Internet **Electronic** Journal of Molecular Design

November 2007, Volume 6, Number 11, Pages 345–362

Editor: Ovidiu Ivanciuc

Quantitative Structure–Retention Relationships for the Gas Chromatographic Retention Indices of Oxygen Containing Organic Compounds

Palagiri Tulasamma¹ and Kalluru Subramanyam Reddy¹ ¹ Department of chemistry, Sri Venkateswara University, Tirupati–517502, India

Department of chemistry, 511 venkateswara Oniversity, 1110pan-517502, india

Received: April 24, 2007; Revised: October 20, 2007; Accepted: November 5, 2007; Published: November 30, 2007

Citation of the article:

P. Tulasamma and K. S. Reddy, Quantitative Structure–Retention Relationships for the Gas Chromatographic Retention Indices of Oxygen Containing Organic Compounds, *Internet Electron. J. Mol. Des.* **2007**, *6*, 345–362, http://www.biochempress.com.

Inter*net* **Electronic** Journal of Molecular Design BIOCHEM Press http://www.biochempress.com

Quantitative Structure–Retention Relationships for the Gas Chromatographic Retention Indices of Oxygen Containing Organic Compounds

Palagiri Tulasamma¹ and Kalluru Subramanyam Reddy^{1,*}

¹ Department of chemistry, Sri Venkateswara University, Tirupati–517502, India

Received: April 24, 2007; Revised: October 20, 2007; Accepted: November 5, 2007; Published: November 30, 2007

Internet Electron. J. Mol. Des. 2007, 6 (11), 345–362

Abstract

Motivation. We propose a modified equation for the calculation of valence connectivity indices on the basis of summation over inverse geometric mean terms, ${}^{n}\chi^{Vm}$, instead of summation over inverse square root terms, ${}^{n}\chi^{V}$. Using the modified connectivity indices along with E–state and boiling points we develop quantitative structure–retention relationships (QSRR) for the gas chromatographic retention indices, I, partial molar enthalpies, ΔH , and partial molar entropies, ΔS , of oxygen containing organic compounds on seven stationary phases. The stationary phases are isosteric, one is apolar and branched alkane 19,24–dioctadecyldotetracontane, (C78), and the other six are polar resulting by replacement of one of the –CH₃ groups of C78 by –OH (POH), –CN (PCN), –SH (PSH), –CF₃ (MTF) and four of the –CH₂CH₃ groups of C78 by (–CH₂CF₃)₄ (TTF) and (–OCH₃)₄ (TMO).

Method. Four descriptors $({}^{1}\chi_{P}{}^{V}, {}^{2}\chi_{P}{}^{Vm})$, E–state and boiling point) are selected from a pool of several descriptors based on stepwise multiple linear regression analysis to obtain the best QSRR models for the three properties. A unified QSRR model has been proposed for each property by combining the data of all the phases and with the use of an additional descriptor, namely the property dependent phase constant (PDPC) to represent the phase. QSRR models for the three retention properties of 18 oxygen containing organic compounds are developed with multiple linear regression using ORIGIN (version 5.0).

Results. The QSRR model obtained with ${}^{n}\chi_{P}{}^{Vm}$ descriptors give slightly better predictions in some combinations than with the descriptors ${}^{n}\chi_{P}{}^{V}$. The predictive descriptors ${}^{1}\chi_{P}{}^{V}$, ${}^{2}\chi_{P}{}^{Vm}$, the E-state of oxygen atom and the boiling point values are give better QSRR models in all the seven independent phases as well as for the unified QSRR models. The r_{cv} values are very close to r in the QSRR models of seven independent phases. The correlation coefficients obtained with unified QSRR are: r(I) = 0.995, $r(\Delta H) = 0.973$, and $r(\Delta S) = 0.936$; and the corresponding leave-one-out cross validation correlation coefficients are $r_{cv}(I) = 0.993$, $r_{cv}(\Delta H) = 0.965$ and $r_{cv}(\Delta S) = 0.922$.

Conclusions. The predictive quality of the three unified QSRR equations proposed for the three properties in this study have been verified considering the retention data of two new stationary phases 1–chloro–18,23–dioctadecylhentetracontane, (PCL) and 18,23–dioctadecyl–7–hentetracontanol (SOH). The predicted results are in satisfactory agreement with the observed values in the two new phases, with maximum standard deviations $\sigma(I) = 7.6$, $\sigma(\Delta H) = 207.4$ and $\sigma(\Delta S) = 0.445$.

Keywords. Valence connectivity indices; Kováts retention index; partial molar enthalpy; partial molar entropy; gas chromatography; QSRR; quantitative structure–retention relationships.

^{*} Correspondence author; E-mail: ksreddy01@rediffmail.com.

1 INTRODUCTION

Quantitative structure-activity relationships (QSRR) emerged in the last decades as useful tools for predicting physico-chemical, biological and pharmacological properties of molecules, especially in those cases where experimental data corresponding to such properties are not available [1,2]. Valence connectivity indices and electrotopological state indices became very popular chemical graph theoretical descriptors and have been proved to be useful in the studies of quantitative structure and retention relationships [1-4]. These descriptors are derived directly from molecular structural formula that encodes the size, branching, cyclic nature and the presence of heteroatoms in organic molecules. The application of quantitative structure-retention relationships (QSRR) models to describe Kováts retention indices and partition coefficients has been extensively reported in the literature [5–15]. In most of these studies better predictions have been observed when connectivity indices are combined with any other physico-chemical parameter such as electronic descriptor [5,6], molecular surface area [16], steric factor [11], boiling point etc. A novel valence connectivity index has been introduced here by considering the summation over inverse geometric mean terms to produce ${}^{n}\chi_{P}^{Vm}$. This modification gave no change in the values of first order connectivity indices, but significant differences are observed in higher order indices. Two sets of connectivity indices are generated one using Kier equation ${}^{n}\chi_{P}^{V}$, and another with the modified equation proposed here ${}^{n}\chi_{P}^{V_{m}}$. From the two sets the best combination of descriptors required in QSRR has been selected following stepwise multiple linear regression analysis (SMLR) and verified their predictive ability. The OSRR models for Kováts retention index, I, partial molar enthalpy, ΔH , and partial molar entropy, ΔS , of oxygen containing organic compounds on seven isosteric apolar and low polarity stationary phases have been developed.

In majority of QSRR studies the focus is on modeling the correlation with separate relation for each stationary phase. QSRR models for several stationary phases in one equation using an additional descriptor has been reported only in few cases [17–18]. The aim of this paper is to develop a unified QSRR that can able to predict the retention properties of oxygen containing organic compounds on any new stationary phase. By combining the data for all seven stationary phases a unified QSRR relation has been proposed using an additional descriptor, namely the property dependent phase constant to characterize the stationary phase.

2 MATERIALS AND METHODS

Kováts retention indices, I, partial molar enthalpies, ΔH and partial molar entropies, ΔS measured by gas chromatograph on seven isosteric stationary phases were taken from Reddy *et al.* [19–21]. The stationary phases examined are 19,24–dioctadecyldotetracontane, (C78); 18,23–dioctadecylhentetracontan–1–ol, (POH); 1–cyano–18,23–dioctadecylhentetracontane, (PCN); 18,23–dioctadecyl–1–untetracontanethiol, (PSH); 1,1,1–trifluoro–19,24–dioctadecyldotetracontane,

(MTF); 19,24–bis(18,18,18–trifluoro octadecyl)–1,1,1,42,42,42–hexafluorodotetracontane, (TTF); and 17,22–bis–(16–methoxyhexa–decyl)–1,38–dimethoxyocta–triacontane, (TMO). All the stationary phases are of the same form and nearly same size. The stationary phases are used in packed columns and the details of packing and measurement of retention data was reported earlier [19].

The path type valence connectivity indices, ${}^{1}\chi_{P}^{V}$, ${}^{2}\chi_{P}^{V}$ and ${}^{3}\chi_{P}^{V}$ for all the solute probes were calculated using hydrogen depleted molecular graphs. According to Kier *et al.* [1] ${}^{n}\chi_{P}^{V}$ is given by

$${}^{n}\chi_{P}^{V} = \Sigma \left(\delta_{1} \,\delta_{2} \dots \delta_{(n+1)}\right)^{-0.5} \tag{1}$$

where the summation is over the inverse square root terms of all the subgraphs of order n. Eq. (1) has been modified by introducing the summation over geometric mean terms as follows.

In the calculation of branching index, Randić used the product of only two vertices and the bond term is calculated as inverse square root term. In this case obviously the bond term is the inverse geometric mean term. The connectivity index is then obtained as a sum of all these bond terms. However when Kier and Hall introduced higher order connectivity indices for example in the second order connectivity indices, the bond terms are calculated as the inverse square root of the product of three vertex valences. Since this is not inverse geometric mean term as used originally by Randić, we have modified the evaluation of bond terms of 2nd order and higher orders by introducing inverse geometric mean instead of inverse square root. We have calculated a set of modified valence connectivity indices denoted as " χ_p^{Vm} . The " χ_p^{Vm} and " χ_p^p values are same for first order connectivity indices but are different in case of higher order connectivity indices. The " χ_p^{Vm} values are higher than " χ_p^p values for higher order indices.

Accordingly the modified equation can be written as

$${}^{n}\chi_{P}^{Vm} = \Sigma \left(\delta_{1} \,\delta_{2} \dots \delta_{(n+1)}\right)^{-1/(n+1)} \tag{2}$$

where *n* refers to the number of bonds connecting the path and the summation goes over all the paths of that type in the molecule. δ_i^{ν} is the valence delta of atom *i* defined by the Eq. (3):

$$\delta_i^{\nu} = (Z_i^{\nu} - h) / Z_i - Z_i^{\nu} - 1)$$
(3)

where Z_i and Z_i^{ν} are the atomic number and the number of valence electrons of atom *i* respectively and h is the number of hydrogen atoms attached to atom *i*. Eqs. (1) and (2) will give same value for ${}^{1}\chi_{P}^{\nu}$ and ${}^{1}\chi_{P}^{\nu m}$ but the values of ${}^{2}\chi_{P}^{\nu}$ and ${}^{3}\chi_{P}^{\nu}$ are lower than ${}^{2}\chi_{P}^{\nu m}$ and ${}^{3}\chi_{P}^{\nu m}$.

Hall *et al.* [22] proposed electrotopological state, (E–state), S as an index of graph vertex from chemical graph theory. This new index combines both the electronic character and the topological environment of each skeletal atom in a molecule. The E–state S_i for atom *i* is defined as:

$$S_i = I_i + \Delta I_i \tag{4}$$

where I_i is atom intrinsic value, given by

$$I_{i} = [(2/N)^{2} \delta_{i}^{V} + 1] / \delta_{i}$$
(5)

where *N* is the principal quantum number δ_i^V and δ_i are the valence and simple delta values for atom *i*. For atoms in the second quantum level the equation reduces to

$$I_i = \left(\frac{\delta_i^V + 1}{\delta_i}\right) \tag{6}$$

The difference in intrinsic value, ΔI_i is given by

$$\Delta I_i = \sum \frac{I_i - I_j}{r_{ij}^2} \tag{7}$$

where r_{ij}^2 is the graph separation between *i* and *j* counted as the number of atoms inclusive of *i* and *j*. The E–state values calculated for oxygen atom in all the compounds are presented in Table 1.

Hall *et al.* [22] have shown that the E–state values correlate with the oxygen partial charges and NMR chemical shifts in ethers, ketones and aldehydes. Guo *et al.* [17] used E–state values along with other descriptors to obtain QSRR model for Kováts retention index of saturated alcohols. The boiling points [23] used in multiple linear regression for oxygen derivatives are taken from literature and are given in Table 1. In the QSRR models developed here the modified valence connectivity indices, ${}^{n}\chi_{p}^{Vm}$, the E–state values of oxygen atom and the boiling points of solutes have been applied.

No.	Solute	${}^{1}\chi^{V}$	$^{2}\chi_{P}^{V}$	$^{2}\chi_{P}^{Vm}$	${}^{3}\chi^{V}_{P}$	${}^{3}\chi_{P}^{Vm}$	S	bp/K
1	1–Butanol	2.0233	1.0772	1.4992	0.5117	0.9922	8.066	390.2
2	1–Pentanol	2.5233	1.4307	1.9995	0.7617	1.4922	8.197	410.3
3	2–Pentanol	2.4509	1.6377	2.3460	0.7064	1.4339	8.552	391.9
4	2–Hexanol	2.9509	1.9912	2.8462	0.9755	1.9430	8.683	411.0
5	2–Heptanol	3.4509	2.3448	3.3465	1.2255	2.4430	8.779	433.2
6	2-Methyl-2-propanol	1.7236	2.1708	2.9967	0.0000	0.0000	8.520	355.3
7	2-Methyl-2-butanol	2.2843	2.1659	3.1613	0.8652	1.5868	8.826	375.0
8	2-Methyl-2-pentanol	2.7843	2.5624	3.6883	0.8618	1.8344	9.017	393.2
9	2-Methyl-2-hexanol	3.2843	2.9159	4.1886	1.1421	2.3493	9.148	416.0
10	2–Butanone	1.7648	1.0556	1.6231	0.4979	0.9745	9.812	352.6
11	2–Pentanone	2.2648	1.452	2.1502	0.6021	1.3195	10.042	375.0
12	2–Hexanone	2.7648	1.8056	2.6505	0.8824	1.8345	10.201	401.0
13	2–Heptanone	3.2648	2.1592	3.1508	1.1324	2.3345	10.317	424.4
14	Pentanal	2.3511	1.3089	1.8709	0.6755	1.3897	9.564	376.0
15	Hexanal	2.8511	1.6624	2.3712	0.9255	1.8897	9.680	401.0
16	Heptanal	3.3511	2.0159	2.8715	1.1755	2.3897	9.764	425.8
17	Dipropylether	2.9916	1.6124	2.3015	0.6969	1.6634	5.132	364.0
18	Dibutylether	3.9916	2.3195	3.3021	1.2845	2.7088	5.314	415.0

Table 1. Valence connectivity indices calculated using Eqs. (1) and (2), E–state of oxygen atom, S, and the boiling point, bp, values of all solutes

2.1 Development of QSRR Models

Stepwise multiple linear regression has been performed to obtain the best QSRR for the three properties on each of the stationary phases. In this method regressions are performed with the successive addition of one independent variable to the model at a time and the statistical data obtained is compared with the data of the preceding regression. Several combinations of the independent variables are used in the regression model and the best QSRR has been selected with the criteria that the standard deviation is smaller and the correlation coefficient and F–value are higher. The results of the SMLR on I of C78 are given in Table 2 for oxygen derivatives. The statistical data obtained when ${}^{n}\chi_{P}^{V_{m}}$ descriptors are used. In some combinations of connectivity indices, better statistical data are obtained with ${}^{n}\chi_{P}^{V_{m}}$ descriptors compared to ${}^{n}\chi_{P}^{V}$ descriptors.

Similar SMLR analysis has been conducted with the three properties on all other phases and the descriptors selected for the best model are similar to that found for C78 in all the phases. E-state values along with the boiling point data are found to be necessary in the three properties to obtain better statistical performance. According to the general rule for n = 18 the number of descriptors to be selected are restricted to four. Keeping this constraint in view the QSRR model for oxygen derivatives has been improved as follows: with ${}^{1}\chi_{P}^{V}$, ${}^{2}\chi_{P}^{Vm}$, ${}^{3}\chi_{P}^{Vm}$ the $\sigma = 31.4$, with ${}^{1}\chi_{P}^{V}$, ${}^{2}\chi_{P}^{Vm}$, ${}^{3}\chi_{P}^{Vm}$, S the $\sigma = 16.8$, with ${}^{1}\chi_{P}^{V}$, ${}^{2}\chi_{P}^{Vm}$, bp the $\sigma = 16.3$, with ${}^{1}\chi_{P}^{V}$, ${}^{2}\chi_{P}^{Vm}$, S, bp the $\sigma = 14.9$ and with ${}^{1}\chi_{P}^{V}$, ${}^{2}\chi_{P}^{Vm}$, S, bp the $\sigma = 5.3$. The combination of S and the boiling point has produced a drastic decrease in standard deviation σ . These descriptors are not correlating with each other as revealed from the correlation matrix presented in Table 3. Therefore ${}^{1}\chi_{P}^{V}$, ${}^{2}\chi_{P}^{Vm}$, S, bp set of descriptors has been used in the QSRR model for all stationary phases.

Table 2. Comparison of stepwise multiple linear regression data of oxygen derivatives; correlation coefficient, r, standard deviation, σ and Fisher's F values calculated using the descriptors ${}^{n}\chi_{P}^{V}$ and ${}^{n}\chi_{P}^{Vm}$ for Kováts retention index on C78

Descriptors		${}^n\chi^V_P$			$^{n}\chi_{P}^{Vm}$	
	r	σ	F	r	σ	F
$^{1}\chi$	0.944	37.9	130	0.944	37.9	130
$^{2}\chi$	0.491	100.2	5	0.497	99.6	5
$^{3}\chi$	0.946	37.2	136	0.954	34.2	164
$1 \chi^2 \chi$	0.948	37.6	67	0.948	37.8	66
$1^{1}\chi^{3}\chi$	0.967	29.9	110	0.964	31.3	99
$^{2}\chi^{3}\chi$	0.946	38.5	64	0.955	35.3	77
$^{1}\chi^{2}\chi S$ bp	0.999	5.2	1931	0.999	5.3	1881
$^{1}\chi^{3}\chi S$ bp	0.992	15.5	214	0.993	14.9	233
$^{2}\chi^{3}\chi S$ bp	0.972	29.6	57	0.984	22.8	98
$1 \chi^2 \chi^3 \chi$	0.970	29.5	76	0.967	31.4	66
$^{1}\chi^{2}\chi^{3}\chi S$	0.991	16.9	180	0.991	16.8	182
$^{1}\chi^{2}\chi^{3}\chi$ bp	0.991	17.1	176	0.992	16.3	195
$^{1}\chi^{2}\chi^{3}\chi S$ bp	0.999	5.1	1616	0.999	4.8	1818

	$^{1}\chi^{\nu}$	$^{2}\chi_{P}^{V}$	${}^{3}\chi_{P}^{V}$	$^{2}\chi_{P}^{Vm}$	$^{3}\chi_{P}^{Vm}$	S	bp
${}^{1}\chi^{V}$	1						
$^{2}\chi_{P}^{V}$	0.598	1					
${}^{3}\chi_{P}^{V}$	0.907	0.519	1				
$^{2}\chi_{P}^{Vm}$	0.599	0.997	0.537	1			
${}^{3}\chi_{P}^{Vm}$	0.939	0.518	0.991	0.537	1		
S	-0.297	-0.061	-0.032	-0.030	-0.089	1	
bp	0.797	0.482	0.847	0.477	0.821	0.098	1

Table 3. Correlation matrix for the valence connectivity indices, modified valence connectivity indices, E-state and boiling point of oxygen derivatives

The general QSRR for the three properties on the seven phases can be represented as follows

$$X = b_0 + b_1^{-1} \chi_P^V + b_2^{-2} \chi_P^{Vm} + b_S \cdot S + b_T \cdot bp.$$
(8)

QSRR for Kováts retention indices for the seven phases are given below

$$I(C78) = -290.8(\pm 28.4) + 162.4(\pm 5.0)^{1} \chi_{P}^{V} - 23.8(\pm 2.3)^{2} \chi_{P}^{Vm} + 16.06(\pm 1.17)S + 1.187(\pm 0.107) bp$$

$$r = 0.9991 \qquad r_{cv} = 0.9989 \qquad \sigma = 5.3 \qquad F = 1881 \qquad n = 18$$
(9)

$$I(POH) = -475.6(\pm 34.2) + 115.4(\pm 6.0)^{1} \chi_{P}^{V} - 14.8(\pm 2.7)^{2} \chi_{P}^{Vm} + 13.90(\pm 1.41)S + 2.092(\pm 0.129) bp$$

r = 0.9987 r_{cv} = 0.9985 \sigma = 6.3 F = 1241 n = 18 (10)

$$I(PCN) = -447.4(\pm 33.4) + 132.9(\pm 5.9)^{1} \chi_{P}^{V} - 24.2(\pm 2.7)^{2} \chi_{P}^{Vm} + 19.16(\pm 1.37)S + 1.848(\pm 0.126)bp$$

$$r = 0.9987 \qquad r_{cv} = 0.9986 \qquad \sigma = 6.2 \qquad F = 1324 \ n = 18$$
(11)

$$I(PSH) = -329.7(\pm 29.9) + 156.9(\pm 5.3)^{1} \chi_{P}^{V} - 25.6(\pm 2.4)^{2} \chi_{P}^{Vm} + 17.48(\pm 1.23)S + 1.341(\pm 0.113)bp$$

$$r = 0.9990 \qquad r_{cv} = 0.9988 \qquad \sigma = 5.5 \qquad F = 1690 \ n = 18$$
(12)

$$I(MTF) = -297.1(\pm 26.3) + 162.8(\pm 4.6)^{1} \chi_{P}^{V} - 26.1(\pm 2.1)^{2} \chi_{P}^{Vm} + 19.34(\pm 1.08)S + 1.183(\pm 0.099) bp$$

$$r = 0.9992 \qquad r_{cv} = 0.9990 \qquad \sigma = 4.9 \qquad F = 2160 \qquad n = 18$$
(13)

$$I(TTF) = -261.8(\pm 32.3) + 182.1(\pm 5.7)^{1} \chi_{P}^{V} - 34.6(\pm 2.6)^{2} \chi_{P}^{Vm} + 30.28(\pm 1.33)S + 0.862(\pm 0.122) bp$$

$$r = 0.9985 \qquad r_{cv} = 0.9983 \qquad \sigma = 6.0 \qquad F = 1479 \qquad n = 18$$
(14)

$$I(TMO) = -633.9(\pm 52.4) + 79.4(\pm 9.2)^{1} \chi_{P}^{V} - 10.2(\pm 4.2)^{2} \chi_{P}^{Vm} + 8.78(\pm 2.16)S + 2.857(\pm 0.198) bp$$

$$r = 0.9969 \qquad r_{cv} = 0.9965 \qquad \sigma = 9.7 \qquad F = 526 \qquad n = 18$$
(15)

The constant values are generally related to the interaction between the solute probes with different polar phases. The solute probes of this series being hydrogen accepting or hydrogen donating can form hydrogen bonding in POH and TMO phases and interact through dipolar forces in the other polar phases. In the above QSRR models the algebraic sum of both b₀ and b_T (bp) values are to be considered to understand the interactions of solutes with different stationary phases. Boiling point of any one solute has been used in the calculation of the algebraic sum of b₀ and b_T (bp) for different phases, which are positively correlating with the McReynolds phase polarity. The values of b₁, b₂ and b_s coefficients indicate the sensitivity of retention indices with respect to ${}^{1}\chi_{P}^{V}$, ${}^{2}\chi_{P}^{Vm}$ and S.

In all the phases the coefficients of ${}^{1}\chi_{P}^{\nu}$ are positive and large representing the effect of size of the molecule on retention index. The coefficients of ${}^{2}\chi_{P}^{\nu m}$ are negative which are expected to encode the extent of branching and cluster in the molecular structure. With increase of branching ${}^{2}\chi_{P}^{\nu m}$ increases but at the same time the retention indices decreases with increase of branching. The negative coefficients for ${}^{2}\chi_{P}^{\nu m}$ indicate that this descriptor is representing the branching effects correctly on retention index. The coefficients for *S* are positive but smaller for oxygen containing phases and larger for fluorine containing phases compared to the non polar C78. The coefficients of bp are positive in all the phases but the values are higher in oxygen containing phases than in the other phases. In all the relations the correlation coefficients are greater than 0.997, the F values are higher and the errors in the coefficients are small.

QSRR for partial molar enthalpy of oxygen derivatives on the seven phases are given below:

$$\Delta H(C78) = 2136.6(\pm 242.7) - 1652.4(\pm 42.9)^{1} \chi_{P}^{V} + 241.1(\pm 19.4)^{2} \chi_{P}^{Vm} - 121.24(\pm 10.01)S - 11.481(\pm 0.920)bp$$

$$r = 0.9993 \qquad r_{cv} = 0.9991 \qquad \sigma = 45.2 \text{ F} = 2622 \qquad n = 18$$
(16)

$$\Delta H(POH) = 9922.9(\pm948.4) + 614.8(\pm167.6)^{1} \chi_{P}^{V} - 301.1(\pm75.7)^{2} \chi_{P}^{Vm} + 175.00(\pm39.09)S - 52.242(\pm3.596) bp$$

$$r = 0.9900 \qquad r_{cv} = 0.9896 \qquad \sigma = 176.5 \qquad F = 161 \quad n = 18 \qquad (17)$$

$$\Delta H(PCN) = 5384.9(\pm 458.5) - 802.1(\pm 81.0)^{1} \chi_{P}^{V} + 130.4(\pm 36.6)^{2} \chi_{P}^{Vm} - 69.38(\pm 18.89)S - 27.605(\pm 1.738)bp$$

$$r = 0.9975 \qquad r_{cv} = 0.9972 \qquad \sigma = 85.3 \text{ F} = 649 \text{ n} = 18$$
(18)

$$\Delta H(PSH) = 1889.7(\pm 460.9) - 1561.6(\pm 81.4)^{1} \chi_{P}^{V} + 232.5(\pm 36.8)^{2} \chi_{P}^{Vm} - 139.25(\pm 19.00)S - 11.247(\pm 1.748)bp$$

$$r = 0.9975 \qquad r_{cv} = 0.9973 \qquad \sigma = 85.8 \text{ F} = 655 \text{ n} = 18$$
(19)

$$\Delta H(MTF) = 1457.6(\pm 371.9) - 1671.7(\pm 65.7)^{1} \chi_{P}^{V} + 250.8(\pm 29.7)^{2} \chi_{P}^{Vm} - 176.07(\pm 15.33)S - 9.251(\pm 1.410)bp$$

$$r = 0.9984 \qquad r_{cv} = 0.9981 \qquad \sigma = 69.2 \text{ F} = 1027 \qquad n = 18$$
(20)

$$\Delta H(TTF) = 1087.2(\pm 535.4) - 1836.2(\pm 94.6)^{1} \chi_{P}^{V} + 325.5(\pm 42.7)^{2} \chi_{P}^{Vm} - 272.94(\pm 22.07)S - 6.081(\pm 2.030) \text{bp}$$

$$r = 0.9967 \qquad r_{cv} = 0.9964 \qquad \sigma = 99.6 \text{ F} = 497 \text{ n} = 18$$
(21)

$$\Delta H(TMO) = 9118.8(\pm 1005.2) + 213.7(\pm 177.6)^{1} \chi_{P}^{V} - 164.6(\pm 80.3)^{2} \chi_{P}^{Vm} + 114.9(\pm 41.4)S - 47.053(\pm 3.812)bp$$

$$r = 0.9891 \qquad r_{cv} = 0.9886 \qquad \sigma = 187.1 \qquad F = 147 \ n = 18 \qquad (22)$$

For the above QSRR models r > 0.989, $\sigma < 86$ and F values are higher in all phases except in POH and TMO. In these two phases the higher σ and lower r values may be due to stronger interactions involving both hydrogen accepting and hydrogen donating with the solutes. In the regression equations of ΔH the signs of the coefficients are opposite to the corresponding coefficients in the regression equations of retention index in all the phases except in POH and TMO. The coefficients of ${}^{1}\chi_{P}^{V}$ and *S* are positive and the coefficients of ${}^{2}\chi_{P}^{Vm}$ are negative for POH and TMO solvents. This may be due to the formation of hydrogen bond by some of the solutes with these two polar phases. Unlike the coefficients of I, the coefficients of ΔH are able to distinguish between the solvents. The coefficients of bp are negative for all the phases and become more negative in POH and TMO phases. If the solute is more volatile then its contribution is small to ΔH in less polar solvents than in more polar solvents like POH and TMO. The QSRR for partial molar entropy of oxygen derivatives on the seven phases are as follows:

$$\Delta S(C78) = -7.382(\pm 0.682) - 1.980(\pm 0.121)^{1}\chi_{P}^{V} + 0.275(\pm 0.054)^{2}\chi_{P}^{Vm} - 0.0936(\pm 0.0281)S - 0.01274(\pm 0.00259)bp (23))$$

$$r = 0.9965 \quad r_{ev} = 0.9963 \quad \sigma = 0.127 \quad F = 470 \text{ n} = 18 \quad (23)$$

$$\Delta S(POH) = 9.585(\pm 2.008) + 3.001(\pm 0.355)^{-1}\chi_{P}^{V} - 0.944(\pm 0.160)^{-2}\chi_{P}^{Vm} + 0.6085 (\pm 0.0828)S - 0.10260(\pm 0.00762)bp (24))$$

$$r = 0.9781 \quad r_{ev} = 0.9778 \quad \sigma = 0.374 \quad F = 72 \quad n = 18 \quad (25)$$

$$r = 0.9934 \quad r_{ev} = 0.9931 \quad \sigma = 0.163 \quad F = 244 \text{ n} = 18 \quad (25)$$

$$r = 0.9934 \quad r_{ev} = 0.9931 \quad \sigma = 0.163 \quad F = 244 \text{ n} = 18 \quad (26)$$

$$r = 0.9881 \quad r_{ev} = 0.9880 \quad \sigma = 0.217 \quad F = 134 \text{ n} = 18 \quad (26)$$

$$r = 0.9954 \quad r_{ev} = 0.9951 \quad \sigma = 0.137 \quad F = 350 \text{ n} = 18 \quad (27)$$

$$r = 0.9954 \quad r_{ev} = 0.9951 \quad \sigma = 0.137 \quad F = 350 \text{ n} = 18 \quad (27)$$

$$r = 0.9954 \quad r_{ev} = 0.9951 \quad \sigma = 0.137 \quad F = 350 \text{ n} = 18 \quad (27)$$

$$r = 0.9895 \quad r_{ev} = 0.9890 \quad \sigma = 0.210 \quad F = 152 \text{ n} = 18 \quad (28)$$

$$\Delta S(TTF) = -9.273(\pm 1.128) - 2.237(\pm 0.199)^{-1}\chi_{P}^{V} + 0.358(\pm 0.090)^{-2}\chi_{P}^{Vm} - 0.2939 \quad (\pm 0.0465)S - 0.00449(\pm 0.00428)bp \quad (27)$$

$$r = 0.9895 \quad r_{ev} = 0.9890 \quad \sigma = 0.210 \quad F = 152 \text{ n} = 18 \quad (28)$$

$$\Delta S(TMO) = 5.749(\pm 1.898) + 1.563(\pm 0.335)^{-1}\chi_{P}^{V} - 0.557(\pm 0.151)^{-2}\chi_{P}^{Vm} + 0.4003 \quad (\pm 0.0782)S - 0.08043(\pm 0.00720)bp \quad (29)$$

$$r = 0.9775 \quad r_{ev} = 0.9769 \quad \sigma = 0.353 \quad F = 70 \quad n = 18 \quad (25)$$

In the regression equations of ΔS the signs of the coefficients for POH and TMO are same as those observed in the regression equations of ΔH . In other phases, apart from the sign of the constant, the signs of the coefficients in ΔS equations are similar to the signs of the coefficients observed in ΔH equations. In ΔH and ΔS the descriptors are contributing in the same direction supporting the generally observed positive correlation between these two properties. The r values in ΔS relations are smaller than in ΔH relations in all phases indicating that the QSRR models are better for ΔH than for ΔS . The calculated and observed values of I, ΔH and ΔS at 403.15K are presented in Table 4 for the seven phases.

2.2 Validation of QSRR Models

The predictive quality of the QSRR models for I, ΔH and ΔS have been verified by leave-oneout cross validation method. In this method one compound is deleted at a time from the regression and the prediction of retention of the deleted compound is made based on the QSRR model. The procedure has been repeated for all compounds and the prediction of the retention properties have been made for all compounds. The cross validated correlation coefficient r_{cv} values evaluated by leave-one-out method are very close to regression correlation coefficient r values in all the phases except in the more polar TMO stationary phase. This suggests that the QSRR models are stable and useful for prediction of retention properties [24].

P. Tulasamma and K. S. Reddy Internet Electronic Journal of Molecular Design **2007**, *6*, 345–362

Table 4.	Comparison	of	observed	and	calculated	retention	properties;	Kováts	retention	indices,	I,	partial	molar
enthalpies	, ΔH , and par	tial	molar enti	opie	s, ΔS for ox	ygen deriv	vatives at 40	3.15 K					

No	Soluto	ui entropi	<u>т</u>	r onggen	AU	$\frac{1}{(al mol^{-1})}$)	45 (and mol ⁻¹ K	-1)
110.	Solute	aha	aala	*20	oba) s	25 ()
		005	Calc	105	005	Calc	0	008	Calc	165
	1. D. (1. 1.	504.0	504.0	0.0	(78	(202		16 500	16 500	0.110
1	I–Butanol	594.8	594.8	0.0	-6259	-6303	44	-16.592	-16.702	0.110
2	1–Pentanol	698.8	690.1	8.7	-7319	-7255	-64	-17.865	-17.823	-0.042
3	2–Pentanol	643.8	653.9	-10.1	-6858	-6884	26	-17.438	-17.383	-0.055
4	2–Hexanol	744.7	748.0	-3.3	-7839	-7825	-14	-18.568	-18.491	-0.077
5	2–Heptanol	845.0	845.2	-0.2	-8828	-8797	-31	-19.744	-19.635	-0.109
6	2–Methyl–2–propanol	471.0	476.4	-5.4	-5078	-5101	23	-15.379	-15.295	-0.084
7	2–Methyl–2–butanol	597.9	591.8	6.1	-6225	-6251	26	-16.464	-16.639	0.175
8	2–Methyl–2–pentanol	690.9	685.1	5.8	-7209	-7182	-27	-17 696	-17 734	0.038
ğ	2–Methyl–2–hexanol	786.1	783.6	2.5	-8158	-8166	8	-18 829	-18 889	0.060
10	2_Butanone	537.5	533.3	12.3	-5708	-5626	_82	-16.031	_15.84	_0 191
11	2 Dutatione 2 Deptanone	620.6	632.2	7.2 2.6	6628	6610	18	17.063	16 002	0.171
11	2-Feinanone	029.0 721.4	724.0	-2.0	-0028	-0010	-10	-17.003	-10.992	-0.071
12	2-Hexallolle	/31.4	/34.9	-3.5	-/049	-/034	-13	-16.273	-10.191	-0.082
13	2-Heptanone	831.4	833.9	-2.5	-8643	-8622	-21	-19.462	-19.352	-0.110
14	Pentanal	64/.8	646.4	1.4	-6/00	-6//4	/4	-16.998	-17.208	0.210
15	Hexanal	749.5	747.2	2.3	-7738	-//80	42	-18.258	-18.39	0.132
16	Heptanal	851.0	847.3	3.7	-8746	-8781	35	-19.469	-19.566	0.097
17	Dipropylether	656.8	654.7	2.1	-7074	-7053	-21	-17.803	-17.79	-0.013
18	Dibutylether	854.9	856.8	-1.9	-9061	-9072	11	-20.196	-20.162	-0.034
				P	ЮН					
1	1–Butanol	661.1	664.1	-3.0	-8145	-8258	113	-20.641	-20.885	0.244
2	1–Pentanol	766.7	758.3	8.4	-9162	-9128	-34	-21.809	-21.839	0.030
3	2–Pentanol	704.1	711.2	-7.1	-8294	-8254	-40	-20.459	-20.28	-0.179
4	2–Hexanol	805.5	803.3	2.2	-9272	-9072	-200	-21.589	-21.131	-0.458
5	2–Heptanol	906.6	901.4	52	-10288	-10058	-230	-22.845	-22 322	-0.523
6	2-Methyl-2-propanol	530.6	540.7	-10.1	-6792	-6990	198	-19.03	-19341	0 311
7	2_Methyl_2_butanol	653.7	648.4	53	-7671	-7671	0	-19 562	-19.648	0.086
8	2_Methyl_2_pentanol	746.1	739.0	71	_8587	_8/39	_1/8	-20.647	_20.397	_0.250
0	2 Methyl 2 hexanol	842.2	838.8	3.4	0535	0451	-140 84	-20.047 21.784	21.628	-0.250
10	2 Butanono	582.6	578 1	5.4	-9555	-9451	-04	-21.784	-21.028	-0.130
10	2-Butanone	565.0	578.1 678.0	5.5 17	-0223	-0164	-39	-10.897	-10.837	-0.040
11	2-Feinanone	070.5	794.0	-1./	-/121	-/100	43	-17.915	-16.015	0.100
12	2-Hexanone	//9.3	/84.9	-3.0	-8117	-8339	222	-19.007	-19.333	0.488
13	2-Heptanone	880.3	885.8	-5.5	-9119	-9385	200	-20.286	-20.857	0.571
14	Pentanal	689.7	68/.6	2.1	-/345	-/164	-181	-18.304	-1/.883	-0.421
15	Hexanal	792.3	791.8	0.5	-8356	-8293	-63	-19.501	-19.35	-0.151
16	Heptanal	894.2	895.1	-0.9	-9372	-9417	45	-20.741	-20.815	0.074
17	Dipropylether	673.1	668.4	4.7	-7153	-7049	-104	-18.026	-17.833	-0.193
18	Dibutylether	871.1	878.2	-7.1	-9132	-9368	236	-20.417	-20.899	0.482
				F	PCN					
1	1–Butanol	659.6	660.9	-1.3	-7329	-7374	45	-18.694	-18.787	0.093
2	1–Pentanol	765.3	754.8	10.5	-8356	-8273	-83	-19.889	-19.814	-0.075
3	2–Pentanol	699.1	709.6	-10.5	-7619	-7687	68	-18.894	-18.937	0.043
4	2–Hexanol	801.0	801.8	-0.8	-8619	-8559	-60	-20.076	-19.918	-0.158
5	2–Heptanol	901.9	899.0	2.9	-9629	-9514	-115	-21.315	-21.043	-0.272
6	2–Methyl–2–propanol	520.8	529.0	-8.2	-5883	-6006	123	-16.965	-17.113	0.148
7	2-Methyl-2-butanol	647.1	641.8	53	-6992	-6999	7	-18014	-18 118	0.104
8	2_Methyl_2_pentanol	740.2	732.8	74	_7918	_7847	_71	-19117	-19.054	_0.063
9	2_Methyl_2_hevanol	835 7	831.8	30	_8863	_8877	1	_20 247	_20 204	_0.003
10	2 Putanono	504.2	587.5	67	6262	6222	120	-20.247	-20.204	0.263
10	2 - Dutanone	574.2 685 7	507.5 687 0	0.7	70205	7200	-150	18 005	-10.0//	-0.203
11	2-remanone	00J./ 700 F	702.4	-1.5	-1220	-1200	-20	-10.093	-10.001	-0.094
12	2-Hexanone	/88.5	192.4	-5.9	-8230	-8264	<i>3</i> 4	-19.26/	-19.294	0.027
13	2–Heptanone	889.0	892.2	-3.2	-9225	-9254	29	-20.4/1	-20.472	0.001
14	Pentanal	698.3	697.9	0.4	-/256	-/300	44	-17.957	-18.102	0.145
15	Hexanal	801.4	800.6	0.8	-8280	-8334	54	-19.213	-19.353	0.140
16	Heptanal	903.6	902.4	1.2	-9261	-9360	99	-20.366	-20.597	0.231
17	Dipropylether	669.7	665.5	4.2	-7174	-7119	-55	-18.166	-18.076	-0.090
18	Dibutylether	867.5	871.9	-4.4	-9138	-9211	73	-20.523	-20.627	0.104

	Table 4. (Continued)									
No.	Solute		Ι		ΔH	(cal mol -	-1)	ΔS ((cal mol ⁻¹ K	⁻¹)
		obs	calc	res	obs	calc	δ	obs	calc	res
				P	SH					
1	1–Butanol	613.8	613.6	0.2	-6440	-6433	-7	-17.028	-17.020	-0.008
2	1–Pentanol	717.1	708.5	8.6	-7411	-7342	-69	-18.110	-18.054	-0.056
3	2–Pentanol	659.1	669.8	-10.7	-6869	-6991	122	-17.512	-17.687	0.175
4	2–Hexanol	760.2	763.4	-3.2	-/865	-/888	23	-18.694	-18.710	0.016
5	2–Heptanol	860.7	860.5	0.2	-8855	-8816	-39	-19.882	-19.762	-0.120
6	2-Methyl-2-propanol	483.0	489.4	-0.4	-52/1	-5288	1/	-15.903	-15.808	-0.095
/ 0	2-Methyl-2-Dutanol	010.0	604.9	5./ 6.4	-0340	-0389	43	-10.834	-1/.046	0.212
ð	2-Methyl-2-pentanol	709.9	097.0 706.1	0.4	-/290	-/2/9	-11	-17.985	-18.061	0.076
9 10	2-Methyl-2-nexanor	/98.8 555 1	/90.1 550.0	2.7 5.1	-8222	-8218	-4 150	-19.088	-19.123	0.033
10	2-Butanone	555.1 646 2	550.0 640.0	3.1 28	-3980	-3621	-139	-10.088	-10.322	-0.500
11	2 Havanona	748.2	752.2	-2.8	-0804	-0703	-41	-17.324	-17.383	-0.139
12	2 Hentanone	740.3 848 5	752.5 851.3	-4.0	-//90 8760	-//42 8686	-40	-18.011	-18.480	-0.123 0.274
13	2-reptatione Pentanal	663.5	662.7	-2.8	-6762	-6000	-05	-17.827	-17.553	-0.274
15	Hexanal	765.7	763.9	1.8	-7765	-7869	104	-18370	-17.502 -18.647	0.378
16	Hentanal	867.5	864.2	33	-8774	-8824	50	-19577	-19.725	0.148
17	Dipropylether	660.9	658.6	23	-7069	-7055	_14	-17 976	-17.988	0.140
18	Dibutylether	858.9	861.5	-2.6	-9011	-8983	-28	-20290	-20.162	-0.128
10	210009100101	00000	00110	M	TF	0,00		20.270	20.102	0.120
1	1–Butanol	610.7	610.8	-0.1	-6603	-6579	-24	-17.184	-17.128	-0.056
2	1-Pentanol	714.1	705.4	8.7	-7575	-7498	-77	-18.267	-18.189	-0.078
3	2–Pentanol	659.2	669.7	-10.5	-7057	-7182	125	-17.690	-17.878	0.188
4	2–Hexanol	759.9	763.2	-3.3	-8049	-8093	44	-18.868	-18.931	0.063
5	2-Heptanol	859.9	859.6	0.3	-9049	-9025	-24	-20.086	-20.001	-0.085
6	2-Methyl-2-propanol	486.0	490.4	-4.4	-5384	-5459	75	-15.874	-15.935	0.061
7	2–Methyl–2–butanol	611.0	606.6	4.4	-6610	-6591	-19	-17.202	-17.242	0.040
8	2-Methyl-2-pentanol	704.0	699.5	4.5	-7521	-7497	-24	-18.263	-18.293	0.030
9	2–Methyl–2–hexanol	799.9	797.3	2.6	-8495	-8441	-54	-19.460	-19.373	-0.087
10	2–Butanone	560.4	554.7	5.7	-6184	-6075	-109	-16.840	-16.618	-0.222
11	2–Pentanone	651.3	653.3	-2.0	-7061	-7026	-35	-17.815	-17.707	-0.108
12	2–Hexanone	752.8	755.5	-2.7	-8023	-8005	-18	-18.899	-18.817	-0.082
13	2–Heptanone	852.9	853.8	-0.9	-8974	-8953	-21	-19.987	-19.900	-0.087
14	Pentanal	666.6	666.6	0.0	-/11/	-/166	49	-17.750	-17.877	0.127
15	Hexanal	/68.2	/66.8	1.4	-8093	-8128	35	-18.8/3	-18.9/1	0.098
16	Heptanal	868.0	866.1	1.9	-8989	-9082	93	-19.831	-20.058	0.227
1/	Dipropyletner	001.3 850.4	659.7	1.0	-/218	-/23/	19	-18.068	-18.140	0.0/2
10	Dibutyletilei	039.4	800.5	<u> </u>	-9202 TE	-9102	-40	-20.403	-20.327	-0.130
1	1_Butanol	635.8	635.4	0.4	_6732	_6714	_18	_17 421	_17 385	_0.036
2	1_Pentanol	740 5	730.4	10.1	_7723	-7628	_95	-18 555	-18 453	-0.102
3	2–Pentanol	685.5	700.1	-14.6	-7192	-7367	175	-17.93	-18 189	0.259
4	2–Hexanol	786.7	794.3	-7.6	-8176	-8274	98	-19.102	-19.253	0.151
5	2–Heptanol	887.1	890.1	-3.0	-9177	-9190	13	-20.341	-20.320	-0.021
6	2–Methyl–2–propanol	513.2	512.6	0.6	-5655	-5588	-67	-16.374	-16.155	-0.219
7	2–Methyl–2–butanol	637.8	635.3	2.5	-6720	-6768	48	-17.353	-17.529	0.176
8	2-Methyl-2-pentanol	731.6	729.6	2.0	-7646	-7677	31	-18.465	-18.597	0.132
9	2-Methyl-2-hexanol	827.5	826.9	0.6	-8600	-8607	7	-19.635	-19.677	0.042
10	2-Butanone	610.2	604.5	5.7	-6577	-6447	-130	-17.368	-17.107	-0.261
11	2-Pentanone	701.8	703.5	-1.7	-7428	-7393	-35	-18.313	-18.205	-0.108
12	2-Hexanone	804.6	804.5	0.1	-8409	-8350	-59	-19.452	-19.308	-0.144
13	2-Heptanone	905.3	901.9	3.4	-9412	-9279	-133	-20.701	-20.386	-0.315
14	Pentanal	711.7	715.3	-3.6	-7383	-7518	135	-18.065	-18.362	0.297
15	Hexanal	814.0	814.1	-0.1	-8375	-8457	82	-19.246	-19.447	0.201
16	Heptanal	915.5	911.8	3.7	-9373	-9386	13	-20.470	-20.523	0.053
17	Dipropylether	672.9	672.5	0.4	-7254	-7271	17	-18.232	-18.284	0.052
18	Dibutylether	871.4	869.5	1.9	-9225	-9141	-84	-20.646	-20.445	-0.201

P. Tulasamma and K. S. Reddy
Internet Electronic Journal of Molecular Design 2007, 6, 345–362

Table 4. (Continued)											
No.	Solute		Ι		ΔH	$\Delta H (cal mol^{-1})$			ΔS (cal mol ⁻¹ K ⁻¹)		
		obs	calc	res	obs	calc	δ	obs	calc	res	
				Т	MO						
1	1–Butanol	692.6	697.1	-4.5	-8018	-8128	110	-19.855	-20.079	0.224	
2	1–Pentanol	798.4	790.3	8.1	-9056	-9035	-21	-21.087	-21.14	0.053	
3	2–Pentanol	726.8	731.5	-4.7	-8285	-8201	-84	-20.085	-19.824	-0.261	
4	2–Hexanol	829.0	821.8	7.2	-9314	-9060	-254	-21.344	-20.805	-0.539	
5	2–Heptanol	930.3	920.7	9.6	-10330	-10069	-261	-22.596	-22.049	-0.547	
6	2-Methyl-2-propanol	545.2	562.3	-17.1	-6461	-6745	284	-17.941	-18.392	0.451	
7	2-Methyl-2-butanol	670.2	664.1	6.1	-7551	-7544	-7	-18.987	-19.070	0.083	
8	2–Methyl–2–pentanol	763.0	752.1	10.9	-8503	-8358	-145	-20.164	-19.969	-0.195	
9	2-Methyl-2-hexanol	858.8	853.0	5.8	-9488	-9391	-97	-21.402	-21.248	-0.154	
10	2–Butanone	590.1	583.2	6.9	-6354	-6234	-120	-17.070	-16.829	-0.241	
11	2–Pentanone	681.7	683.5	-1.8	-7234	-7242	8	-18.064	-18.050	-0.014	
12	2–Hexanone	784.2	793.8	-9.6	-8258	-8422	164	-19.291	-19.575	0.284	
13	2–Heptanone	884.7	896.3	-11.6	-9277	-9485	208	-20.555	-20.908	0.353	
14	Pentanal	697.0	691.9	5.1	-7375	-7279	-96	-18.161	-18.032	-0.129	
15	Hexanal	799.8	798.9	0.9	-8408	-8418	10	-19.453	-19.493	0.040	
16	Heptanal	901.8	905.1	-3.3	-9370	-9551	181	-20.558	-20.951	0.393	
17	Dipropylether	671.9	665.2	6.7	-7270	-7158	-112	-18.272	-18.079	-0.193	
18	Dibutylether	869.7	881.7	-12	-9259	-9488	229	-20.695	-21.103	0.408	

2.3 Unified QSRR

The retention indices of oxygen derivatives (n = 18) on the seven stationary phases are combined to obtain 126 data points that are applied as dependent variables in the Unified QSRR. Two sets of descriptors characterizing solute properties and solvent polarity are used as independent variables in the development of unified QSRR for retention index, partial molar enthalpy and partial molar entropy. The descriptors characterizing solute properties are selected from SMLR analysis following the criteria that the selected combination should give lower σ , higher r and higher F. Therefore from Table 2 the descriptors ${}^{1}\chi_{P}^{V}{}^{2}\chi_{P}^{Vm}$ along with S and bp have been selected. The descriptors used to characterize the solvent polarity are defined as the property dependent phase constants (PDPC), which have been calculated as follows

$$PDPC = X_{j} (polar) - X_{j} (C78)$$
(30)

where X_j is the retention property of solute *j*. Solute *j* has been selected in such a way that it should represent the congener series of solutes. The interactions of *j* with the solvents should be similar to the interactions of solutes in that series. PDPC of *j* is the difference in retention property between polar solvent and the non polar C78. PDPC values of two solutes, 2–methyl–2–pentanol (H[']) and 2– pentanone (Z[']) representing oxygen derivatives have been used. McReynolds [25] used the symbols H and Z for the solutes 2–Methyl–2–pentanol and 2–Pentanone to represent the retention index difference between polar phase and the squalane. We have followed the similar notations and used the symbols H['] and Z['] to represent the difference in the property between polar phase and the non polar C78. The PDPC values for the three properties and on the seven phases are given in Table 5.

(Z), 2–Methyl–2–pentanol (H)										
Column	Z' (I)	H [´] (I)	Ζ΄ (ΔΗ)	$H'(\Delta H)$	$Z'(\Delta S)$	$H'(\Delta S)$				
C78	0.0	0.0	0.0	0.0	0.0	0.0				
РОН	46.7	55.2	-493	-1378	-0.85	-2.951				
PCN	56.1	49.3	-598	-709	-1.032	-1.421				
PSH	16.6	13.1	-176	-81	-0.461	-0.289				
MTF	52.1	72.1	-433	-312	-0.752	-0.567				
TTF	21.7	13.1	-800	-437	-1.25	-0.769				
TMO	72.2	40.7	-606	-1294	-1.001	-2.468				
PCL	19.5	13.3	-142	12	-0.26	0.037				
SOH	18.9	13.3	-462	-858	-0.773	-1.734				

Table 5. Property dependent phase constant (PDPC) values calculated as Kováts retention index difference, partial molar enthalpy difference and partial molar entropy difference between polar stationary phase and C78 for 2–Pentanone (Z'), 2–Methyl–2–pentanol (H')

The unified QSRR for I, ΔH and ΔS are given below along with the statistical data

$$I = -425.2 (\pm 23.3) + 141.7 (\pm 4.1) {}^{1}\chi_{P}^{V} - 22.7 (\pm 1.8) {}^{2}\chi_{P}^{Vm} + 17.85 (\pm 0.95) S + 1.625 (\pm 0.088) bp + 0.331 (\pm 0.073) Z' + 0.626 (\pm 0.071) H' r = 0.9948 r_{cv} = 0.9933 \sigma = 11.4 F = 1903 n = 126$$
(31)

 $\Delta H = 4949.5 \ (\pm 546.7) - 956.5 \ (\pm 96.3)^{-1} \chi_P^V + 102.1 \ (\pm 43.5)^{-2} \chi_P^{Vm} - 69.85 \ (\pm 22.46) \ S - 23.566$

$$(\pm 2.067) \text{ bp} + 0.627 \ (\pm 0.056) \ \text{Z} + 0.323 \ (\pm 0.115) \ \text{H}$$

r = 0.9725 $r_{cv} = 0.9650 \ \sigma = 268.4 \ \text{F} = 347 \ \text{n} = 126$

$$\Delta S = -1.867 (\pm 0.959) - 0.543 (\pm 0.169) {}^{1}\chi_{P}^{V} - 0.041 (\pm 0.076) {}^{2}\chi_{P}^{Vm} + 0.0614 (\pm 0.0394) S$$

- 0.03792 (±0.00366) bp + 0.306 (±0.140) Z' + 0.622 (±0.051) H' (33)
- r = 0.9365 r_{cv} = 0.9217 \sigma = 0.533 F = 183 n = 126

Figure 1. Plot of calculated Kováts retention indices, using unified QSRR Eq. (31), *versus* observed values of oxygen derivatives for the seven stationary phases.

(32)

3 RESULTS AND DISCUSSION

In the three unified QSRR models the *r* values are high and the errors in the coefficients are small. These factors indicate that the proposed QSRR models are statistically significant. The I, Δ H, Δ S values calculated using Eqs. (31)–(33) are plotted as a function of observed values (Table 4) in Figures 1–3, respectively. The lines drawn in these figures represent an ideal fit where the differences between observed and calculated values are zero. The standard deviations of linear fit between calculated and observed retention properties are: $\sigma(I) = 11.1$, $\sigma(\Delta H) = 255.7$, $\sigma(\Delta S) = 0.5031$. Eqs. (31)–(33) can be used to predict the retention properties for a new solute on any new stationary phase provided Z['] and H['] values of the phase are known.

Figure 2. Plot of calculated partial molar enthalpy, using unified QSRR Eq. (32), *versus* observed values of oxygen derivatives for the seven stationary phases.

Figure 3. Plot of calculated partial molar entropy, using unified QSRR Eq. (33), *versus* observed values of oxygen derivatives for the seven stationary phases.

The predictive ability of the unified QSRR models has been validated by leave–one–out cross validation method. The predicted I, Δ H and Δ S values for 126 solutes by cross validation are plotted as a function of observed values in the Figures 4–6. The cross validated correlation coefficients r_{cv} are close to regression r values in the three properties as shown in Eqs. (31)–(33).

Figure 4. Plot of predicted Kováts retention index by cross validation using Eq. (31), versus observed values.

Figure 5. Plot of predicted partial molar enthalpy by cross validation using Eq. (32), versus observed values.

Figure 6. Plot of predicted partial molar entropy by cross validation using Eq. (33), versus observed values.

The applicability of the unified QSRR has been verified by predicting the three properties on two new stationary phases 1–chloro–18,23–dioctadecylhentetracontane (PCL) and 18,23–dioctadecyl– 7–hentetracontanol (SOH) and compared with the observed values [26–27]. Such a comparison has been shown in Figures 7–9 by plotting predicted data *versus* observed data. There is a close agreement between the two sets of data with a maximum standard deviations, $\sigma(I) = 7.6$, $\sigma(\Delta H) =$ 207.4, and $\sigma(\Delta S) = 0.4448$ has been observed in the two phases. The smaller σ values are expected in this comparison as the stationary phases used in training set and in the test set have the same structure and nearly same molar volume but differ in polarity.

Figure 7. Plot of predicted Kováts retention indices, using unified QSRR Eq. (31) *versus* observed values of oxygen derivatives for the two new phases PCL (×) and SOH (o).

Figure 8. Plot of predicted partial molar enthalpy, using unified QSRR Eq. (32) *versus* observed values of oxygen derivatives for the two new phases PCL (×) and SOH (o)

Figure 9. Plot of predicted partial molar entropy, using unified QSRR Eq. (33) *versus* observed values of oxygen derivatives for the two new phases PCL (\times) and SOH (o)

4 CONCLUSIONS

Modified valence connectivity index, ${}^{n}\chi^{Vm}$, based on the summation over inverse geometric mean terms have been evaluated and used in the development of QSRR for oxygen derivatives. To obtain the best predictive models for retention index, partial molar enthalpy and partial molar entropy it is found to be necessary to use the E–state value of the oxygen atom and boiling point of oxygen derivatives along with the valence connectivity indices. SMLR analysis shows that in certain combinations with ${}^{n}\chi^{Vm}$ descriptors produced better predictions than with ${}^{n}\chi^{V}$ descriptors. The predictive descriptors ${}^{1}\chi^{V}_{P}$, ${}^{2}\chi^{Vm}_{P}$, S and bp are found to yield a better QSRR model in all the seven phases. The same set of descriptors applied for all phases has been explained due to the isosteric nature of the seven stationary phases. Further combining the data of the seven phases a unified QSRR has been proposed for each property. The proposed unified QSRR model is expected to predict the retention property of a new solute belongs to the congener series of oxygen derivatives on any new stationary phase. In this study the unified QSRR has been applied to predict satisfactorily the I, Δ H and Δ S values of oxygen derivatives on two new stationary phases. The maximum standard deviations of the fit between calculated and observed property are as follows: $\sigma(I) = 7.6$, $\sigma(\Delta H) = 207.4$ and $\sigma(\Delta S) = 0.4448$. The predictive ability of the unified QSRR models have been validated by leave-one-out cross validation, which shows that the models are satisfactory.

5 REFERENCES

- [1] L. B. Kier and L. H. Hall, *Molecular connectivity in structure activity analysis*, Wiley, New York, 1986.
- [2] R. Kaliszan, Quantitative Structure-Chromatographic Retention Relationships, Wiley-Interscience, 1987, p.93.
- [3] L. H. Hall and L. B. Kier, Issues in representation of molecular structure. The development of molecular connectivity, *J. Mol. Graphics. Modell.* 2001, 20, 4–18.
- [4] M. Randić, The connectivity index 25 years after, J. Mol. Graphics. Modell. 2001, 20, 19–35.
- [5] M. Jalali-Heravi and Z. Garkani-Nejad, Prediction of gas chromatographic retention indices of some benzene derivatives, *J. Chromatogr.* **1993**, *648*, 389–393.
- [6] F. A. L. Ribeiro and M. M. C. Ferreira, QSPR models of boiling point, octanol—Water partition coefficient and retention time index of polycyclic aromatic hydrocarbons, *J. Mol. Struct.: Theochem.* **2003**, *663*, 109–126.
- [7] Y. Du, Y. Liang and D. Yun, Data Mining for Seeking an Accurate Quantitative Relationship between Molecular Structure and GC Retention Indices of Alkenes by Projection Pursuit, J. Chem. Inf. Comput. Sci. 2002, 42, 1283– 1292.
- [8] O. Farkas, K. Heberger and I. G. Zenkevich, Quantitative structure-retention relationships XIV prediction of gas chromatographic retention indices for saturated O-, N-, and S-heterocyclic compounds, *Chemom. Intell. Lab. Syst.* **2004**, *72*, 173–184.
- [9] H. Li, Y. X. Zhang and L. Xu, The study of the relationship between the new topological index A_m and the gas chromatographic retention indices of hydrocarbons by artificial neural networks, *Talanta* **2005**, *67*, 741–748.
- [10] H. Zhao, Q. Zhang, J. Chen, X. Xue and X. Liang, prediction of octanol-air partition coefficients of semivolatile organic compounds based on molecular connectivity index, *Chemosphere* 2005, 59, 1421–1426.
- [11] S. Sekusak and A. Sabljić, Calculation of retention indices by molecular topology. III. Chlorinated dibenzodioxins, J. Chromatogr. 1993, 628, 69–79.
- [12] A. Krawczuk, A.Voelkel, J. Lulek, R. Urbaniak and K. Szyrwinska, Use of topological indices of polychlorinated biphenyls in structure–retention relationships, *J. Chromatogr. A* **2003**, *1018*, 63–71.
- [13] F. Liu, Y. Liang, and C. Cao, Prediction of Gas Chromatographic Retention indices of Methylalkanes Produced by Insects, *Internet Electron. J. Mol. Des.* **2006**, 5, 102–115.
- [14] B. S. Junkes, R. D. M. C. Amboni, R. A. Yunes and V. E. F. Heinzen, Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure–Retention Relationship Studies, *Internet Electron. J. Mol. Des.* 2003, 2, 33–49.
- [15] J. J. Martinez–Pla, L. Escuder–Gilabert, S. Sagrado, R. M. Villanueva–Camanas and M.J. Medina–Hernandez, Chromatographic Estimation of Apparent Acid Dissociation Constants (PKa) in Physiological Resembling Conditions. A Case Study: Ionisable Non–Steroidal Anti–Inflammatory Drugs, *Internet Electron. Conf. Mol. Des.* 2003, November 23–December 6.
- [16] D. T. Stanton and P. C. Jurs, Development and Use of Charged Partial Surface Area Structural descriptors in Computer– Assisted Quantitative Structure–Property Relationship Studies. *Anal. Chem.* 1990, 62, 2323–2329.
- [17] W. Guo, Y. Lu and X.M. Zheng, The predicting study for chromatographic retention index of saturated alcohols by MLR and ANN, *Talanta* **2000**, *51*, 479–488.
- [18] T. F. Woloszyn and P. C. Jurs, Quantitative structure-retention relationship studies of sulfur Vesicants, Anal. Chem. 1992, 64, 3059-3063.
- [19] K. S. Reddy, J.-C1. Dutoit and E. sz. Kováts, Pairwise interactions by gas chromatography, J. Chromatogr. 1992,

609, 229–259.

- [20] K. S. Reddy, R. Cloux, and E. sz. Kováts, Pairwise interactions by gas chromatography IV. Interaction free enthalpies of solutes with trifluoromethyl-substituted alkanes, J. Chromatogr. A. 1994, 673, 181–209.
- [21] K. S. Reddy, R. Cloux, and E. sz. Kováts, Pairwise interactions by gas chromatography VI. Interaction free enthalpies of solutes with primary methoxyalkane, cyanoalkane and alkanethiol groups, *J. Chromatogr. A.* **1995**, 704, 387–436.
- [22] L. H. Hall, L. B. Kier and B. Mohney, The Electrotopological State: Structure Information at the Atomic Level for Molecular Graphs, J. Chem. Inf. Comput. Sci. 1991, 31, 76–82.
- [23] C. L. Yaws, Thermodynamic and Physical Property Data, Gulf Publs. Houston, 1992.
- [24] T. Ivanciuc and O. Ivanciuc, Quantitative Structure–Retention Relationship Study of Gas Chromatographic Retention Indices for Halogenated Compounds, *Internet Electron. J. Mol. Des.* **2002**, *1*, 94–107.
- [25] W. O. McReynolds, Characterization of some liquid phases, J. Chromatogr. Sci. 1970, 8, 685-691.
- [26] G. Defayes, K. S. Reddy, A. Dallos, and E. sz. Kováts, Pairwise interactions by gas chromatography V. Interaction free enthalpies of solutes with primary chloro– and bromoalkanes, J. Chromatogr. A 1995, 699, 131– 154.
- [27] A. Dallos, A. Sisak, Z. Kulcsár and E. sz. Kováts, Pairwise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, *J. Chromatogr. A* **2000**, *904*, 211–242.

Biographies

K. **Subramanyam Reddy** is a professor of physical chemistry at Sri Venkateswara University. After obtaining a Ph.D. degree in S.V. University, he joined the chemistry faculty in the same University and worked in the field of thermodynamics of solutions. Later Dr. K. S. Reddy undertook postdoctoral research with Professor E. sz. Kováts at the EPFL, Lausanne, Switzerland. Dr. K. S. Reddy is working on studies relating to molecular interactions using GC technique and in the development of QSRR models for GC retention data.

P. Tulasamma has been awarded Ph.D. degree under the guidance of Dr. K. Subramanyam Reddy in S. V. University. Presently she is doing Post Doctoral Research in the field of QSRR models.