are well represented, because the 

presence of the entire variability of the chemical structures is fundamental for the model 

application. The aromatic amine dataset is certainly a good example, because it is sufficiently 

homogeneous. 

However, when modeling biological activity even small structural differences can highly 

influence the biological response. Another important point concerns the lack of interaction between 

fragments, i.e., each fragment is analyzed as a single entity. It is thus impossible to evaluate long 

distance effects. The principal outcome of all these considerations is that an analysis that uses 

fragments can give a good result only if the differences in activity are well represented by the 

structural description. 

In the present study the result is appreciably good. In fact all the analyses made on the whole 

dataset give good structure–activity correlations (see Table 1). The use of all the 28 fragments gives 

good predictions by both MLR and ANN analyses. In addition, decreasing the number of fragments 

to 8 or 9 (through the use of the forward insertion, or the backward elimination options) still yields 

good predictions, mostly by ANN. Finally, using the 7 variables present in the majority of the 

analyses it is possible to get a nice result, in line with all the MLR analyses. 

Table 2. Analyses of the dataset partitions 
Results of set 
partitions MLR R2 b  ANN R2 c MLR R2

Common variables d MLR R2 e  ANN R2 f  MLR R2 g  ANN R2 h

Training A 0.87 0.91  0.82 0.86 0.82 0.83 
Test A 0.61 0.74 0.73 0.63 0.73 0.65 0.72 
Training B 0.89 0.87  0.77 0.82 0.79 0.84 
Test B 0.55 0.72 0.70 0.65 0.66 0.50 0.57 
Training C 0.89 0.91  0.82 0.86 0.82 0.86 
Test C 0.55 0.55 0.55 0.45 0.64 0.55 0.53 
Test 3 w/o 92 a 0.62 0.56 0.66 0.51 0.67 0.58 0.54 
Training D 0.85 0.89  0.79 0.84 0.79 0.84 
Test D 0.79 0.66 0.74 0.75 0.75 0.75 0.76 
a Regression coefficients excluding compound 92. b MLR regression coefficients using all 28 variables. c ANN (16–0.9–
30) regression coefficients using all 28 variables. d MLR regression coefficients using 7 variables common to all other 
MLR predictions. e MLR regression coefficients using 8 variables selected by insertion. f ANN (8–0.9–30) regression 
coefficients using 8 variables selected by insertion. g MLR regression coefficients using 9 variables selected by 
removal. h ANN (8–0.9–30) regression coefficients using 9 variables selected by removal. 

The validation of the model has been performed following two approaches: the first is a leave–

one–out validation; the second, much more significant, is performed dividing the dataset into two 
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parts, one for the model training, and the other for the model testing. This last approach was 

repeated four times using four different partitions (see Table 2). In all validations, the predictions of 

the training sets are very good, fully comparable to the whole set result. This confirms that the 

model is reliable and that the use of fragments can be applied to the present problem. In contrast, 

the results of the test sets are of lower quality and, more important, of different value (from 50% to 

80% predictivity). In particular, partition C gives the worst test prediction and partition D gives by 

far the prediction of the best quality. It is also remarkable that the use of the subset of common 

variables gives a result for each test set similar to those obtained using the specific variables of the 

current partition. 

Looking at some of the bad predicted compounds we can note that their structure contains some 

special features that can explain the outcome. For example, compound 92 is the only example of a 

benzophenanthrene compound. It is correctly predicted only in one analysis (28 variables, ANN) 

and it is particularly bad predicted when it is part of the test set (in partition C). A similar behavior 

can be observed for compound 95. In this case, as mentioned by Maran et al., the reason of the high 

toxicity of this compound in comparison with those of the same class (10, 32, 51, 56, 62, and 80) is 

not easily explicable. 

Looking at the fragments selected in the regression procedure, it is possible to note that in all the 

partitions and in the whole set the selected fragments are often constant. In particular, fragments 1, 

11, 13, 14, 17, 22, and 27 are almost always selected. Those fragments can be then considered as 

the most significant in the description of the structure variability. Interestingly, all these fragments 

concern special aromatic patterns, with or without heteroatoms; moreover, no fragment containing 

non–aromatic heteroatoms is selected. This outcome is in agreement with our expectations; in fact, 

this dataset is characterized by the differences in the carbon backbone that is mainly made by the 

aromatic substructure. 

A feature of this dataset is its wide variability of toxicity values. This variability is not due to 

different modes of action; in fact, the mechanism of the genotoxicity of aromatic amines is 

connected to the presence of the amino group that, either after activation or directly, is responsible 

of the action. Therefore, the value variability should be related to the modulation of the remaining 

parts of the structure. Because all the compounds belong to the aromatic group, they have many 

substructures in common; consequently, some of their DFGs cannot be used to single them out. 

Obviously, the number of times (the occurrence number) a DFG is present in a molecule can be 

sufficiently informative (e.g., there are six unsubstituted aromatic C–C bonds in benzene, but only 

two in para–substituted benzene). 
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Nevertheless, other more specific characteristics are more useful. The variable selection that is 

automatically performed by Statistica shows the selection of one DFG that is important to signal the 

number of presence of common features (e.g., DFG no. 1) and of several other DFGs that permit the 

assembly of different compound classes. For example, DFG no. 13 is characteristic of quinolines 

and phenazines; or DFG no. 17 is characteristic of biphenyls and fluorenes; those last are then 

separated by DFG no. 27. The structure descriptions that are produced by the model are sufficiently 

significant to separate the compounds by toxicity. 

To further make clear the presentation we will comment one result. Consider compounds no. 7

and 17 (Figure 2), that have very different toxicities (2.62 and –2.22, respectively). Their complete 

descriptions (excluding single fragments) are shown in Table 3. 

N
N

N

AM07 AM17

1 2 3

8

10 11 12

Figure 2. Compounds 7 and 17 and the corresponding DFGs. 

Table 3. DFG Description of Compounds 7 and 17
Occurrence for 7 2 1 4 0 0 8 2 
Occurrence for 17 4 1 1 2 1 0 0 
DFG a 1 2 3 8 10 11 12
a Identification label of DFG. Bold numbers indicate selected DFGs. 

It is clear that DFG no. 2 is useless. Then, we can see two DFGs (1 and 3) that are common to 

both compounds; in this case the selection of any of them does not change the final result, thus DGF 
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1 is selected. Finally, there are two DFGs typical of compounds 7 (11 and 12) and two typical of 

compound 17 (8 and 10). To separate the two compounds it is sufficient to use one DFG; when 

decreasing the number of variables (forward insertion or backward elimination) the program selects 

DFG no. 11. The calculated toxicity values are: using all DFGs, 2.21 and –2.15, respectively; using 

only DFGs nos. 1 and 11, 2.91 and –1.97, respectively. The results are comparable. 

We can finally note that in our best model the greatest error is < 1.8 unit, a result that is better 

than that of Maran et al. [27]. Also the standard error is lower [0.58 against 0.66, using MLR 

(forward insertion model) with 8 variables]. 

4 CONCLUSIONS 

The application of our fragmentation procedure has permitted the realization of several models 

of the genotoxicity of a set of aromatic amines. The results demonstrate that the use of a small 

subset of fragments (7–8) is sufficient to describe the variability of toxicity for this dataset. The 

compounds in the dataset show highly different genotoxicities; however, they follow a single 

mechanism of action. The consequence is that the toxicity level is due to differences in structure 

features that, without changing the mechanism, affect the potency. This characteristic is particularly 

welcome by model based on fragments. 

Our results confirm this hypothesis showing good predictions. More interesting is to note that the 

number of fragments needed to have a good prediction can be reduced without losing accuracy, a 

detail that is in agreement with the redundancy of the structural description in this application. 

Finally, it is also noteworthy the similar results obtained using both linear and non–linear models. 

Also this outcome confirms the homogeneous behavior of the dataset. 

In this perspective, we can even think that the application of the fragment model can be used to 

cluster different modes of action if the weight of the fragments can be used to this end. This, also 

considering our previous application [26], supports our efforts in modeling compound toxicity using 

fragment–only description. In the future, the approach can be refined introducing a method to 

consider the fragment relative position in the structure; however, this task is not easy because the 

variability could be so high to prevent a statistically sound application. 

Supplementary Material 
The molecular structures of compounds 1-95 used in the QSAR models are given in Figure A1. 
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Figure A1. Aromatic amines dataset. 
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