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Abstract 

The topological index MID06 (Molecular Identification Number 06) has been proposed by Chang–Yu Hu and 
Lu Xu in their paper “Developing Molecular Identification Numbers by an All–Paths Method”. It has been tested 
successfully on a large number of alkane isomers and molecules containing heteroatoms. Here we analyze the 
degeneracy of MID06 for alkanes, and we demonstrate that there are many more alkanes then possible MID06 
identifiers. Although MID06 has very good discriminative properties, it has degenerate values for certain alkane 
pairs. 

Keywords. Topological index; molecular descriptor; molecular graph; index degeneracy. 

Abbreviations and notations 
AID, atom identification number NIST, Chemistry WebBook 
IU–PAC, International Union of Pure and Applied Chemistry NP, non polynomial 
MID, molecular identification number PI, path identifier hips 

1 INTRODUCTION 

NIST Chemistry WebBook [1] is one of the internet databases of chemical compounds. In order 

to search through those databases every molecule must be uniquely identified. International Union 

of Pure and Applied Chemistry (IUPAC) [2] has developed a standard for naming chemical 

elements and compounds. To search the databases more successfully we need a quick algorithm for 

identifying and discriminating substances, and the most effective way to do that is by using their 

structural formula. In mathematics that problem comes down to determining a canonical graph 

form, which is extremely difficult problem and falls into class of NP–difficult problems [3]. 

Concept of isomorphism, finding if two graphs are isomorphic, is also very important in this 

problem. It also falls into NP–problems class, although there are very good algorithms for this, like 

Nauty [4]. Molecular descriptors are therefore very important and scientists continuously try to 
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develop better identifiers. However, it has been shown that even the most discriminative 

descriptors, such as the Balaban topological index J [5] cannot discriminate every set of graphs, 

moreover, when the number of vertices in a graph is large enough, every graph has its 

indiscriminative counterpart [6]. 

Chang–Yu Hu and Lu Xu in their article “Developing Molecular Identification Numbers by an 

All–Paths Method” [7] have suggested new molecular descriptors, based on all–paths method. The 

best one was Molecular Identification Number 06 (MID06). It was tested on the family of alkane 

trees with p to 22 atoms, that is 3 807 434 alkane isomers, and on 430 472 structures containing 

heteroatoms having 8 carbon atoms and up to one oxygen or/and nitrogen heteroatoms. No 

duplicate with an identical MID06 number were found for observed substances. 

It is interesting to explore if MID06 descriptor works in general. We will show that that is not the 

case, that two graphs with identical MID06 exist. We will show that even the family of trees is not 

discriminative, although we have certificates for that in mathematics [8]. 

2 PRELIMINARIES 

Let G  be a graph. We denote number of vertices of G by v(G), and by e(G) we denote number 
of edges of G. We say that graph is d–regular if d is a degree of every vertex V(G)v∈ . Two graphs 

G and H are isomorphic if bijections  V(H)V(G):f →  and E(H)E(G):g →  exist, so that vertex v 

in G is incident with edge e in G if and only if vertex f(v) in H is incident with edge g(e) in H. We 
denote an array of vertices k10 ...vvv  in a graph G as a walk, and if all the vertices k10 ...vvv  are 

different, we call that walk a path in G. Distance d(u,v) of vertices u and v is the length of the 

shortest path between u and v. Diameter of a graph G is the maximum distance between two 

vertices in G. Tree is connected acyclic graph. A root of the tree is one fixed vertex. Vertices that 

have a degree of 1 are called leaves (or pendant vertices). 

Algorithm for determining MID06 of given molecule, described in paper [7], is as follows. Let 

1-kk,b  be the code for the bond between nodes k and 1k − , (its values are 1,2,3 for single, double and 

triple bond, and 1.5 for aromatic bond), δ′(k) for atom k is Z(k)(k)' δδ = , where Z hδ = − , is 

connectivity for atom k (the number of non–hydrogen atoms attached to it), Z is the atomic number, 

and h is the number of attached hydrogen atoms. For every two atoms i and j in a molecule we 

determine Path Identifier 06: 

( ) ( )
, 1

2

1
PI06

' ' 1

ijn
k k

k

b

k k kδ δ
−

=

= ⋅
⋅ −∏  (1) 

 

where k is the sequence number of the nodes along the path between nodes i and j, ijn  is the total 

number of nodes in the path. For an atom (vertex) i in the graph, AID06 (Atom Identification 
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Number) is obtained by adding the PIs of all paths started at that vertex: 

∑=
j

jii PIAID  (2) 
 

where j is the sequence number of every other atom in the molecule. We define MID06 as the sum 

of 2AID : 

∑=
i

2
iAIDMID  (3) 

 

where i is the sequence number of every atom in the molecule. 

We will observe molecular structures as chemical graphs. There are two kinds of chemical 

graphs, plerograph and kenograph [9]. A plerograph is a graph where every atom is represented by a 

vertex, and two vertices are connected if responding atoms are chemically connected. A kenograph 

is a graph where every non–hydrogen atom is represented by a vertex. 

We will use kenographs and observe only those with following properties: 

– Alkanes with n carbon atoms (trees with n vertices); 

– All vertices must have degree of 1 or 4, i.e. every carbon atom is connected with 1 or 4 carbon 

atoms (these graphs will be called 1,4–regular graphs); 

– Diameter of tree with n vertices must be less or equal to 33log 2n; 

The family of such trees will be denoted by( )nτ . 

We will show that there are more described graphs than possible different MIDs, and then 

conclude our claim about degeneracy for all molecular structures. 

3 RESULTS AND DISCUSSION 

Because of 1,4–regularity for an n vertices graph we have 0Nk2,3kn ∈+= . So the first few 

members of our observed alkane family ( )nτ  have n=2,5,8,11,14,... First we will calculate how 

many possible MIDs are for the observed graphs. Let us look at the Path Identifier formula for 

vertices i and j in a molecule: 

( ) ( )
, 1

2

1
PI06

' ' 1

ijn
k k

k

b

k k kδ δ
−

=

= ⋅
⋅ −∏  (4) 

 

It holds 4Z = , 1b =  and 1δ =  or 4 for all such graphs. So we have: 

( ) ( )2

1 1
PI06

1

ijn

k k Z k kδ δ=

= ⋅
⋅ ⋅ −∏  (5) 
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First part of the formula is a constant, while the other part depends on the path. Graph is 1,4–

regular, hence all paths are between 1–1, 1–4, or 4–4 vertices. Therefore, there are three different 
kinds of paths. This means that if we choose one vertex as first, in that graph there are 39log 2n 

paths at most, hence there are at most 39log 2n different Path Identifiers. 

For an atom (vertex) i in a graph, we calculate AID by: 

∑=
j

jii PIAID  (6) 
 

and then we get MID for the molecule with the formula: 

∑=
i

2
iAIDMID  (7) 

 

Now we have: 

∑∑∑∑ ∑ ==
i j ji ' ''

i'j'ij'
j

ji PIPI²)PI(MID  (8) 
 

For fixed j′, there are ≤ 39log 2n different ij'PI s, and also the same i'j'PI s for fixed j′′, so in the 

MID formula there are ≤ 2
381 log 2n⋅  different summand. Altogether there are ( )2 31n n n− ≤  

summands (not necessarily different), because the sum by j′ and j′′ has 1n−  summands, and by i 

there are exactly n summands. 

Weak decomposition of number N  into R  summands is sum 1 ... RN x x= + +  where 

1 2, ,..., 0Rx x x ≥ . The number of such sums [10] is
1

1

N R

R

+ − 
 − 

. Note that: 

( ) ( ) ( )
( ) ( )

( )

1 1 2 ... 1

1 1 2 ... 1

1 1 ... 1 1
1 2 2

R

N R N R N R N

R R R

N N N
N N

R R

+ − + − ⋅ + − ⋅ ⋅ + 
= = − − ⋅ − ⋅ ⋅ 

     = + ⋅ + + ⋅ + ≤     − −     

 (9) 

 

Since, in our case 2
381 log 2nR≤ ⋅  and N ≤ 3n , it follows that there are at most ( )

2
381 log 23 n

n
⋅

 

different MIDs. We have: 

( ) ( )
22

2 333
3 32

243 log 281 log 2 243 log 2 400 log 2log3 2 2
nn n nnn n

⋅⋅ ⋅ ⋅= = ≤  (10) 
 

Theorem 1. The number of trees in ( )nτ  is at least
1

n
22 . 

Proof. We will construct a tree from family ( )nτ  with n vertices in the several steps. Denote by k  

the largest number such that 2 1 3 1
1 1 3 3 ... 3

2 4

k
k n− ++ + + + + = ≤ . Let us take one vertex and add to it 

3 leaves. 
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Figure 1. Basic block of the graph. 

Let us denote that as basic block. To make this block into a tree of our family we have to add one 

more vertex to that first one and denote it as the root. 

 

Figure 2. Basic block with its root. 

Now let us construct a tree with height increased by 1. Let us take 3 basic blocks and identify their 

roots (Figure 3, left hand–side) and add one pendant vertex which becomes our new root (Figure 3, 

right hand–side). 

   

Figure 3. Building larger trees from basic blocks. 

Now we continue to expand the tree, each time increasing the height by 1 and expanding all the 

vertices on the previous level. We obtain the tree of height 1k + . In this case there are basic blocks 

on k  levels. The example for 3k =  is given on the following Figure: 

 

Figure 4. Branched tree with height 4. 

Once we have built such tree with 
3 1

2

k +
 vertices, we are going to branch vertices on the bottom 

level. We can branch either 0, 1, 2 or 3 vertices. However, in order to avoid technical difficulties, 

we shall branch at least one vertex in each of the basic blocks on the bottom. So we have 3 

possibilities for each basic block. We will represent those possibilities with strings of 0s and 1s. We 

assign 0 to the vertex that we haven’t branched and 1 if we did. For a basic block strings have the 

length of 3. Since it is the same which vertex we branch, because their positions aren’t fixed, strings 

001 and 010 represent the same possibility. Hence, we have the following possible strings for a 
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basic block: 

100,010,001– if we branched 1 vertex, 
110,011,101– if we branched 2 vertices, 

111 – if we branched 3 vertices. 
 

 

Note that we have enough remaining vertices for all these branchings, since at most 13 3 3
4

k n−⋅ ≤ ⋅  

vertices can be added at this stage, and still we have some vertices left. We will add that “leftover” 

vertices on any vertex at bottom most level, branching uniformly. The way those vertices are 

arranged can only increase total number of different trees, so we can ignore it for the purpose of our 

calculation (and just say that the observed vertex is branched). It can be easily seen that diameter of 
this graph is 33log 2n< . 

The tree we get with this construction looks like uniformly branched tree, and on the bottom most 

level some vertices are branched and some are not. So down to that level trees all look the same and 
we conclude that our tree of ( )nτ  family is uniquely described by the string assigned to the bottom 

most level of the tree. For a k–height tree that string has the length of 13k− . Hence, the number of 

different trees of given family is equal to the number of different strings described above. Let us 
denote with 1pa −  number of different strings of length 13p−  (taking into the account identification 

under isomorphism). It can be easily seen that 1 3a =  (since 000 is not allowed) and we got 2a  as 

number of combinations with repetitions of arranging 3 elements into 1a  places. We now conclude 

that 13p− –length strings, that is the number 1pa −  will be the number of combinations with repetitions 

[10] of 2pa − : 

( )3

22 2 22 2 2
1

( 2)( 1)3 1 2

3 3 3 3! 6
pp p pp p p

p

aa a aa a a
a

−− − −− − −
−

+ +  + − +     
= = = = ≥      

      
 (11) 

 

Now we have: 

1

1
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3
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3

2
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≥
+ 
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(12) 

 

 



D. Vukičević and T. Vojković 
Internet Electronic Journal of Molecular Design 2008, 7, 216–224 

 

 

222 

BioChem  Press http://www.biochempress.com 

 

( ) ( )

( )

( )

( ) ( )

( )

( )

( )

2 2

2

2

3 3

3

-3 3

-3

33
2

3 33
3 2 2

4 3 1 3

3
3

2
3 1 3 33

4 2 2
5 9 3 1 3

3 3

2
1 3

6

6 6 6 6

6

6 6 6 6
...

10
.

66
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a

a a a
a

a

a a a
a

a
a

−

+

+

+ +

−

 
 
 ≥ ≥ = ≥

 
 
 
 ≥ ≥ = ≥

 ≥ =  
 

  

 

Hence, 1ka −

122
k−

≥ for k big enough. So, for the tree of height k  we have 
12

1 2
k

ka
−

− ≥ , number of 

different strings, and hence number of different trees. Let us express that by number of vertices n .  

Since k  is the largest number such that 
3 1

2 4

k n+ ≤ , i.e. the largest number such that 3 1
2

k n≤ − , it 

follows that 3 3 4

2
log log log .

6 4 4

n n n
k

−> > >  

When we put that in our claim we get: 
1

21
log log4 21 4 2 4

1
2 2 2 4 2

1 2 2 2 2 2
n n

k
n

n

ka
−

 
 
 

− ≥ ≥ = = =  
(13) 

 

So the number of trees in the family ( )nτ  is at least 
1

22
n
, which is what we wanted to prove. ■ 

Theorem 2. Number of different MIDs is smaller than the number of alkane graphs they are 

associated with. 

Proof. Let us look at the ratio of different MIDs and observed graphs when number of vertices n is 

increasing. We have: 
3

33
3

1400log 2
400log 2

2
1

2

2
lim lim 2

2

n
n n

n nn

−

→∞ →∞
=  (14) 

 

This is equivalent to 

3 3
3 33

3

400log 2 400log 21 11 lim lim limlim 400log 2 2 222 2 2
n n nn

n n
n nn n

n n→∞ →∞ →∞→∞

   
  ⋅ − ⋅ −   −     
     = =  

And then: 

3 33 3
3 3 3

1/ 2 1/6 1/6

400log 2 log 2 log 2 ln 2
lim 400 lim 400 lim lim
n n n n

n n n n
c

n n nn→∞ →∞ →∞ →∞

       = ⋅ = ⋅ = ⋅      
     

 (15) 
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where 
( )3

400

ln 3
c = . Let us apply L'Hospital rule to 1

6

ln 2
lim
n

n

n
→∞

: 

'

1 5 1/6
6 6

1
ln 2 6

lim lim lim 0.
1
6

L H

n n n

n n
n

n n
−→∞ →∞ →∞

= = =  (16) 

 

And since we have: 

∞=
∞→

n
n
lim  and 

1 1
lim

2 2n→∞
=  (17) 

 

in the starting expression we get: 
3

3400log 2 1 1lim lim 02 22 2 2 0
n n

n
n

n→∞ →∞

 
 ⋅ −  ∞ −    −∞   = = =  

(18) 
 

Limit of the observed ratio goes into 0 when number of carbon atoms in the molecule increases. So 

for large enough n we have many more alkanes than MIDs and there will be two different alkanes 

with the same MID06. ■ 

Remark 1. From previous theorem we conclude that for almost every graph G of the given family, 

exists a graph G' so that MID06(G)=MID06(G'). 

4 CONCLUSIONS 

In this paper we have analyzed MID06 index. Although it has been shown that it has perfect 

discriminative properties for the given family it can be shown that this cannot be extended to 

general graphs. Here we construct large family of graphs such that almost every member of this 

family has an indiscriminative counterpart. This shows that MID06 might not be useful in some 

cases for the identification of the compounds in the large data–bases, because there is always danger 

that in practice two different compounds with the same value of MID06 may occur. We show, that 

when we observe theoretical models, there is a very large number of such indiscriminative pairs. 

However, this is still highly discriminative index and useful tool to show that two molecular 

graphs are not isomorphic (i.e., that they do not model the same compound). Namely, if two 

compounds have different MID06 values, they are not isomorphic; and otherwise additional 

research is necessary. 
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